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Cooler Arctic surface temperatures
simulated by climate models are closer to
satellite-based data than the ERA5
reanalysis
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Many climatemodels simulate near-surface air temperatures that are too low in theArctic compared to
the observation-basedERA5 reanalysis data, a bias thatwas noted in the Inter-governmental Panel on
Climate Change Sixth Assessment Report (IPCC AR6). Here we present a high-resolution, satellite-
deriveddataset of near-surface air temperatures for theArctic sea-ice region (1982–2020).Weuse it as
a benchmark to reevaluate climate reanalyses and model simulations in CMIP6 (Coupled Model
Intercomparison Project 6). We find that the CMIP6 simulations in the central Arctic, with generally
thicker ice and snow, alignwell with satellite observations, with an annualmeanbias of less than ± 1 °C
over sea ice. By contrast, climate reanalyses like ERA5 exhibit widespread warm biases exceeding
2 °C in the same region. We conclude that reliance on ERA5 reanalysis as a referencemay have led to
an underestimation of climate model reliability in the Arctic region.

Several recent studies including the IPCC AR61 show that climate models
generally simulate a too cold Arctic, indicated as a negative bias of near-
surface air temperature (often measured at 2m height, hereafter referred to
as T2m). It is known as one of the long-standing biases in climatemodels in
the past phases of the Coupled Model Intercomparison Project (CMIP)1–3.
Figure 3.3 in the IPCCAR6 further confirms the robust signal ofArcticT2m
bias in recent decades (1995–2014) in CMIP5, CMIP6, and HighResMIP,
suggesting limited improvement with advanced physics and increased
horizontal resolution in climate models.

The documented climate model biases in these studies are often
derived from comparisons with the European Centre for Medium-Range
Weather Forecasts (ECMWF)Reanalysis version 5 (ERA5), one of themost
advanced atmospheric reanalysis datasets4. ERA5 is widely applied for the
Arctic assessment5 rather than the use of observational data sets, because the
latter are typically available as anomalies relative to a reference period6,7.
Since the Arctic, particularly over sea ice, is data sparse, global reanalyses in
this region are only weakly constrained by observations and heavily rely on
model formulation with simplified physical processes tied to the radiation
budget, resulting in considerable uncertainty6–8. However, increasing evi-
dence from in situ observations gathered during recent campaigns reveals
that both the sea ice surface temperature (IST) and T2m in reanalyses have
substantial warm biases of 5 °C ormore under cold clear-sky conditions9–12.

This discrepancy becomes apparent when the observed thickness of the sea
ice and the overlying snow layer together exceeds the prescribed values
(usually 1.5 or 2m) in reanalysis and forecast models10,13,14. These biases are
known to be mainly attributed to the insufficient insulating effect of thick
snow on the ice surface, resulting in an overestimated conductive heat flux
from the warm ocean underneath the ice and snow layer. This issue in the
Arctic has long been acknowledged in the numerical weather prediction
community, and thus mitigation strategies have been explored in weather
forecasts and regional reanalysismodels. These strategies include amachine
learning post-processing model13, improved representation of sea ice and
snow physics over sea ice15, and even integration of atmosphere-ocean-sea
ice fully coupled systems16,17. Despite showing improvements in IST esti-
mates, these strategies have not yet been implemented in existing reanalysis
products covering the pan-Arctic region and recent decades13,15. Addition-
ally, the satellite IST product is currently not being assimilated by existing
reanalysis products. Consequently, T2m in these reanalysis products still
lacks an accurate representation of the Arctic surface state, despite its
importance as an essential climate variable for Earth’s climate
characterisation1. Furthermore, the seasonal and decadal variations of the
T2mbiaswithin the existing global atmospheric reanalysis and the resulting
implications for climate assessment remain unclear13. When using these
global atmospheric reanalysis products (too warm over sea ice) for model
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validation, this bias can lead to inaccurate conclusions, such as presuming
that climate models have a ‘cold temperature’ bias1–3.

Hence, accurate reference data with full spatial and temporal coverage
are urgently needed to benchmark climatemodels on theArctic surface. It is
also crucial for assessing the Arctic climate state, asmany essential elements
in the Arctic (e.g., sea ice and permafrost melting points, ecosystems, and
their possible tipping points, etc.) respond to specific temperature thresh-
olds. We recently developed a new high spatial resolution observational
dataset of T2m (hereafter referred to as T ðSATÞ

2m ), converted from satellite-
derived ISTs covering the period 1982–202118 using the existing empirical
relationships19. The dataset offers a newpossibility of benchmarking climate
models in the Arctic, to the best of our knowledge. In this study, we re-
evaluate the ERA5 andCMIP6model ensemble over theArctic sea ice using
this new satellite T2mproduct as a reference.Ourfindings demonstrate that
relying on ERA5 leads to the erroneous conclusion of persistent cold bias in
theArctic in climatemodels.On the contrary,we showthat theperformance
of the CMIP6 models in the central Arctic (with generally thicker ice and
snow) aligns well with satellite observations. This study stands as a crucial
reference, complementing existingmassive amount of publications that rely
on global reanalysis datasets, including ERA5, to benchmark CMIP5 and
CMIP6 models in the Arctic.

Results and discussion
Improved T2m representation over the Arctic sea ice
To establish the superiority of the newT ðSATÞ

2m over ERA5 (T ðERA5Þ
2m ) onArctic

sea ice, we first validate both T2m datasets against various independent
in situ T2m from pointwise groundmeasurements (T ðinsituÞ

2m ), with positions
shown in Supplementary Fig. S1. Table 1 shows the validation statistics
including the 95% confidence intervals. The mean differences between
T ðSATÞ
2m andT ðinsituÞ

2m range from−0.45 °C to0.65 °C, significantly smaller than
those of T ðERA5Þ

2m ranging from 1.73 to 3.73 °C. Similar to ref. 18, the vali-
dation results against the North Pole drifting ice stations (which span the
longest timeperiod)meet the requirementsof theGlobalClimateObserving
System (GCOS) in terms of stability20 with a trend of−0.09 °C per decade.
The long-term stability and superior validation results compared to
ERA5 suggest that satellite-derived T2m can be used to evaluate climate
models in theArctic. This dataset, capable of providing continuous coverage
and a spatial distribution of long-term mean and variability, proves parti-
cularly useful for supplementing the sparse in situ network.

Better mean-state in CMIP6 models
Figure 1a shows the T ðSATÞ

2m climatology over the regions with sea ice con-
centrations (SIC) above 15%. Using T ðSATÞ

2m as a reference, ERA5 exhibits a
wide-spread warm bias of 2 °C or more (Fig. 1b) for areas where the SIC is
typically above 70% (compassed by the red line in Fig. 1a, and hereafter
denoted as SIC70). The bias is markedly greater in winter when it can reach
6–10 °C (Supplementary Fig. S2), in agreement with previous
assessments9–13 (and other reanalyses in Supplementary Fig. S3). In contrast,

the CMIP6 historical ensemble of 47 models (Supplementary Table S1 and
Supplementary Fig. S4) simulates surface temperature (T ðCMIP6Þ

2m ) remark-
ablywell in this region,with amean differencewithin ± 1 °C (Fig. 1c), which
falls within the range of observational uncertainties (see Methods). This
contradicts previous assessments that the Arctic is too cold in CMIP6 his-
torical simulations1,3. It’s worth noting that the results for a longer period
(1982–2014) than the IPCC AR6 assessment period of 1995–2014 in Fig. 1
do not alter the conclusion (Supplementary Fig. S5).

For the marginal ice zone (MIZ, defined as outside of SIC70), promi-
nent cold biases are observed for bothERA5andCMIP6 (Fig. 1b, c). Relative
to CMIP6, ERA5 generally shows better agreement with satellite-derived
T2m, consistent with the previous assessment5. The cold bias at the edge of
sea ice can be attributed to the following factors: 1) in theMIZ, the satellite-
derived surface temperatures are amixture of sea surface temperature (SST)
and IST, thus with larger uncertainties18; 2) differences in the ice edge
locations between the SIC field in the satellite-derived T2m data set and
ERA5; 3) too low modelled conductive heat fluxes from the warm ocean
over very thin snow-covered ice due to a prescribed sea ice depth of 1.5 m
applied to all grid cellswith sea ice inERA5.CMIP6 exhibits a large cold bias
across the entire North Atlantic MIZ, influenced by regional disparities
betweenmodels3,21. This bias is intensified by considering only models with
SIC above 15% in the calculation of the mean difference (Eqs. (1)–(3) in
Methods). Furthermore, the models’ sharp transition between ice and the
open ocean, particularly in winter22, may also contribute to the cold bias. As
suggested in the IPCCAR6, improving the resolution of oceanmodels may
reduce this persistent systematic bias in the North Atlantic1–3.

Seasonal and decadal variations of temperature bias
TheCMIP6 ensemblemeanT ðCMIP6Þ

2m and satellite observationsT ðSATÞ
2m show

comparable annual mean temperatures over the SIC70 area compared to
ERA5 T ðERA5Þ

2m (Fig. 2c, d). ERA5 consistently shows a positive mean dif-
ference of 1.89 °C against satellite observations for the entire 1982–2020
period, while the average difference for the CMIP6 ensemble mean is close
to 0 °C over 1982–2014 (Fig. 2a, b). The shaded area around the ensemble
mean represents the model spread, quantified by one standard deviation,
mostly below ERA5’s positive difference. CMIP6models exhibit a cold bias
with respect to ERA5, but this is only an artefact due to the warm bias of
ERA5with respect toan independent dataset.This highlights the limitations
of using global reanalysis like ERA5 for the evaluation of surface variables
over Arctic sea ice.

In Fig. 3, the seasonal cycle of decadal mean differences in the SIC70
area further illustrates that ERA5 consistently shows larger biases com-
pared to CMIP6. During the last three decades, the consecutive decadal
mean differences are 2.24 °C, 1.81 °C, and 1.75 °C for ERA5, 0.40 °C,
0.06 °C, and −0.38 °C for CMIP6, and 1.84 °C, 1.76 °C and 2.12 °C
between ERA5 and CMIP6 (Fig. 2c). The most notable decadal changes
in temperature are observed during winter (December-March) in both
ERA5 and CMIP6. The winter warm bias (DJFM) in ERA5 reduced from

Table 1 | Validation statistics of the daily surface air temperature datasets against in situ measurements over the Arctic sea ice

T ðSATÞ
2m � T ðinsituÞ

2m T ðERA5Þ
2m � T ðinsituÞ

2m

Observation type N MD STD RMSE N MD STD RMSE

NP drifting ice stations 7663 0.65 3.19 3.26 7832 3.73 3.22 4.93

95% CI ± 0.07 3.15–3.24 ± 0.07 3.18–3.26

ECMWF drifting buoys 55290 -0.45 3.33 3.36 56160 1.73 3.34 3.76

95% CI ± 0.03 3.31–3.35 ± 0.03 3.32–3.36

CRREL drifting buoys 22974 -0.17 3.33 3.34 22794 1.80 3.07 3.56

95% CI ± 0.04 3.31–3.36 ± 0.04 3.05–3.09

As Table 2 in ref. 18, validation was performed for observation T ðSATÞ
2m and reanalysis T ðERA5Þ

2m , using in situmeasurements T ðinsituÞ
2m from 14Russian North Pole (NP) drifting ice stations, 116 drifting buoys from

the European Centre for Medium-RangeWeather Forecasts (ECMWF), and 96 drifting buoys from the U.S. Army Cold Regions Research Engineering Laboratory (CRREL). The table shows the number of
observations (N), the mean difference (MD), standard deviation of the difference (STD) and the root mean squared error (RMSE). The corresponding 95% confidence intervals (CI) for the mean differences
and the standard deviation of the difference are estimated29 and listed. The spatial and temporal coverage of the in situ measurements used here is illustrated in Supplementary Fig. S1. Units: °C.
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2.82 °C (1985–1994) to 1.98–1.99 °C (1995–2014). These multi-decadal
variations align with previous studies that large warm biases in reanalysis
surface temperature on sea ice often correspond to cold temperatures in
winter and in regions with thick ice, thick snow, or a combination of both
states (as seen in ERA5 in Fig. 2 of ref. 13). As for CMIP6, there is an
increase in winter cold bias (DJFM) from −0.50 °C and −0.78 °C over
the first two decades (1985–2004) to −1.81 °C (2005–2014).

The recent increase of the winter cold bias seems a result from the
underestimated temperature rise over sea ice (2005–2014 in Supplementary
Figs. S2 and S6b). This is probably due to the overestimated Arctic sea ice
mass in winter by climate models, as highlighted in ref. 23 (see their Fig. 2).
Consequently,mostmodels fail to simulate the steeper decline in sea ice area
since themid-2000s (Fig. 2d) and a plausible evolution of Arctic warming at
the same time22,24,25 (Supplementary Fig. S6). Recent studies suggest the need
for climate models to consider not only changes in sea ice3,21 but also the
thinning of snow cover on Arctic sea ice to accurately represent and predict
Arctic surface warming because even small changes in snow thickness can
lead to significant changes in the ice-atmosphere heat exchange26. In a
warming climate, themodelled decline in snow thickness onArctic sea ice is
primarily attributed to factors such as later sea ice formation in autumn, an
increasing ratio of liquid-to-solid precipitation, and a transition from per-
ennial to seasonal sea-ice cover (in termsof differentmean sea-ice states)26,27.

During the summer and fall months, no noticeable trends in biases
between decades are evident for both ERA5 and CMIP6, indicating a
relatively limited influence of the state of sea ice or snow during this period.

Fig. 1 | Observed climatology of surface air temperature, along with bias in ERA5 and the CMIP6 ensemble mean over the Arctic sea ice. a The 20-year mean satellite-
derivedT ðSATÞ

2m over sea ice (SIC > 15%) for the period 1995–2014 (seeMethods). The climatologicalmean difference of surface air temperature from (b) ERA5T ðERA5Þ
2m and (c)

the CMIP6 ensemble mean T ðCMIP6Þ
2m versus T ðSATÞ

2m for the same period. The maps are bounded at 58 °N with the dashed line marking 66.5 °N. The red line in a indicates the
observed SIC ≥70% (SIC70) averaged over 1995–2014. Units: °C.

Fig. 2 | Evolution of annual mean surface air temperatures and their differences
relative to satellite-derived observation over the central Arctic sea ice. a Surface
air temperature difference for ERA5 reanalysis [T ðERA5Þ

2m � T ðSATÞ
2m ] in red. b Surface

air temperature difference for the CMIP6 ensemble mean [T ðCMIP6Þ
2m � T ðSATÞ

2m ] in
thick blue line, withmodel spread (shaded area) calculated as one standard deviation
from the mean. c Satellite-derived observations of surface air temperature T ðSATÞ

2m in
purple, together with T ðERA5Þ

2m and T ðCMIP6Þ
2m in red and blue, respectively. All tem-

peratures (a–c) are averaged over the sea ice area with observed SIC≥70% (SIC70) in
units of °C. We also show (d) annual mean total sea ice area for SIC70 (green, on an
inverted y-axis) in units of km2). Thin colour lines in a–c represent the respective
linear trends (°C per decade) calculated for the common period 1982–2014 (see
Methods). More details of the temperature time series are provided in Supple-
mentary Fig. S6a.

Fig. 3 | Annual cycle of decadal mean surface air temperature differences relative
to satellite-derived data over the central Arctic sea ice. It shows the monthly
temperature difference averaged over sea ice areas with observed SIC ≥70% (SIC70,
north of 66.5 °N) for the three recent decades in ERA5 (solid lines) and the CMIP6
ensemble mean (dashed lines). Symbols next to the right y-axis indicate the annual
mean for each period. The time series of annual and seasonal mean temperatures are
provided in Supplementary Fig. S6a–c and themaps ofmean difference in winter are
provided in Supplementary Fig. S2. Units: °C.
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Similarly, satellite-derived temperatures also exhibit low temporal varia-
bility during summer19. Consequently, the winter biases in both ERA5 and
CMIP6play a predominant role in shaping their annualmean biases as well
as contributing to the multi-decadal variations.

Estimated warming trends over the Arctic sea ice
The present multi-decadal variations in sea ice related T2m bias in ERA5,
togetherwith the declining sea ice state (Fig. 2d) not only present a challenge
for benchmarking climate models (as demonstrated above) but also pose a
risk of inadequately presenting the warming trend over the Arctic sea ice.
When focusing on regions covered by sea ice (with SIC ≥ 70%, Fig. 2), the
warming rate is estimated to be 0.61 (0.56) °C per decade for CMIP6
(ERA5), compared to the warming rate of 0.79 °C per decade derived from
T ðSATÞ
2m for the 1982–2014 period. When considering the Arctic region as

north of 66.5 °N8,25 including areas of all sea ice cover, open water and land,
CMIP6 simulates a warming trend that aligns slightly better with the esti-
mate derived from the combined observational SST and near-surface air
temperature than ERA5 (Supplementary Table S2).

Conclusions
Our analysis of surface temperature representations offers a newperspective
on climate model performance in the Arctic. Using the satellite-derived
T2mdataset as an alternative reference, we showa considerable discrepancy
of a profoundwarmbias in ERA5.This bias prevails particularly inwinter in
the central Arctic region characterised by thicker sea ice (SIC70), raising
concerns on the use of current global reanalysis datasets for model eva-
luationof near-surface air temperatures.Our analysis shows that theCMIP6
models exhibit reasonable performance in these areas, displaying minor
deviations within the range of observational uncertainties (see methods).
Re-evaluating warming trends further refines our understanding by
revealing that, supplementing previous assessments3, CMIP6 slightly out-
performs ERA5 in capturing thewarming trend over SIC70.Outside SIC70,
it is evident that ERA5 aligns well with observations, while the cold bias in
the North Atlantic MIZ in CMIP6 remains consistent with the associated
well-documented systematic model bias in the North Atlantic1–3. These
findings highlight the imperative role of integrating new observational data
for benchmarking climate model.

Methods
Reference datasets
For the near-surface air temperature on the Arctic sea ice, we employed two
sets (T2mandSIC)ofdatasets: one fromsatellite-observations andone from
global reanalysis. The observational T2m dataset is derived from the
satellite-based DMI/CMEMS daily gap-free (so called L4) sea surface
temperature (SST) and sea ice surface temperature (IST) climate data record
spanning from 1 January 1982 to 31 May 2021, covering the Arctic region
(>58 °N)18. The derivation is based on the empirical model developed in19,
which converts clear-sky satellite-observed ISTs to all-sky T2m. Clear-sky
ISTs are estimated by excluding the clear-sky bias correction from the daily
all-sky L4DMI/CMEMS ISTs dataset18. Themodel is applied to these clear-
sky ISTs for grid cells with SIC > 15% (using the DMI-SIC available in the
DMI/CMEMS L4 SST/IST dataset18), resulting in daily gap-free all-sky
T2m fields.

For further evaluation of climate models, re-gridding was performed
from a 0.05-degree regular lat/lon grid to a coarser 1-degree grid using the
nearest neighbour (NN) method for the T ðSATÞ

2m dataset. The NN method
using the Climate Data Operators (CDO28 with function -remapnn) is used
to choose every 20th grid point along both longitude and latitude dimen-
sions without any interpolation. This choice ismade to preserve the original
data as much as possible and to ensure that the analysis is representative of
the available information, also in the casewhere there is amismatchbetween
the coastlines or in the sea ice edge (SIC ≤ 15%).

For the ERA5 reanalysis4,monthlymean outputs of T2mand SICwere
transformed from a 0.25-degree regular lat/lon grid to a coarser 1-degree
grid using the nearest neighbourmethod inCDO(that is, selecting every 4th

grid point along both dimensions). Unlike the NN method, bilinear inter-
polation (BL) that calculates an output cell value as aweighted average of the
four nearest cell centres is commonly used for continuous data, such as the
global T2m datasets. Remarkably, for ERA5 T2m with 1 degree resolution,
both the NN and BL interpolationmethods produce same scientific results.
This means that the choice of regridding methods for reference products
does not alter the conclusions of this study. To specifically identify T ðERA5Þ

2m
on sea ice, a mask file based on ERA5’s monthly mean SIC (>15%) was
applied for each respective month for the common period 1982–2020.

Validation of reference products
The validation process used for DMI/CMEMS L4 IST, is outlined in
Table 218, was repeated for the daily T2m datasets of observational T ðSATÞ

2m
and reanalysis T ðERA5Þ

2m (on their original grids), respectively. Following
ref. 18, we used in situ T2m measurements from three different sources,
including 14 Russian North Pole (NP) drifting ice stations, 116 drifting
buoys distributed through ECMWF, and 96 drifting buoys from the U.S.
Army Cold Regions Research Engineering Laboratory (CRREL). Only
matchups with SIC above 15% are considered, and differences deviating
more than three times the standard deviation (i.e. lying outside the 99.7% of
normally distributed data) from themean temperature difference have been
excluded. This is done to avoid outliers (i.e. from erroneous in situ obser-
vations) affecting the results and gives a slightly different number of
matchups forT ðSATÞ

2m andT ðERA5Þ
2m . As indicated in Supplementary Fig. S1, the

in situmatchups are found in all seasons and almost all regions and are thus
assumed to be representative of the varying conditions in the Arctic. The
statistical analysis against in situ T2m is summarised in Table 1. Note that
the true uncertainty of the T2m products is expected to be lower than the
standard deviations reported here, since the comparisons also include
sampling errors and uncertainties in the in situ observations, assumed to be
on the order of 0.5 °C and 0.1 °C, respectively19. To illustrate the robustness
of the validation results, the confidence intervals29 are provided in Table 1.

Climate model data
We analysed monthly mean outputs of the climate models involved in the
CMIP6 project30. Modelled SIC (percentage of grid cell covered by sea ice)
andT2m (inK)were extracted from in total 47models at various horizontal
resolutions. This was done for the historical period (1982–2014), con-
sidering only thefirst realisation (r1i1p1) of eachmodel used in our analysis.
Among these models, 21 models offer SIC on the atmospheric model grid
(variable name: siconca), and 26 have SIC on the oceanmodel grid (variable
name: siconc). All data were transformed onto a globally 1-degree regular
lat/lon grid (dimensions 180 × 360) using BL in CDO (cdo -remapbil). The
models and variables used in our study are provided in Supplementary
Table S1. References of the model simulations used in our study are pro-
vided in Supplementary Table S1. The process of model selection is illu-
strated in Supplementary Fig. S4.

Choice of analysis periods
The satellite-derived T2m dataset covers the period from 1982 to 2021
(May), but it’s important to note that the CMIP6 historical simulations only
extendup to 2014. In Fig. 1, the period 1995–2014 alignswith the IPCCAR6
assessment period, allowing us to assess the impact of the warm bias in
ERA5 T2m during this specific time frame.

Figure 2 is designed to further illustrate the evolving nature of biased
T2m in both ERA5 (1982–2020) and CMIP6 (1982–2014) throughout the
period of available data sets. This extended period reveals that the T2m in
ERA5 is consistently warmer than the satellite-derived T2m, although the
extent and magnitude varies slightly over time with the changing Arctic
conditions. The choice of 1982–2014 for CMIP6 aligns with the available
model data for a more meaningful comparison.

Benchmarking the mean climate over the Arctic sea ice
Following the approachoutlined in theCMIP6model evaluation, as detailed
in IPCC AR61–3, we compared the monthly mean air temperature data of
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CMIP6andERA5with the corresponding satellite-derived data in Fig. 1. To
isolate T2m over Arctic sea ice in the CMIP6 models, we applied a mask of
SIC (>15 %, >58 °N) for each respective month m for each respective
individual model n. The ensemble mean for monthm at grid point (x, y) is
then the average for models with the corresponding SIC within the mask
limit, i.e.,

μðx; yÞðCMIP6Þ
m ¼ 1

Nm

XNm

n¼1

Tðx; yÞðCMIP6Þ
m;n ; if SIC ðx; yÞm;n>15% ð1Þ

where Nm is the number of models at monthm and grid point (x, y) which
SIC is within the SIC mask. Similarly, the monthly mean temperatures
μðx; yÞðSATjERA5Þm were calculated using amask defined by themonthlymean
SIC (>15%) from DMI-SIC and ERA5, respectively. Subsequently, the
monthlymean differenceswere calculated and averaged over time to obtain
the bias:

ΔTðx; yÞðERA5jCMIP6Þ
m ¼ μðx; yÞðERA5jCMIP6Þ

m � μðx; yÞðSATÞm ; if μðx; yÞm≠ nan

ð2Þ

Tbiasðx; yÞðERA5jCMIP6Þ ¼ 1
M

XM

m¼1

ΔTðx; yÞðERA5jCMIP6Þ
m ; if ΔTðx; yÞm≠ nan

ð3Þ

whereM is the number ofmonths at grid point (x, y) which SIC iswithin the
SIC mask during the analysis period.

It is worth noting that there is little difference in sea ice concentration
between ERA5 and DMI-SIC, and the inconsistency is found mainly along
coasts and sea ice edges. In Supplementary Fig. S4, which evaluates the
seasonal cycle of the total sea ice area north of 58 °N, the data derived from
bothDMI-SICandERA5demonstrate the closest agreement among thefive
observational SIC data sets. The averaged temperature and its biases for
ERA5 may be slightly different between that calculated using the monthly
mean temperature and SIC mask and that using the daily temperature and
sea ice mask. However, the conclusions regarding the warm bias in ERA5
over Arctic sea ice remain the same.

Area averaged with SIC at or above 70%
The climatological mean for a 20-year period (1995–2014) was calculated
for the observed SIC. A reference line was inserted in Fig. 1a to compass the
area with the average SIC ≥70% (referred to as SIC70) in the central Arctic
(≥66.5 °N). The total sea ice area for SIC70 is defined as the observed sea ice
coverage (Fig. 2d). This area was computed using the monthly mean data
with a mask file of SIC ≥70% for the period 1982–2020 as

ASIC70;m ¼
X

x

X

y

gridareaðx; yÞ; if SIC ðx; yÞðSATÞm ≥ 70% ð4Þ

�TSIC70;m ¼
P

x

P
yTðx; yÞm � gridareaðx; yÞ

ASIC70;m
; if SIC ðx; yÞðSATÞm ≥ 70%

ð5Þ

Correspondingly, themonthly T2mdata from the observations, ERA5
and the CMIP6 ensemble mean on the SIC70 grid cells were averaged (Eq.
(5)) and then further compared in annual mean (Fig. 2a–c) and decadal
monthly mean (Fig. 3). The linear trend of the area-averaged T2m for the
common period (1982–2014) was determined using the matlab polyfit
function. Individual trends in �T ðSATjERA5jCMIP6Þ

SIC70 are statistically significant
(p < 0.05) based on t-tests.

Data availability
The satellite-derived IST and sea ice data used for the T2m calculation are
available from https://doi.org/10.48670/moi-0012318. The resulting daily
T2m dataset with a 0.05-degree resolution is archived on the DMI data
server, and the monthly data used in this analysis are archived in Zenodo
(10.5281/zenodo.1055522331). ERA-5 reanalysis data are freely available in
the Copernicus Climate Change Service Climate Data Store (https://cds.
climate.copernicus.eu/). The CMIP6model ensemble is obtained using the
first member of each model that is available freely and publicly from the
Earth System Grid Federation (ESGF, https://esgf.llnl.gov). The in situ data
from ECMWF covering 1993-2015 can be accessed through the World
Meteorological Organization’s Global Telecommunication System (GTS)
and is available for members in the ECMWF Meteorological Archival and
Retrieval System (MARS). The U.S. Army Cold Regions Research Engi-
neering Laboratory (CRREL) mass balance buoys for the period 2001-2017
are available from http://imb-crrel-dartmouth.org32,33 and the Russian
NorthPole (NP) drifting ice stations are available fromNCARRDADataset
ds474.0 (ucar.edu)34.

Code availability
The scripts and source data used to produce the figures and tables in this
paper are archived in Zenodo (https://doi.org/10.5281/zenodo.1020808035).
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