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Trees on smallholder farms and forest
restoration are critical for Rwanda to
achieve net zero emissions
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Landscape restoration initiatives are mainly focusing on forest regeneration and agroforestry,
especially in the Global South. However, due to a lack of monitoring tools, the carbon balance of
restoration efforts remains poorly quantified. Here, we use satellite images from 2008 and 2019 to
calculate carbon stocks for individual trees in Rwanda, a country which has been actively engaged in
restoration activities over the past decade. We show that smallholder farmers on average planted
about 3 trees per farm during 2008–2019, contributing about 50.4 million new trees at the national
scale. The overall C sink of the new farmland trees was 0.13 Megagrams of Carbon per hectare per
year, which is 6 times lower than gains observed from restoration of degraded forests (0.76
Megagrams of Carbon per hectare per year). If national greenhouse gas emissions remain at the level
of 2019, agroforestry (~61%of national area coverage) and continued restoration of degraded natural
forests (~0.5% of national area coverage) have the potential to offset about 80% of the national
emissions before 2050. Our work monitors and quantifies progress and impact of landscape
restorationprojects andoutlines apathway to engagesmallholder farmerswith a limitednumber of on-
farm trees into the expanding carbon market.

Tree-dominated ecosystems are crucial for climate change mitigation and
adaptation as they support biodiversity, store carbon (C), provide habitats,
and offer nutritional and economic benefits1,2. Tree density, size, and dis-
tribution within an ecosystem are key attributes and central to decision-
making regarding landscape restoration efforts aiming to increase tree-
based ecosystem services and promote optimal tree growth3–5.

Among many existing landscape restoration initiatives, agroforestry,
which involves the integration of trees within croplands, is increasingly
being adopted in the Global South6,7. Agroforestry has the potential for
concurrent intensification and diversification of production and enhanced

carbon storage8. Furthermore, trees within croplands fertilize and stabilize
the soil, and provide numerous benefits to farmers including enhanced
income as well as improved food and nutrition security9–12.

Contrastingly, natural forests provide different ecosystem services,
such as high C stocks, biodiversity, and ecological habitats1,13. However,
natural forests are threatened by both natural and anthropogenic processes,
often leading to deforestation and forest degradation14,15. The restoration
potential of degraded natural forests (hereafter, degraded forests) is high,
andonce restored, regrowing forests can store carbonup to20 times faster as
compared to old-growth forests, which is in particular the case in the
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tropics1. Identifying degraded forests within protected areas is however
challenging. As a result, many large-scale restoration programs prioritize
agricultural land, where tree cover is typically low and presumed to be easier
to increase rapidly16.

Furthermore, it is challenging to monitor the success of large-scale
restoration efforts within degraded forests, as quantifying newly established
individual trees is difficult using traditional satellite systems and often
requires labor-intensive field inspections that may not be representative for
large areas. The same difficulties apply to farmlands, where trees are typi-
cally sparsely planted, and single trees are too small to be identified by
conventional satellite systems, especially when trees are young. Conse-
quently, studies often rely on proxies to evaluate the success of ecosystem
restoration, such as the greenness of an area17–19. However, greenness is a
measure of the presence and abundance of green vegetation, and it is not
always related to tree cover. Tree-level traits such as density, crown area, and
carbon stock dynamics related with tree plantations and forest regeneration
have rarely been reported for large areas over extended time periods. Fur-
thermore, conventional methods for monitoring restoration activities
usually focus on larger land units, excluding smallholder farms with less
than 10 ha10,11,20. Therefore, the contribution of smallholders to landscape
restoration goes often unnoticed and remains largely unrecognized.

Here, we conduct a nation-wide wall-to-wall mapping of trees (defined
here as woody plants with a crown area larger than 3m2) in 2008 and 2019 in
Rwanda, and study changes in their number, crown area and carbon stock,
with a particular focus on newly established trees in farmlands and degraded
forests. Rwanda has invested a remarkable effort in restoration21–24, and is thus

an interesting case to illustrate potential gains in forest andnon-forest biomass
from restoration in tropical countries. We demonstrate how our data can be
utilized to estimate future potential carbon sinks needed to reach net zero
emissionsby2050, and towhat extent carbongains resulting fromsmallholder
farms and forest restoration contribute towards achieving this target.

Results
Mapping individual tree gains and losses in agroforestry land-
scapes and degraded forests
Aerial images with a spatial resolution of 0.25 × 0.25m2 were acquired for
200825, and satellite images with a spatial resolution of 0.5 × 0.5m2 for 2019.
Wemanually delineated 325,540 tree crownswith aminimumcrown size of
3m2, and then trained a deep learning model to segment the tree crowns.
The minimum crown size threshold was based on visual inspection (Fig. 1,
see Methods). We mapped individual trees and tracked the crown centers
between 2008 and 2019 to separate new trees only found in 2019 from the
existingones in2008.Trees only found in2008butnot in 2019weremapped
as losses.Change estimateswere validatedwith treemeasurements from296
permanentfieldplots (seeMethods).Weadjusted the images from2008 and
2019 to each other on a common resolution of 50 cm, and only retained
common spectral bands for both images (Red, Green, Blue) on the same
radiometric resolution. We further trained a separate deep learning model
to remove pixels with clouds and shadows (Supplementary Fig. 3); clumped
trees were separated in a post-processing step (see Methods).

We used manually delineated maps of degraded forests26 and
farmlands27 showing that degraded forests cover about 10,932 ha (about

Fig. 1 | Mapping tree-level changes in agroforestry fields and degraded forests in
Rwanda in 2008 and 2019. a Location of Rwanda in Central East Africa. Data from
ref. 70. b The mapped changes in tree density between 2008 and 2019 in agroforestry
fields and degraded forests. c An example of individual trees mapped in an agro-
forestry landscape in 2008 (c(i)), and in 2019 (c(ii)), and their estimated tree-level
aboveground C stock density in 2008 (c(iii)) and 2019 (c(iv)). d An example of

individual trees mapped in degraded forests in 2008 (d(i)) and in 2019 (d(ii)), and
their estimated tree-level aboveground C stock density in 2008 (d(iii)) and 2019
(d(iv)). Note that the net losses in the eastern part of the country were mainly driven
by agricultural expansion in the past decade. For instance, the cultivated area
increased by 16.8% between 2017 and 2019 at national scale, with most of the
increase observed in the eastern part37.
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0.5% of the country area), while agroforestry landscapes cover about
1,316,389 ha (about 61% of the country). Agroforestry landscapes are here
considered as non-wetland areas under active agriculture aswell as regularly
harvested tree plantations (see Methods). The number of trees in degraded

forests increased from 1.5 million in 2008 to about 2.1 million trees in 2019
(Fig. 2), which is a net gain of about 0.6million trees or+4.6 trees ha−1 yr−1.
We observed about 0.76 million newly established trees or +6.3 trees ha−1

yr−1 (gross gain) in 2019 in degraded forests, and a gross loss of about 0.2

 

Fig. 2 | Carbon stock in agroforestry fields and degraded forests in 2008 and
associated gains in 2019. a Illustration of area extent covered by agroforestry areas
in Rwanda in 2008 and 2019 (1,316,389 ha). Note that we assume no change in the
spatial extent of both landscapes between 2008 and 2019 (see Methods). b Same as
a but for degraded forests (10,932 ha). c Tree count in agroforestry areas in 2008
(n = 77,717,415) and 2019 (n = 105,781,561). Note: The red outline indicates gains in
2019. d Same as c but in degraded forests (n = 1,506,129 in 2008; n = 2,057,853 in
2019). eTotal estimates of tree-level aboveground carbon stock in agroforestry areas
in 2008 (5.2 TgC) and 2019 (6.3 TgC). f Same as ebut for degraded forests (0.38TgC
in 2008 and 0.79 Tg C in 2019). gAverage C density in new trees in 2019 (1.43Mg C

ha−1). h Same as g but for degraded forests (8.39 Mg C ha−1). i Boxplots showing
variations in density of new trees in degraded forests (n = 759,110) and agroforestry
(n = 50,386,436). j Same as i but for carbon stock density per area. k Same as i but for
carbon stock density per tree. In boxplots in i–k, the lines from top to bottom
represent maximum, third quartile, median, first quartile, and minimum values,
respectively. *We present potential gains if smallholder farmers attain a recom-
mended density of 300 trees ha−1, and degraded forests attain the a density of 700
trees ha−1 (see section “Future restoration potential.” and Fig. 4). The ultra fine
dotted lines in i and j indicate the required addition to attain the recommendations.
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million trees or −1.7 trees ha−1 yr−1. Trees in agroforestry landscapes
increased from 77.7 million in 2008 to 105 million in 2019; a net gain of
about 28 million trees or +1.9 trees ha−1 yr−1. We observed about 50.4
million newly established trees or+3.5 trees ha−1 yr−1 (gross gain) in 2019,
and a gross loss of about 22.3 million trees or −1.5 trees ha−1 yr−1 in
farmlands. The tree density in degraded forests had a net increase from 138
trees ha−1 (standard deviation - SD 90) in 2008 to 188 trees ha−1 (SD 93) in
2019, while agroforestry areas had a net increase from 59 trees ha−1 (SD 62)
in 2008 to 80 trees ha−1 (SD 83) in 2019. The new trees are a result of both
natural and assisted regeneration in degraded forests28, and active tree
planting in agroforestry areas29.

We further used 942,081 accurate farm plot delineations of 2019 from
the National Land Authority of Rwanda, of which 99.6% are smallholder
farmplotswithamaximumarea sizeof 5 ha andan averageof about 0.18 ha.
There is at least one tree in each sampleplot, and theplotswere selected from
over 2.4 million land plots covering all land cover types within four sample
districts: Rubavu in Western province, Musanze in Northern province,
Muhanga in Southern province, and Kirehe in Eastern province. The dis-
tricts represent the three major landscapes of the country (Supplementary
Fig. 4). We show that the average number of trees in these sample plots
increased fromabout 10.9 (SD28.8) in 2008 to about 14.1 (SD37.3) in 2019.
This implies that each smallholder farmerhas planted, on average, about 3.2
trees per plot (about 18 trees ha−1) between2008 and2019.At national scale,
farmlands on average gained 21 trees ha−1 (SD 21.3).

Carbon stock changes
We adopted the approach from ref. 30 to estimate diameter at breast height
(DBH) from the tree crown diameter, which was further used to estimate
above-ground biomass, finally converted to above-ground carbon stocks
using the biomass-to-carbon conversion factor of 0.4731,32 (see Methods).
For farmlands, ref. 30 estimated an uncertainty of 5.7% and 33.4% for
degraded forests.

For degraded forests, we estimated a carbon stock of 0.38 ± 0.12 Tg C
(± is the uncertainty derived from NFI data, see Supplementary Table 1;
ref. 30) in 2008, and 0.79 ± 0.26TgC in 2019, ofwhich about 23.7%was from
newly established trees (Fig. 2). We found our estimates to be in the same
range as existing global estimates (Supplementary Fig. 2a). The carbon
density of newly established trees was estimated to be about 8.4 (SD 8.4)Mg
C ha−1, with an annual increment of about 0.76Mg C ha−1 yr−1. In agro-
forestry fields, we estimated about 5.2 ± 0.3 Tg C of tree carbon stock in
2008, and 6.3 ± 0.36 Tg C in 2019, of which 29.7% was from newly estab-
lished trees (Fig. 2). The carbon stock density of new trees within agrofor-
estry fields was estimated to about 1.4 (SD 1.3)MgCha−1 or+0.12Mg ha−1

yr−1. These numbers imply that the annual increment was almost six times
faster in degraded forests as compared to agroforestry fieldswithin the same
period (Fig. 2). The lower carbon stock and tree density in agroforestryfields
can be partially explained by sparse tree planting and regular harvesting of
the trees for socio-economic purposes33,34 (see Discussion). Geographically,
the highest carbon gains from new trees in farmlands (46%) were observed
in the central plateau area of Rwanda, and 29% in humid highlands in the
western part of the country. A total of 25% was found in drylands in the
eastern part, which also experienced the highest losses (Fig. 1).

Towards net zero emissions via agroforestry and forest
restoration
Our results indicate an overall net C stock gains in agroforestry fields were
1.1TgCor 0.09TgCyr−1 between 2008 and 2019, and 0.42TgCor 0.038Tg
C yr−1 in degraded forests (Fig. 2). This suggests an annual net C sink of 0.13
Tg C yr−1 from trees within the two land cover types. Data from ref. 35 show
that the annual GHG emissions of Rwanda were 1.4 Tg C (combined
emissions from CO2, methane CH4, and Nitrous Oxide N2O; Supplemen-
tary Fig. 5) in2019.That implies that agroforestry and forest restorationhave
offset about 10% of the national annual greenhouse gas (GHG) emissions.

When translated into the social cost of carbon dioxide (SC-CO2), a
measure of the monetized value of damages associated with emissions to

society36, the emissions from 2019 correspond to an average of about 943.5
million USD in equivalent social damages. The emissions offset by agro-
forestry and forest restoration correspond to about 88.2 million USD in
avoided social damages. However, our recommended combined scenario
for reaching the optimal tree restoration potential indicates that over a 20-
year period, agroforestry and degraded forests alone could achieve an
annual C gain of about 1.1 Tg C yr−1 (i.e. 0.15 Tg C yr−1 from restoring
degraded forests in scenario 2, and 0.96 Tg C yr−1 from agroforestry in
scenario 3 (See Fig. 4; Supplementary Table 2; SupplementaryTable 3). This
is about 80% of the total national GHG emissions in Rwanda in 2019. The
remaining 20% could be covered by preserving natural forests, which cover
5% of the country but hosts over 50% of the national C stocks30. The
country’s target to reduce emissions by 38% in 2030, to which LULUCF
(Land use, Land-Use Change, and Forestry) is planned to play a notable
role24, would also contribute to an earlier achievement of the net zero goal.

About 99.6% of Rwandan farms are operated by smallholder farmers
with land areas less than 5 ha, and the national average agricultural land
ownership is below 0.5 ha37, yet, their contribution to the CO2 emission
offsets goes largely unrecognized. Being able to accurately assess CO2

emission offsets at the level of trees and smallholder farms (Fig. 3), our
mapping approach opens a technological opportunity of engaging small-
holder farmers in the growing global carbon market. The carbon credits
market value of the tree-level CO2 offsets within farmlands in Rwanda can
be estimated in the range of 3.7–36.7 million USD per year (a range of
10–100 USD per tonne of CO2 according to ref.

38, the ref. 39, and ref. 40. The
high cost range is due to the high volatility and speculations in the carbon
market39.

Future restoration potential
In this section, we exemplify how our data can be utilized to estimate
potential costs andbenefits of tree restoration atnational scale.Weassess the
maximum potential contributions of degraded forest restoration and
agroforestry, as well as associated costs for the country to achieve its net zero
by 2050 target41.We study this under three scenarios (Fig. 4; Supplementary
Table 2; SupplementaryTable 3). First, we apply a business as usual scenario
and assess potential outcomes in regards to restoration benefits (i.e.
increased tree density, carbon stock, annual carbon sink increments, and
economic revenues), if the annual tree density increase would remain at the
same level as observed in this study. Second, we assess potential outcomes if
all smallholder farmers in the country attain the maximum tree density for
their farmlands42,43, and degraded forests were restored to attain 70% of the
recommended tree density44. Third, we study potential outcomes if all
smallholders attain the recommended maximum on-farm tree density by
theMinistry of Environment of Rwanda45, and degraded forests attain 70%
of the field-measured maximum density in natural forests of the country45

(see Methods; Supplementary Table 2; Supplementary Table 3). The esti-
mations of restoration benefits is based on the assumption that the GHG
emissions would be kept at the 2019 level.

We recommend scenario 3 for optimal agroforestry restoration with a
density of 300 trees ha−1, and scenario 2 for restoring degraded forestswith a
density of 700 trees ha−1 (Fig. 4). This combined scenario suggests a tree
density that would leave sufficient space for crops, allowing a harvest of 50%
of on-farm trees, at an expense of about 1,200USDha−1 includingdirect and
indirect financial costs (see ref. 45). This would also yield a return on
investment (i.e. net profit relative to the investment cost) ranging between
12% to 38% without potential carbon credits revenues. We add additional
revenues from potential carbon credits using price ranges suggested by
refs. 38–40. For degraded forests, an investment cost of 375USDha−1 would be
required with a carbon credit-based return on investment almost equal to
the investment cost.

Using our tree-level data, we present a simplified estimation that dis-
regards social and landscape variations. Here, about 294.6 million new trees
could be established in a 20-year period (assuming 70% survival rate, see
Methods), resulting in a new nationwide C stock of about 23.5 Tg C in
farmlands, and 3.0 TgC in degraded forests, which is in a similar range as the
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existing global estimates42 (Supplementary Fig. 2). To put this into perspec-
tive, the scenario suggests that both farmlands and degraded natural forests
have reached about 27% of their potential optimal tree density. The financial
cost of this scenario is estimated to be around 1.163 billionUSD for a 20-year
period,with anestimated returnon investmentof140–442millionUSDfrom
increased crop and timber yields, prevented erosion, and additional revenue
ranging between 33 and 330 million USD from potential carbon credits
(Supplementary Table 2; Supplementary Table 3). This cost estimate is 2.2
times higher than the total amount already invested in landscape restoration
projects nation-wide between 2010 and 2018 in Rwanda22. Figure 4, Sup-
plementary Table 2, and Supplementary Table 3 provide more details on
multiple possible pathways with scenarios assuming different tree densities.
All scenarios are however based on a simplified perspective, andwe therefore
recommend conducting a more comprehensive econometric forecast when
considering the implementation of such projects.

Discussion
Various national, continental and global restoration initiatives pledge to
plant a certain number of trees in a given time. Examples of such initiatives
include the pledge to plant 43 million trees in 2019 in Rwanda46, 20 billion
trees in Ethiopia47, 10 billion trees in Pakistan48, “The 3 billion tree planting
pledge for 2030” in Europe49, “trillion trees” initiatives (https://www.1t.org/;
https://trilliontrees.org/), among others. Monitoring and quantifying ben-
efits, progress and impact of these landscape restoration initiatives is chal-
lenging due to unreliable monitoring systems. Previous attempts reported
the impact of landscape restoration from proxies based on medium or
coarse resolution satellite data reflecting the greenness of an area17–19. While
these proxies can help to identify overall changes in vegetation productivity,
they are less suitable to identify changes in tree cover and carbon stocks,
particularly in heterogeneous and fragmented systems such as small-scale
farmsdominatingmostAfrican countries50,51 (Fig. 3). Since forest expansion
often conflicts with agriculture, the majority of new trees are planted under
agroforestry schemes6,52. However, on-farm trees are too sparse to be
monitored by such proxy-based approaches. Therefore, tools and

approaches to identify and quantify gains at tree-level are highly needed to
monitor the progress and impact of landscape restoration projects, and
enable quantification of the associated ecosystem services.

Our tree-level analysis shows that over a period of 11 years, both
agroforestry areas and degraded forests had a considerable gain in the
number of trees, with over 50 million newly established trees, and the C
stock density increased six times faster in degraded forests as compared to
farmlands. This difference can be partially associated with sparse tree
planting and regular tree harvesting in agroforestry systems in Rwanda33,34.
The new trees in degraded forests are a result of both natural and assisted
regeneration28. The high and fast C gains in degraded forests underscore the
effectiveness of conservation, protection, and regeneration of natural forests
for climate change mitigation and biodiversity goals. This becomes
important as many ongoing restoration projects focus on plantations with
monocultures that are typically not benefiting biodiversity and, depending
on species and the land use they replace, may even have limited benefits for
climate change mitigation2,53, although they provide some socio-economic
benefits (Fig. 4; Supplementary Table 2; Supplementary Table 3). Although
the optimal spacing of trees in agroforestry systems can boost agricultural
productivity, too high tree densities could decrease crop yields, and some
exotic tree species can lower soil fertility54.

While on-farm tree density, gain and carbon sequestration are much
lower than an equivalent area of natural forest inRwanda, there is a far larger
area covered by farmland as compared to forests and degraded forests. For
example, our study shows that smallholder farms experienced an increase of
3.2 trees per plot on average, contributing to an increase of about 50.4
million new trees between 2008 and 2019. This led to a net gain of over 22
million trees nation-wide, storing about 1.1TgCequivalent to 4.034TgCO2

(Fig. 2). Briefly, both agroforestry and forest regeneration contributed
considerably to the national carbon sink and collectively represent a notable
pathway towards net zero emissions by 2050 target (Fig. 4; Supplementary
Tables 2 and 3).

The technological advances presented by our dataset, combined with
other technological solutions to create “smart contracts”55 for direct

Fig. 3 | Plot-level aboveground carbon stock in sample smallholder farms in
Rwanda. a Visualization of estimated aboveground carbon stocks (AGC in Mg per
farm plot) in sample smallholder farms in Rwanda (n = 942,081; Supplementary
Fig. 4). Plots boundaries data is from the National Land Authority of Rwanda
(https://www.lands.rw/home), received via Rwanda Forestry Authority (https://
www.rfa.rw/). b(i) Example of smallholder farms overlaid on aerial images. b(ii)

Example of smallholder farms and their estimated C stocks. c Boxplots showing
variation in tree density within sample farm plots (n = 942,081). d Same as c but for
C stock per plot. e Same as c but for C stock per tree. In boxplots in c–e, the lines from
top to bottom represent maximum, third quartile, median, first quartile, and
minimum values respectively.
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transactions between carbon credit buyers and owners, would make it
technically feasible to engage smallholders in carbon markets to a much
larger degree than at present. Data such as these presented here can be used
for traceability and monitoring, reporting, and verification (MRV) for
woody carbon stock changes and associated credits. However, we
acknowledge that quality of the data is dependent on image quality.
Therefore, including high resolution images and more information on tree
traits, such as height fromLiDARwhere available,will provide results with a
higher level of details and improved accuracy. Moreover, to increase the
availability of such detailed datasets with higher temporal coverage, future
research should assess the transferability of our approach to other areas
using freely available or low costmulti-temporal satellite images. Finally, we
acknowledge that the inclusion of smallholders in carbon markets also has
political, economic and regulatory implications. Thiswillmost likely require
policies to ensure that transactions are in accordance with national legis-
lation and are fair and just for both smallholders and buyers. These elements
have been beyond the scope of the present paper to address.

Methods
This study employs aerial images from 2008 and satellite images from 2019,
which are harmonized to match the spatial and spectral characteristics of
each other.We developed a deep learningmodel trained by 325,540manual
tree crown labels from both datasets, and segmented tree crowns for both
2008 and 2019.Weused permanentfield plots that cover the study period to
evaluate the mapped changes. Tree crowns were converted to biomass
following ref. 30. Finally, we tracked each tree between 2008 and 2019, and
marked trees that were only found in 2008 as loss, and trees that were only
found in 2019 as gain.

Aerial and satellite images
We used two types of publicly available images: aerial images at
0.25 × 0.25m2 resolution captured in June -August of 2008and2009using a
Vexcel UltraCam-X aerial digital photography camera25, and WorldView
satellite images at 0.5 × 0.5m2 resolution for 2019 provided by Rwanda
Space Agency (RSA). Both of the images were stored in an 8-bit unsigned

Fig. 4 |Different scenarios for optimal contributionof agroforestry anddegraded
forests to Rwanda’s net zero emissions target.We study three pathways to reach
new tree densities for optimal restoration of both agroforestry areas and degraded
forests, with an assumption that GHG emissions will remain at the 2019 level. We
propose three scenarios and present their corresponding environmental and eco-
nomic benefits (see Supplementary Table 2; Supplementary Table 3) with reference
to previous studies about the optimal number on-farm tree densities in Rwanda
(refs. 42,43,45 for Scenario 2 and Scenario 3), the recommended tree density for optimal

forest restoration in the tropics (ref. 44 for Scenario 2), as well as the observed tree
density in non-degraded forests of Rwanda (ref. 67 for Scenario 3). The green arrow
presents potential results of our recommended combined scenario (scenario 2 and
3), by which only the aboveground woody biomass in agroforestry and degraded
forests would capture 80% of the total country’s national GHG emissions (presented
by orange arrow) before 2050. Note that icons for the figure were accessed from
https://www.canva.com/.
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integer format, and only common spectral bands for both of the images (i.e.
Red, Green, Blue) were retained for consistency.

Pre-processing of the images
The images from 2008 are from an aerial campaign with 0.25m resolution,
while those from2019 are from theWorldView satellites, pansharpened and
resampled to 0.5 m resolution. We first resampled the images to each other
on a common resolution of 0.5 m.Next, we trained a deep learningmodel to
detect and segment cloud and shadow pixels (Supplementary Fig. 3), which
were then masked out and excluded from further analysis along with wet-
land areas.Weperformed a spatial overlay of the images, and eliminated the
spatially corresponding pixels for clouds and shadows by setting their values
to no-data in both images (Supplementary Fig. 3). This has excluded about
1.4%of of the farmland’s total area, and about 3.3%of degraded forests’ total
area. Note that these masked-out areas are not included in the analysis. We
have chosen to not extrapolate our results to areas with missing data as this
would add some level of uncertainty. Finally, a histogram matching was
performed to ensure that the cumulative distribution function of pixel
values is calibrated, achieving a consistent and uniform distribution of pixel
intensities for both aerial images in 2008 and their corresponding satellite
images in 2019 (Supplementary Fig. 7). Note that these images adjustments
make the results from this study incomparable to ref. 30.

Environmental data
Weuse thenational forest covermap andagricultural spatial extentmap27 to
classify farmlands and natural degraded forests. Themap was created using
on-screen digitization over the same aerial images of 2008 as used in this
study21,26. A forest was defined as “a group of trees higher than sevenmeters
and a tree cover of more than 10%, or trees able to reach these thresholds
in situ on a land of about 0.25 ha ormore”. A shrub was defined as “a group
of perennial trees smaller than sevenmeters atmaturity, and a canopy cover
ofmore than 10%on a land of about 0.25 ha ormore”. The forest covermap
has five major classes: natural forest, forest plantations, bamboo stands,
shrubs, and wooded savanna, with natural forest class subdivided into
“closed natural forest” and “degraded natural forest”. We hereby refer to
degraded natural forest as degraded forests. The spatial overlay of forest
cover and agricultural extent allowed the spatial delineation of the two land
cover classes of focus: degraded forests and farmlands. Farmlands are
considered as areas under agriculture, and Eucalyptus and non-Eucalyptus
plantations, excluding plantations in urban areas and wetlands. The agri-
culture and plantation areas were combined due to a prevalence of
encroachment among these land cover types33,42,56.

Nation-wide mapping of trees using deep learning
We adopt the tree segmentation approach developed in ref. 57 to auto-
matically detect and map trees at a national scale. The training dataset was
composed of 131,269 manually delineated tree crowns spread over 4039
patches with a size of 256 × 256 pixels for 2008 (covering about 1,698.8 ha),
and 194,271manually delineated tree crowns spread over 7390 patcheswith
a size of 256 × 256 for 2019 (covering about 3133.9 ha). The training sam-
ples are spread across the country representing the full range of biogeo-
graphical conditions across Rwanda (Supplementary Fig. 8.). We applied
random stratified sampling to ensure representative samples per elevation
gradient (fromhighlands in theWest to lowlands inEast), aswell as per the6
broad land cover classes: natural forests, savannahs and shrubland, Euca-
lyptus plantation, non-Eucalyptus plantations, Farmland, and Urban/Built-
up27,30. The final results were restricted to 2 land cover classes of the study’s
scope: degraded forests and farmlands. We trained a UNet architecture58,59

network using both the 2008 and 2019 images as inputs, putting a higher
weight for boundary areas between tree crowns in closed canopies to
decrease clumps inpredictions especially indense canopy areas, as proposed
in ref. 58 and implemented in ref. 57.We selected the bestmodel as themodel
with the lowest loss value on a separate validation set (20% of the training
data). We set aside 52 randomly selected labeled patches containing 17,306
manual labels of individual trees (i.e. over 5% of the total manual labels) as

an independent test set. The 52 patches overlaid with both 2008 and 2019
images and contained6639manually labeled tree crowns in2008and10,667
in 2019. The number of single treesmappedwithin a hectare is referred to as
“tree density”, while the percentage of a hectare covered by tree crowns is
referred to as “canopy cover”.

Separating clumped trees in dense canopy areas
Accurate mapping of trees individually without multiple trees being con-
nected is important, especially for accurate biomass andCstock estimations.
However, in dense canopyareas, some treeswerepredictedas clumpsbyour
tree detection approach. In this case, we adopted a post-processing method
to separate clumped tree crowns and fill any gap inside a single crown30.
Briefly,with anassumptionof a round tree crownshape, thepost-processing
method determines the crown centers in the crown predictions, and then
relabels them based on weighted distances to the identified crown centers.
The process is described in more detail in ref. 30.

Cloud detection and masking
The 2019 satellite images were partly cloudy especially in the highlands
region of Rwanda, where most of natural forests in protected areas are
located. We trained a separate UNet-based model to detect and segment
cloud and shadow pixels in the images. We trained a network with 870
manually delineated clouds across 1877 areas covering 5219 ha. The
trainedmodelwas deployed over the 2019 images anddetected clouds and
shadows (Supplementary Fig. 3), and the resultsweremanually checked to
ensure accuracy and consistency. The manual check is supported by the
fact that the cloud detectionwithmachine learning is one of the renowned
tasks yielding very high accuracy in remote sensing studies60–62, and there
was no overfitting during the training session (Supplementary Fig. 6). The
detected pixels with clouds and shadows were then masked out in 2019
images, as well as the corresponding pixels in the 2008 images for con-
sistency and comparability. The masking process was done via a spatial
overlay analysis, where pixels with clouds or shadows were set as no-data
in both images.

Tree-level allometry for biomass and carbon stock estimation
With the general principle of allometric equations to statistically relate
structural properties of a tree and its biomass63,64, we adopt an existing tree-
level allometry approach, which assumes a relationship between the crown
area and AGB with a variation between biomes65. The approach uses five
allometric equations to establish a relationship between crown area-derived
crown diameter (CD = 2*√(Crown area /π)), diameter at breast height
(DBH), and Above-Ground Biomass (AGB) of trees in savannas and
shrublands (Eqs. (1) and (2)); plantations, farmlands, and urban and built-
up areas (Eqs. (1) and (3)); and natural forests (Eqs. (4) and (5)). The
performance evaluation and errors for the equations are reported in ref. 30.

DBHpredictedin cm ¼ �4:665þ 5:102 � CD ð1Þ

AGBpredictedin kg ¼ 0:091 � DBHpredicted
2:472 ð2Þ

AGBpredictedin kg ¼ 0:202 � DBHpredicted
2:447 ð3Þ

DBHpredictedin cm ¼ ðexpð1:154þ 1:248 � lnðCD � 1:27ÞÞ
� ðexpð0:33152=2ÞÞÞ

ð4Þ

AGBpredictedin kg ¼ exp½1:803� 0:976Eþ 0:976 lnðρÞ þ 2:673 lnðDBHÞ
� 0:0299½lnðDÞ�2�

ð5Þ

Here CD is the crown diameter, DBHpredicted is the estimated DBH,
AGBpredicted is the estimated AGB, E (in Eq. (5)) is a measure of the
environmental stress66 (a gridded layer is available at https://chave.ups-tlse.
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fr/pantropical_allometry.htm), and ρ is the wood density (fixed at 0.54: a
weighted average of 6161 tree records from ref. 67).

Tree-level AGB estimation via allometry entails different sources of
uncertainties, which increase especially in the absence of field measured
height or DBH65,66. In this study, the uncertainties start from the DBH
estimationbasedonCD,propagate through theAGBestimation fromDBH,
and further by using a standard biomass-to-carbon conversion factor to
estimateAGCfromAGB31,32.Wooddensity also induces furtheruncertainty
during the AGB estimation, given the intra- and inter-species variability in
the trees and a transition from early to late successional stages especially in
natural forests67,68. A thorough evaluation of the allometric approach using
NFI field measurements can be found in ref. 30, and a summary is shown in
Supplementary Table 1.

Evaluation and uncertainties of the tree crown segmentation
We set aside 52 labeled patches containing 17,306 individual trees (over 5%
of the total training labels) as an independent test set to evaluate the model
performance. The 52 patches overlaid with both 2008 and 2019 images and
contained 6639 manually labeled tree crowns in 2008 and 10,667 in 2019.
This dataset was neither used during training nor validation. The plot-wise
comparison indicates an overall underestimation with r2 of 0.84 for tree
count, 0.89 for canopy area coverage, and0.78 formean crowncover in 2008
(Supplementary Fig. 1). The evaluation for 2019 revealed r2 of 0.71 for tree
count, 0.78 for the canopy area, and 0.72 for the mean crown area. A
confusionmatrix indicateda true positive rate of 74%, a false negative rate of
26%, and an overall accuracy of 95% for 2008 (Supplementary Table 4a);
and a true positive rate of 77%, a false negative rate of 23%, and an overall
accuracy of 93% for 2019 (Supplementary Table 1b).

Evaluation of the change 2008–2019
To evaluate the accuracy of our final results and quantify the overall error
of the reported changes between 2008 and 2019, we used field measure-
ments in 296 permanent field plots that are regularly visited in Rwanda
(Supplementary Fig. 9). In total, 4217 trees were measured in these plots,
and the planting year of each tree was recorded (Supplementary notes;
Supplementary Fig. 9). In 79 of the plots, most trees were planted before
2006, and here we expected the measured numbers to match our results
from both 2008 and 2019. From the plots, 1057 and 1078 trees were
measured in 2008 and 2019 respectively, which is an increase of about
1.9%. We map 970 trees for 2008 (8.2% underestimation), and 1001 trees
for 2019 (7.1% underestimation) within the same plots, indicating a
change of about 3.2% in our results. For other 217 plots,most of trees were
planted between 2006–2016, so the measured numbers are also expected
to match our predictions of 2019. In these plots, field measurements
indicate a count of 3514 trees and we map 3186 trees in 2019, which is an
underestimation of about 9.3%. All comparisons show a consistent bias of
7–9% for both 2008 and 2019.

Cost-benefit analysis of tree restoration potential
We refer to the methodology applied by the Ministry of Environment of
Rwanda in 201445 to estimate cost for the tree restoration potential in
farmlands and degraded forests. The study indicates an optimal restora-
tion of agricultural fields by planting 300 trees ha−1. This would require
financial investment of about RWf 843,600 ha−1 (about 1200 USD
according to the 2014 exchange rate in Rwanda69) to transition from pure
agriculture to agroforestry over a 20-year period. This transition would
also generate an income (i.e return on investment) ranging between 12%
and 38% of the initial investment cost, and would leave enough space for
crops to growwithout competingwith on-farm trees. Our tree restoration
potential scenario in farmlands consider adding about 220 trees ha−1 to the
currently mapped average tree density (about 80 trees ha−1) to reach 300
trees ha−1. The tree restoration potential in degraded forests refers to ref. 44

who indicated that optimal forest restoration in the tropics requires
planting about 1000 trees ha−1, and depending on the planted tree species
and the location, the survival rate ranges between 50% and 90%. We first

estimate planting about 700 trees ha−1 (1000 trees ha−1 with an average
70% survival rate). Then, we consider adding about 570 trees ha−1 to the
currently mapped average tree density in the degraded forests (130 trees
ha−1) to reach the 700 trees ha−1 target. This number aligns well with
previous findings in Rwanda, where a number of trees with a DBH larger
than 10 cm was found to range between 200 and 958 trees ha−1, while the
number of trees with DBH< 5 cm ranged between 350 and 1844 within a
tropical montane rainforest67. Also, our estimates agree with the existing
study on “the global potential for increased storage of carbon on land”42

(Supplementary Fig. 2b). The cost of restorationwas obtained by referring
back to ref. 45, where a required investment cost was estimated at about
376 USD per ha via assisted natural regeneration over a 20-year period.
The revenue from potential carbon credits was predicted to be almost the
same as the investment cost, making the return on investment to be
about zero.

Data availability
Aerial imagesof 2008 andWorldView satellite images for 2019, and landuse
and land cover data are freely available for research through formal appli-
cation to Rwanda Space Agency (https://space.gov.rw/), and National Land
Authority (https://www.lands.rw/home). Treemaps produced in this article
are freely accessible at https://zenodo.org/records/10527097. Field tree
measurements are available from A.M. and A.N.

Code availability
The code for the tree detection framework based on U-Net is publicly
available at https://doi.org/10.5281/zenodo.3978185; support and more
information are available from A.K. (ak@di.ku.dk or ankit.ky@gmail.com)
or F.R. (flr@ign.ku.dk). The code for clumped trees separation framework is
publicly available at https://github.com/ankitkariryaa/separate_instances;
support andmore information are available fromA.K. (ak@di.ku.dk) orC.I.
(igel@di.ku.dk).
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