
communications earth & environment Article

https://doi.org/10.1038/s43247-024-01257-2

Machine learning reveals regime shifts
in future ocean carbon dioxide fluxes
inter-annual variability
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The inter-annual variability of global ocean air-seaCO2 fluxes are non-negligible,modulates the global
warming signal, and yet it is poorly represented in Earth System Models (ESMs). ESMs are highly
sophisticated and computationally demanding, making it challenging to perform dedicated
experiments to investigate the keydrivers of theCO2 flux variability across spatial and temporal scales.
Machine learning methods can objectively and systematically explore large datasets, ensuring
physicallymeaningful results.Here,we show that a kernel ridge regression can reconstruct thepresent
and future CO2 flux variability in five ESMs. Surface concentration of dissolved inorganic carbon (DIC)
and alkalinity emerge as the critical drivers, but the former is projected to play a lesser role in the future
due to decreasing vertical gradient. Our results demonstrate a newapproach to efficiently interpret the
massive datasets produced by ESMs, and offer guidance into future model development to better
constrain the CO2 flux.

The ocean takes up roughly 25% of the total human-induced carbon
emissions per year1, thereby mitigating the consequences of the anthro-
pogenic perturbation on the Earth system and its climate. This estimate is
based onboth, global ocean biogeochemistrymodels and observation-based
data products2. While model-based estimates rely on simulations of ocean
circulation and carbon biogeochemistry [e.g.3], the observation-based esti-
mations rely on pCO2-products that use machine learning to combine in-
situ observation, remote sensing and reanalysis products [e.g.4,]. Although
estimates of present-day ocean carbon uptake rate and its long-term trends
agree reasonably well using either tool, discrepancies in the spatio-temporal
variability of the air-sea CO2 flux (CO2 flux, hereafter) remain, and these
biases even appear to increase over time5. However, our ability to accurately
quantify the magnitude of the ocean carbon sink and the variability of the
CO2 flux across multiple timescales is crucial to project the future evolution
of theEarth’s climate and to improveour ability to robustly detect long-term
anthropogenic climate change6,7.

The rate at which CO2 is taken up by the ocean correlates on longer
timescales with the fairly steady increase of atmospheric CO2

concentration8, but is modulated by inter-annual variability of the CO2 flux
(IAV, hereafter), regionally and globally4,9,10. Year-to-year down to decadal
variations in the IAV of the CO2 flux may be driven by modes of atmo-
spheric variability such as the El Niño Southern Oscillation (ENSO), the

Southern Annular Mode (SAM) or the North Atlantic Oscillation (NAO)
thatmodulate the ocean circulation, the sea surface temperature, the surface
winds and the biology and consequently the CO2 flux

9,11,12. Modelling and
observational studies have achieved substantial progress in quantifying IAV
and identifying regional drivers over the historical and preindustrial periods
(see literature review in2,13,14), however, part of the IAV remains unexplained
and the dominant drivers in some areas have yet to be clearly identified.

Traditionally, variability of the global ocean carbon sinkwas attributed
to equatorial Pacific Ocean variability of the CO2 flux associated with
ENSO10,15,16 and to variability in the Southern Ocean linked to the
SAM4,12,17–19. In these regions, theCO2flux IAV is driven by the upwelling of
DIC-richwaters. In the equatorial Pacific, the upwelling ismodulatedby the
ENSOphases11,12,20,21. In the SouthernOcean, oscillations in the position and
strength of the westerly winds (related to the SAM,18,22–24) modulate the
strength of the overturning and thus the upwelling25. However, recent
findings suggest that the CO2 flux pattern in the Southern Ocean are more
sensitive to local atmospheric variability17,26.

Besides the equatorial Pacific and the SouthernOcean, substantial IAV
of the CO2 flux has been described in theNorth Atlantic associated with the
NAO27–29 and theAtlanticMultidecadalOscillation (AMO)30, in the tropical
Atlantic in response to Atlantic Niño31, and in the Pacific Ocean linked to
the Pacific Decadal Oscillation (PDO)32. However, here, models tend to
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disagree on the dominant drivers, and multiple driving mechanisms are
often at play2,12,33. Our understanding of the IAV remains incomplete,
especially in these regions,where climatemodes explain less than 20%of the
large-scale variance in oceanic surface pCO2 and CO2 flux

2,30,32.
The CO2 flux IAV is substantial and modulates the global warming

signal, whichmakes it difficult to identify the latter10,34–36.While global ocean
biogeochemistry models tend to underestimate IAV5,37, a signal that could
even amplify in the future due to a higher Revelle factor20,33, sparse and
inhomogeneous sampling leads to biased IAV estimates from pCO2 pro-
ducts as well38,39.

Currently, there is no study that explores the drivers of the CO2 flux
IAV in the global ocean, applying multiple future scenarios from the latest
generation Earth System Models (ESMs) ensemble. Studies that aim to
identifymechanistic drivers of CO2 flux variability are generally limited to a
single model, on the historical/preindustrial period or on specific regions,
making it difficult to draw a consistent synthesis12,32,40,41. Previous works
have largely used the Taylor expansion approach to decompose the per-
turbation of pCO2 into the sum of the perturbations of DIC, alkalinity,
temperature and salinity (e.g., refs. 33,42–44). This approach has two
constraints: (1) it relies on a linear decomposition around amean state, and
(2) it is restricted only to the four aforementioned drivers of pCO2. The
potential pCO2 drivers are more numerous (e.g. nutrient, export produc-
tion, depth of the mixed layer), which altogether interact in a non-linear
way. Moreover, the CO2 flux also depends on the surface wind, the CO2

solubility and the sea-ice coverage. Earlier study22 extend the Taylor
expansion towind and sea-ice, computing the sensitivity parameters (i.e. the
partial derivatives) specifically for their model. The sensitivity parameters
can also be computed using a set of sensitivity simulations, as done in some
studies for pCO2

45, or a dedicated adjoint model46. However, these
approaches are currently less feasible using multiple highly complex Earth
systemmodels.Ournewapproachallowsus to identify a larger setof drivers,
assessing their robustness across ESMs and scenarios and coherently
determining the specificities of individual ESMs.

Simulating multiple climate scenarios with multiple ESMs and ana-
lysing them to examine CO2 flux IAV require considerable computational
and human resources. ESMs are state-of-the-art tools for investigating past
and present drivers of the CO2 flux and projecting future changes

12,47. ESMs
simulate sophisticated interactions among different earth system compo-
nents, which often vary considerably in level of complexity and process
representations48–50. Setting-upmulti-model simulations only to investigate
the role of each bio-physical driver of the CO2 flux is a prohibitively costly
exercise. Further, the identification of the underlying mechanisms is parti-
cularly complicated due to the multiple number of processes integrated in
the models and the non-linear interactions between them, not to mention
the particularly large amounts of data generated by ESMs simulations. This
situation calls for more feasible solutions.

Recently, machine learning techniques have been introduced to
objectively, systematically and efficiently explore large volumes of data from
ESMs and observational systems51,52. They are capable of reconstructing
complex and non-linear variables such as marine primary production53.
Going beyond the “black box" use of machine learning algorithms,
explainable and interpretable machine learning approaches are particularly
promising as they enable to assess the physical relevance of the results. For
instance, unsupervised clustering has been used to reveal regimes of the
ocean dynamics and ocean carbon budget that are consistent with the
classical theoretical framework54–56. Qualitatively correct mechanisms con-
trolling phytoplankton growth can be inferred from the machine learning
reconstruction by examining the contributions of the different predictors, at
least for relatively basic relationships, and providing that the time scales
considered are appropriate57. In line with classical interpretation of the
impact of global warming on primary production from biogeochemical
models, the analysis of time series from the Sargasso Sea (BATS) with
Genetic Programming revealed strong statistical relationship between
warming, stratification and primary production decrease58. Quantifying the
relative importances of the predictors for the reconstruction of pCO2 reveals

thatmixed layer depth is amajor contributor of the seasonal cycle in themid
and high latitude and that anomalies of sea surface temperature causes
important adjustments to the predicted pCO2 in the equatorial Pacific59.

The main objectives of this study are (1) to show that the present and
future CO2 flux IAV can be reconstructed from a set of predictors, (2) to
identify the essential regional drivers of these reconstructions and (3) to
determine how the identified drivers and mechanisms are projected to
change in the future inferring new knowledge on the CO2 flux IAV. The
novelty of our work is the application of amachine learning approach as an
analysis tool on a suite of multi-model simulations. In particular, it is an
alternative approach to the Taylor expansion commonly used to identify
pCO2 drivers, but here it allows formore drivers to be evaluated, coherently
across ESMs and scenarios, for the CO2 flux.

Results
CO2 flux reconstruction
In order to establish a linkage between CO2 flux and its drivers without
performingmanymodel simulations, a reconstructionmethod is developed.
Here, we use existing monthly outputs from 20 CMIP6 simulations60:
4 scenarios (preindustrial, historical, SSP126 and SSP585) performedwith 5
ESMs (ACCESS-ESM1-5, CESM2, IPSL-CM6A-LR, MPI-ESM1-2-LR,
NorESM2-LM). The entire time period of the simulations are used, i.e.
respectively 200 years, 165 years (1850-2014) and 86 years (2015-2100) for
the preindustrial, historical and global warming scenarios. In addition to the
target CO2 flux, 8 predictors of surface ocean properties have been selected:
dissolved inorganic carbon (DIC), alkalinity (ALK), temperature (SST),
salinity (SSS), phosphate (PO4), surface wind speed (sfcWind), sea ice
concentration (siconc) and atmosphericCO2 concentration (atmCO2). The
predictors’ selection is guided by the variables commonly used in the cal-
culation of the CO2 flux, but also by the data availability. Mixed layer depth
and biological export production have also been considered. Although they
are not used in themodels for calculatingCO2flux, they are key variables

43,61

and mixed layer depth is an important predictor for building pCO2-
products59,62. However, a test with NorESM2-LM outputs shows that the
reconstruction is not improved by including them and that their relative
importances are very low (Fig. S17). These ESMs’ outputs (both predictors
and targets) are fed to the kernel ridge regression algorithm (hereafter
regression) that returns a functionF,which can reconstruct the full temporal
variability of the CO2 flux from the 8 predictors in each grid point and each
simulation (step a.i in Fig. 1).

The regression succeeds in reconstructing most of the CO2 flux IAV.
The ability of the function F (output of the regression) in reproducing the
original CO2 flux IAV is assessed using the coefficient of determination, or
R2 score, between the reconstructed andoriginal signal, bothde-trended and
de-seasonalized (step a.ii in Fig. 1). This score measures the proportion of
the CO2 flux IAV (measure by the variance) that is reproduced by the
reconstruction. It should be pointed out that since deseasonalisation is
achieved by removing the climatological seasonal cycle for each simulation,
the amplification of the seasonal cycle induced by global warming63 will be
accounted for as an amplification of the IAV. The inter-model minimum
score in the different simulations is very close to one in themajor part of the
ocean (Fig. 2, see also Fig. S1 for scores of individualmodel and scenario). In
the preindustrial scenario, the average score for all ESMs in all grid-points is
0.94. 80% of the ocean grid-points have an inter-model minimum score
above 0.81 and 0.82 in the preindustrial and historical simulations,
respectively. In the globalwarming scenarios, the score is slightly lower,with
80% of the ocean having a minimum score above 0.72 and 0.68 in the
SSP126 andSSP585, respectively. The score usedhere is relatively restrictive,
even though the score is low (e.g., 0.41 in a grid point in the SouthernOcean,
Fig. 2h), the correlation between the original and reconstructed time-series
is higher (e.g., 0.66 in the same grid point, see also Fig. S18) indicating that
the dominant part of the IAV is well reconstructed. Regionally, the lowest
scores are found in the high latitudes, north (south) of 40∘N(S), with the
lowest values in the Southern Ocean. Our investigations suggest that the
variability in the Southern Ocean is more complex and richer than in other
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regions (Figs. S14 and S15). Spectral analysis of specific grid points with low
score in the Southern Ocean and subpolar North Pacific shows strong sub-
seasonal variations, which generally are not present in regions with higher
score, as the Subtropical and equatorial Pacific (Fig. S15, first column). In
addition, the variability of the predictors is mainly dominated by the sea-
sonal cycle and does not have strong sub-seasonal variations (Fig. S15).
Under the future global warming scenarios, grid points with an important
drop in the score are the oneswhere variability gets even richer (Fig. S16c, i).
Altogether, this suggests that the kernel ridge regression is less optimum in
reproducing variability that includes several equally dominant modes
occurring at different time scales, especially when this variability is not
present in the predictors. To further demonstrate that the regression is
successful at reproducing the dominant IAV signals, Fig. 2b, d, f and h show
the time series of the IAV of the original and reconstructed CO2 flux in one
grid point of the Southern Ocean where the score is particularly low (pre-
industrial: 0.81, historical: 0.75, SSP126: 0.54, SSP585: 0.41). The time series
is shown for the model with the lowest score. Even in this worst case, the
reconstruction well reproduces the main CO2 flux IAV.

Key predictors of contemporary CO2 flux IAV
The positive outcome of the regression in reconstructing the CO2 flux IAV
does not necessarily mean that this variability emerges from physically
meaningful interactions between the different predictors. The “normalised
permutation feature importance" measures the predictors’ relative impor-
tances in the reconstruction and helps to interpret the regression results
(step a.iii in Fig. 1). For eachmodel and each scenario,we obtain 8maps, one
per predictor, indicating their relative importances in the reconstruction
(Figs. S2–S6). Preliminary work convinced us that the kernel ridge regres-
sion was able to reproduce the seasonal variability with physically mean-
ingful interactions between the predictors. As expected from the literature64,

temperature is the most important predictor in the subtropics while DIC is
key in the higher latitudes (Fig. S20).

To aggregate the relative importances’ information, ease the inter-
pretation and assess the physicalmeaning of the reconstruction at the global
scale, we use an unsupervised clustering method, followed by a tree-based
classification (steps b.i, b.ii and b.iii in Fig. 1). For each ESM, grouped into
preindustrial, historical, SSP126 and SSP585 scenarios, the spatial clustering
reveals regions sharing the same relative importances of the predictors. The
relative importance of the sea ice concentration in the ice-covered region65,66

is rather obvious. Thus, grid points with the relative importance of sea-ice
concentration >0.1 are grouped into a single cluster, the sea-ice cluster. On
the other grid points, clustering and classification are performed. The total
number of clusters is restricted to 9, to balance between an ease of inter-
pretation and a fairly detailed description. Figure 3 shows the composition
of the different clusters and their geographical distribution. Since ALK and
DIC are persistently identified as the most important predictors, the 9
clusters are sorted according to the ratio between the relative importances of
ALK and DIC. In yellowish clusters, ALK is relatively important, while in
purplish clusters DIC is relatively important. Because the results from the
preindustrial scenario are visually very similar to the historical scenario
(Fig. S19), they are not further discussed. Note also that, by design, the
simulations used here are driven by atmospheric CO2 concentrations
increasingly quite smoothly in time and with no feedback from the ocean.
Thus, the almost negligible importance of atmospheric CO2 for IAV is to be
expected.

The historical scenario allows us to assess the physical interpretation of
the reconstruction by comparing the geographical cluster distribution and
composition with the current knowledge of CO2 flux IAV drivers (left
column in Fig. 3). Firstly, the major oceanographic regions such as the
subtropical and subpolar gyres, the SouthernOcean and the equatorial band

Fig. 1 | Schematic workflow of CO2 flux reconstruction and spatio-temporal
characterisation of the drivers. Steps a.i to a.iii are applied to each scenario runwith
each ESM, while steps b.i to b.iii are applied to each ESM, gathering the results from
the four scenarios. (step a.i) Determine a function F that reconstructs the CO2 flux
IAV based on 8 predictors and the actual air-sea CO2 applying a kernel ridge
regression. (step a.ii) Estimate the ability of F to reconstruct the CO2 flux IAV from
the 8 predictors. (step a.iii) Estimate the relative importance (RI) of each predictor.
Each grid-point is now described by 8 RIs. (step b.i) Reduce the grid-point
description from 8 to 3 dimensions to speed up the clustering analysis. (step b.ii)

Perform an unsupervised model-based clustering using an Expectation-
Maximization algorithm. (step b.iii) Apply a tree-based classification to reduce the
number of cluster to 10 per ESM. Finally, the results are back-projected on latitude
and longitude for each scenario to get the clusters maps. Steps a.i to a.iii are repeated
50 times following a bootstrapping approach. The results (score, RIs) shown are
derived from the average on the bootstrap ensemble. The standard deviation of the
bootstrap ensemble measure the uncertainty of the kernel ridge regression. The full
sequence of the analysis procedure is detailed in the “Methods” section.
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emerge from the analysis. The regions emerging from our analysis roughly
matches the biogeochemical provinces previously defined based on other
criteria (ref. 67, black contour in Fig. 3). Of special interest and an
encouraging result is that both the equatorial Pacific and the Southern
Ocean are associated with similar clusters, in which DIC is the most
important predictor. This agreeswith the fact that theCO2flux IAV in these
two regions is driven by the variation in the upwelling of DIC-rich water
masses9,11,12,22–25. A study applying a Taylor expansion for identifying the
drivers of pCO2 IAV inESMson thehistorical period reasonably agreeswith
our results, notably highlighting the strong contribution of DIC in the
Southern Ocean and the equatorial versus its weak contribution in the
subtropical gyres [Fig. 2 of ref. 33].However, theTaylor expansionapproach
reveals a strong contribution from temperature and a weak contribution
from alkalinity, while our results tend to emphasise the dominant role of
alkalinity. The Taylor expansion approach has also been used with obser-
vational data to investigate the drivers of 30-year trends (and not specifically
on IAV) in surface pH and CO2 flux over the same biogeochemical
provinces68. A deeper and regionally detailed analysis would be feasible with
a higher number of cluster, restricting the clustering to a specific region or
even directly using the relative importance maps. Such a detailed analysis is
beyond the scope of this study, as we aim to describe the large-scale regional

drivers of CO2 flux IAV.Nonetheless, to get a finer understanding, we focus
on key CO2 flux regions with the strongest IAV2,12,14: the Southern Ocean
(south of 40∘S), the Equatorial Pacific 10°S to 10°N) and the North Atlantic
(10°N to 70°N, see red dashed lines in Fig. 2a).

A closer look at the Southern Ocean shows some zonal differences
between the Pacific, Atlantic and Indian sectors, specially for the ACCESS-
ESM1-5, CESM2, andNorESM2-LMmodels. In the Pacific sector, DIC has
a relatively high importance, while in the two other sectors its importance is
weakened. Such zonal differences in the dominant drivers have already been
suggested in former studies: in the Pacific sector, the CO2 flux is inter-
mittently driven by temperature or non-thermal processes (such as mixed
layer deepening or biology) while in the Atlantic and Indian sector, it is
mainly driven by non-thermal processes14,17,69. There are also different
behaviour between ESMs. For instance, in CESM2, the contribution of DIC
is a bit weaker than the respective contribution in MPI-ESM1-2-LR
(Figs. S3b and S5b), in line with findings for the former version of these
models [Fig. 2e of ref. 33]. It should benoted that ESMs are known tounder-
represent decadal variations12,14. A previous study69 suggested that decadal
variability is due to the upwelling of DIC rich waters while the inter-annual
variability is rather controlled by biology, wind and SST.Moreover, we note
that the Southern Ocean is a region with a relatively low score for the IAV

Fig. 2 | Ability of the kernel ridge regression in
reproducing the original CO2 flux inter-annual
variability. Inter-model minimum score of the
kernel ridge regression in (a) the preindustrial, (c)
the historical, (e) the SSP126 and (g) the SSP585
scenarios. b, d, f, h show 5 years of the de-trended
and de-seasonalized CO2 flux time-series from the
ESMwith the lowest score (black lines) and from the
kernel ridge regression reconstruction (dashed gold
lines). Grey shading shows the standard deviation of
the reconstructed CO2 flux derived using boot-
strapping. Shown are the 5 last years of the simula-
tions from a single grid point in the Southern Ocean
(grey point in the maps). In a), red dashed lines
indicate regions with special focus in the analysis:
the North Atlantic (10∘N to 70∘N), the equatorial
Pacific (10∘S to 10∘N) and the SouthernOcean (south
of 40∘S).
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reconstruction (Fig. 2). In the Antarctic, the sea-ice cluster cover mostly the
Ross and Weddell Seas as well as some of the Antarctic margins for
ACCESS-ESM1-5,MPI-ESM1-2-LRandNorESM2-LM.The sea-ice cluster
does not extend until the northern boundary of the ice biomes from ref. 67
and corresponds roughly to the sea-ice covered regions [ref. 65, Figs. S2 and
S3]. Yet, the differences between ESMs do not appear to be related to the
differences in sea-ice extent area. Deep convection and the induced input of
inorganic carbon from the deep ocean has been identified as an important
driver of IAV in these regions12.

In the North Atlantic, the general patternmostly shared between the 5
models is ALK-dominated clusters in the subtropical and subpolar gyres,
separated by DIC-dominated clusters in the inter-gyre (Gulf Stream and its
eastward extension across the Atlantic). This is particularly clear in
NorESM2-LMandACCESS-ESM1-5while IPSL-CM6A-LRdoes not show
the inter-gyre separation. The CO2 flux IAV in theNorthAtlantic is known
to result from the balance between multiple drivers: biology70,71,
temperature10,30,40,41,70–73, alkalinity73,74, vertical mixing of DIC12,30,41,71,72 and
horizontal transport of DIC and/or heat41,71,74 without a clear consensus on
the dominant driver. This complexity in the balance is reflected in our
analysis, as the sumof the relative importances of ALK andDIC is quite low
in the region, meaning that the other predictors are potentially important
too (dotted clusters in Figs. 3 and S7). Moreover, SST also emerges with a
relatively high importance, in line with the studies mentioned above.

In the equatorial Pacific, the dominant driver of the CO2 flux IAV is
known tobe the upwelling of cold andDIC-richwaters, with the intensity of
the upwelling being modulated by ENSO11,20. In line with this, DIC-
dominated clusters are present in the equatorial Pacific.A closer look reveals

that SST and surface winds have a higher relative importance in this region
compare to the others (Figs. S2–S6, panels j, n). Temperature has previously
been identified as a relatively important factor in offsetting the variability
due toupwelling, notably in the eastern part of the equatorial Pacific9,12,75. As
for the Southern Ocean, there are various behaviour between ESMs. As
identified in their former model versions [Fig. 2e of ref. 33], CESM2/MPI-
ESM1-2-LR exhibits a stronger/weaker contribution of DIC in the equa-
torial Pacific (Figs. S3b and S5b).

Key predictors of future CO2 flux IAV
The analysis of the relative importance of the predictors and the comparison
with the existing knowledge of the variability of the CO2 flux suggests that
this reconstruction has sound physical meaning. This gives us confidence
that the analysis of relative importance can also help us to generate reliable
knowledge on the projected CO2 flux IAV drivers and provide guidance for
future analyses. This section focuses on analysis of how the drivers of CO2

flux IAV in key regions evolve under two future scenarios.
In the Arctic Ocean, the sea-ice cluster is consistently projected by the

models to shrink in the future as the sea-ice cover declines under global
warming scenarios. In the SSP585 scenario, notably, the Arctic Ocean
becomes ice-free in the summer from 2050 onwards66. Along the Antarctic,
despite a similar decrease in sea-ice cover in all global warming
simulations65, the sea-ice cluster does not obviously shrink in our analysis. It
shrinks for MPI-ESM1-2-LR, but remains the same or expands for others
(ACCESS-ESM1-5, CESM2, IPSL-CM6A-LR and NorESM2-LM).

In the rest of the ocean, the most noticeable change between the his-
torical and global warming scenarios is the change in the relative

Fig. 3 | The relative importances of the predictors of the CO2 flux inter-annual
variability across Earth System Models and scenarios. The first 3 columns show
the maps of relative predictor importance clusters for each scenario (historical in
a, e, i,m, q, SSP126 in b, f, j, n, r and SSP585 in panels c, g, k, o, s). The last column
(d, h, l, p, t) shows the clusters’ composition. The results for each ESM are displayed
in rows. Cluster composition (vertical bars) shows the relative importances of the
predictors averaged over the grid points assigned to each of the 10 clusters. Cluster 1
gathers the grid points with high relative importance of sea-ice concentration (>0.1)

and is thereby named sea-ice cluster. Cluster 2 to 10 are defined with the unsu-
pervised clustering method and a tree based classification (see Fig. 1 and “Methods”
section). They are sorted according to the decreasing ratio between the relative
importances of ALK and DIC: cluster 2 is dominated by ALK, while cluster 10 is
dominated by DIC. The stippling highlights clusters with a low sum of the ALK and
DIC relative importances (<0.6). The black contour lines show the biomes define
in ref. 67. Clustermaps for the preindustrial scenario are very similar to the historical
scenario and thus omitted.

https://doi.org/10.1038/s43247-024-01257-2 Article

Communications Earth & Environment |            (2024) 5:99 5



importances of DIC and ALK with a shift from DIC-dominated clusters to
ALK-dominated clusters (frompurple to yellow inFig. 3).Dependingon the
model and scenario, the sum of the relative importance of DIC and ALK
slightly increases or decreases but remains high in all scenarios (Fig. S7),
indicating that these two predictors remain as the most important drivers
for the CO2 flux IAV. However, the relatively constant sum is due to the
decreasing DIC relative importance while that of ALK increases (Fig. S8).
This result is more obvious in the SSP585 global warming scenario and in
the previously highlighted regions, the equatorial Pacific, the Southern
Ocean and theNorthAtlantic. Earlier studies20,75 focusing on ENSO and the
equatorial Pacific also conclude that alkalinity has a greater influence than
DIC in the SSP585 scenario. A closer look (Figs. S2–S6) reveals noticeable
changes in the relative importances of other predictors, regionally. The
relative importance of SSS, visibly negligible in the historical and
SSP126 scenarios, grows under the SSP585 scenario (e.g. in the Southern
Ocean) in four out of five models. This suggests that salinity changes could
play an increasing role in drivingCO2flux IAV in some regions. The relative
importance of PO4 and surface winds also noticeably change under the
future scenarios, giving potential indications about the actual mechanisms
behind the changes in the drivers of theCO2flux IAV, as detailed in the next
paragraph.

Thedecline in the relative importance ofDIC in theCO2flux IAVunder
the globalwarming scenarios is plausibly connected to a reduction in theDIC
IAV (Fig. S9 and ref. 33). In particular, once the variability related to pre-
cipitation, which affects ALK as much as DIC, is removed, the DIC IAV
decreasesmore (or increases less) than that of ALK in the vastmajority of the
ocean and notably in the equatorial Pacific, the Southern Ocean, and the
North Atlantic (see Figs. S9, S10, and S11). Ref. 75 suggest that because
precipitation-induced changes in DIC are buffered by changes in the CO2

flux, the impact of precipitation is stronger on ALK than on DIC. As sum-
marised in ref. 33, thereare several reasons for thedecline inDICIAV. (1)The
shoaling of mixed layer depth in global warming scenarios76 may lead to a
weakened variability associated with themixing of DIC-rich deep waters. (2)
Increase or decrease in primary production variability driven by several
mechanisms can lead to an increase or decrease in DIC IAV. For instance,
mixed layer shoaling and stratification increase can reduce nutrient inputs
and, consequently, primary production variability76,77. However, mixed layer
shoaling in light-limited areas, such as the Southern Ocean, can alleviate this
constraint and increase primary production variability78. The complex
interplay between temperature-induced changes in phytoplanktons growth
or zooplankton grazing may also contribute to primary production
variability50. The growing importance of primary production for future CO2

flux has been pointed out in the equatorial Pacific75 and the Southern
Ocean79,80. In our analysis, the higher relative importance of PO4, which fuels
the primary production, in the SouthernOcean under the SSP585 scenario is
consistent with their findings (Figs. S2 to S6). (3) Changes in atmospheric
circulation may modulate the upwelling of DIC-rich water. The weaker
Walker circulation in the equatorial Pacific may lead to a weaker upwelling
during La Niña conditions, and thus reduce the amplitude of the upwelling
variability81,82. In line with that, our analysis reveals a decline in the relative
importance of surface wind in the equatorial Pacific, in the future scenarios,
consistent between models (Figs. S2 to S6). Winds are also expected to get
stronger in future scenarios [Fig. 4.26 of ref. 83], which could increase the
relative importance of wind speed through changes in gas exchange
velocities84. However, our results do not indicate an increase in wind speed
relative importances, suggesting that the increasing wind speed is still less
important than DIC and ALK variability in driving the IAV.

The ocean invasion by anthropogenic carbon is another reason for the
decline in DIC IAV and its relative importance in the future CO2 flux IAV.
Since anthropogenic carbonmostly resides in the upper ocean, the totalDIC
concentration there also increases and the vertical gradient of DIC is
reduced while the alkalinity gradient tends to sharpen (Fig. S12). Smoother
gradient implies a decrease in variability induced by vertical exchanges
between surface and subsurface20. Such flattening in the vertical DIC gra-
dient occurs nearly everywhere in the ocean across different ESMs, as does

the decline in the relative importance of DIC. Hence, future increase in
anthropogenic carbon invasion could play a major role in reducing the
importance of DIC in the inter-annual variability of future CO2 flux in
upwelling and ventilation regions where vertical DIC gradient play a strong
role in modulating surface DIC variations.

Conclusions and perspectives
The first finding of this study is that the present and future CO2 flux IAV,
resulting from the non-linear interactions between many processes, can be
reconstructed with a kernel ridge regression from a limited number of
predictors. The two major predictors for this reconstruction are DIC and
alkalinity. Depending on the scenario and the region, some second-order
predictors also emerge. Furthermore, the clustering approach, used to
identify regions sharing the same characteristics, provides a synthesis of the
reconstruction analysis. It enables us to assess the physical interpretation of
the reconstructions, which are consistent with previous studies across dif-
ferent ocean domain under the contemporary period. We find that the
influence of the DIC on CO2 flux IAV decreases under climate change
scenarios, supporting the insights of prior studies20,75. This diminution may
be connected to the global attenuation of vertical DIC gradients in thewater
column, among other processes20,33,79. Our work depicts the first successful
attempt of applying a machine learning technique on a large dataset gen-
erated bymultiplemodels and across different scenarios, to analyse the CO2

flux IAV and its drivers in different ocean domains.
Themost obvious caveat of ourwork is its reliance on the performance

of the regression in reconstructing a physically meaningful CO2 flux IAV.
Results in areas where the regression is not as successful should be inter-
preted with caution, since part of the IAV is not satisfactorily reproduced.
Inferring the processes driving the CO2 flux IAV from the predictors’
relative importances is a challenging exercise, as variations in several pre-
dictors may interact with each others. For example, cooling at the surface
will increase solubility (and thus CO2 uptake) and may also deepen the
mixed layer, increasing surfaceDIC (and thus decreasingCO2uptake). Plus,
mixed layer deepening may bring nutrient to the surface, boosting DIC
biological consumption (and thus increasing CO2 uptake). The interaction
between cooling, mixed layer deepening and biology would emerge in the
relative importances of SST, DIC and PO4, yet it is difficult to infer these
interactions from the relative importances alone. Moreover, our method
shares the caveats frommany statistical approaches. The reliability depends
on the apriori knowledgewehaveon thedrivers of theCO2flux IAVand the
conclusions on the actual dynamic causal relationships between the CO2

flux IAV and its drivers and variability are based on correlations. Never-
theless, our work opens up a number of promising perspectives.

Foremost, this work provides guidance for future studies on CO2 flux
IAV. Indeed, our results suggest that alkalinity and DIC are the two most
influential drivers for the CO2 flux IAV. This implies that the poor repre-
sentation of CO2 flux IAV by ESMsmay be linked to a poor representation
of DIC and alkalinity. For instance, CMIP6 ESMs tend to underestimate
alkalinity in the upper ocean whilst overestimate in the interior85. Besides,
since models are equilibrated to a fixed preindustrial atmospheric CO2

concentration, the respective DIC concentration is biased as well. Notably,
our work reveals a potentially increasing role of alkalinity in future CO2 flux
IAV. In regionswhereCO2flux IAV is strong, such as the equatorial Pacific,
bias in alkalinity could have strong implications on the future projections20.
In the wake of prior studies85, this calls for a better representation of alka-
linity inESMs.Ourfindings further indicates that accurate representationof
vertical gradients are important for projecting the CO2 flux IAV. The
development of future observation strategies should consider long-term
measurement of vertical profiles of DIC and alkalinity over inter-annual to
decadal timescale (i.e., include contrasting climate regimes of El Niño vs La
Niña in the equatorial Pacific, positive vs negative SAM and NAO in the
Southern Ocean and North Atlantic, etc.), complemented regionally by
temperature, wind or phosphate, to better constrain the importance of each
driver forCO2flux IAV.Thiswork alsoprovides anew tool for exploring the
CO2 flux IAV by efficiently examining the massive volume of datasets
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created by the CMIP exercise. Together with that, by narrowing down the
list of variables driving the CO2 flux IAV, this work can assist in the
development of further analysis or ad-hoc simulations to better understand
the mechanisms controlling the variability of the CO2 flux. Future studies
could consider extending the predictors list to export production, vertical
velocity, surface current as well as salinity-normalised DIC and alkalinity to
shed more light on the role of freshwater fluxes and surface ocean circula-
tion. A follow-up study examining in detail the drivers of DIC (and ALK)
variability would be valuable. The different physical and biogeochemical
processes, such as upwelling, mixing, advection, primary production,
freshwater fluxes, CO2 fluxes, will have to be individually quantified in the
different regions and ESMs. Most of them are currently not provided by
ESMs and, thus, could be considered in the futureCMIP exercise. Finally, by
demonstrating that the CO2 flux IAV can be reconstructed from a limited
numberof variables using a statisticalmodel, thiswork is a further step in the
development of a new generation of Earth System Models combining
physical and statistical models52.

Methods
Earth Systems Models, scenarios and data
In this work, we use a kernel ridge regression algorithm together with
CMIP6 ESMs’ outputs (Coupled Model Intercomparison Project Phase 6,
ref. 60). The variables are the air-sea CO2 flux (CO2 flux hereafter), as the
target, and 8 other variables, as the predictors: dissolved inorganic carbon
(DIC), alkalinity (ALK), temperature (SST), salinity (SSS), phosphate (PO4),
surface wind speed (sfcWind), sea-ice concentration (siconc) and atmo-
spheric CO2 concentration (atmCO2). The variable selection is constrained
by data availability at the time the study was conducted, but also based on
variables usually used for CO2 flux calculations in ESMs. It should be noted
thatDICandALKarenot salinitynormalised.Monthlyoutputs, and surface
fields are used, from 5 ESMs (ACCESS-ESM1-5, CESM2, IPSL-CM6A-LR,
NorESM2-LM, MPI-ESM1-2-LR) following 4 scenarios (preindustrial,
historical, SSP126 and SSP585), i.e., 5 × 4 = 20 simulations in total. The
SSP126 and SSP585 scenarios are in the lower and upper range of global
warming scenarios, respectively. For all ESMs but CESM2, the r1i1p1f1
variant is used for the historical and global warming scenarios. For CESM2,
the r10i1p1f1 variant is used.

Kernel ridge regression and relative importances of predictors
We use a non-parametric regression to model the single response variable
(theCO2flux) as a functionof the eightpredictors.Machine learningmodels
(later referred to as ML-models) are derived for each geographic location
separately, i.e., the ML-models aim at capturing the temporal behaviour
only. The ocean surface is resolvedby 1x1-degree, 2x2-degree, or 4x4-degree
grids (axes parallel to longitude/latitude). Investigations not documented
here have shown that the dependencies are smooth. Since the time series
were short (either 1032, 1980 or 2400 data points, representing the number
of months in the future scenarios, historical, and preindustrial control
simulations), it was possible to use (non-scalable) kernel methods, like
kernel ridge regression. Data scientific investigations have shown that
smoothregression schemeswere superior to less regular ones.We, therefore,
chose the kernel ridge regressionwith the smoothRBFkernel, discarding the
possibilities of e.g. kernel ridge regression with Laplacian kernel, k-nearest
neighbours regression, or Random Forest regression, see also ref. 86. The
relative importances of the predictors were assessed as normalised per-
mutation feature importances87. To assess uncertainties of the statistical
quantities (train and test accuracy, feature importances), we employ simple
non-parametric bootstrapping with 50 resamples88. All assessments are
based on a modified R2 score, focusing on the inter-annual variability.

In the sequel, wefirst define themodifiedR2 score. After that, we discuss
ouruseof thekernel ridge regression, followedbyadiscussionofpermutation
feature importance. Finally, we give details on the bootstrap procedure used.

The modified R2 score. We focus on inter-annual variabilities in our
investigations. To this end, we split the signal into the trend, the seasonal

signal, and the residual, and the latter represents the inter-annual vari-
abilities. Let n > 0 and t; x 2 Rn. Then we denote by s = (t, x) a CO2 flux
time series of length n. Let:

strend :¼ spline ðt; x; k ¼ 3Þ; ð1Þ

sseasonal :¼ ðt; xseÞ; xsei :¼ avg fxtrendiþ12k; jiþ 12k 2 0; n½ ½; k 2 Zg; ð2Þ

sresidual :¼ s� strend � sseasonal ð3Þ

where spline is a spline interpolation of degree three (k = 3, i.e. cubic spline),
evaluated at t. We use the implementation UnivariateSpline from scipy89.
The resulting trend is very smooth (see Fig. S13) ensuring that sresidual retains
the inter-annual variability signal, from year-to-year to decadal variation.
For simplicity of writing, we use an intuitive notion for the components of t
and x, as well as for addition and subtraction of time series. ThemodifiedR2

score for a variable s (here the CO2 flux time series from one EMS
simulation) approximated by~s (here the CO2 flux time series reconstructed
by the regression) is defined as:

R2;residualðs;~sÞ :¼ R2ðs� strend � sseasonal;~s� strend � sseasonalÞ; ð4Þ

whereR2ðs;~sÞ is used as intuitivewriting forR2ðx; ~xÞ and similar forR2,residual.
In essence,R2,residualmeasures the explainedvarianceof the residual (i.e. inter-
annual) signal xresidual.

The kernel ridge regression. We use the kernel ridge regression, which
combines the ridge regression with the kernel trick. The ridge regression
is a linear least squares fitting with l2-norm regularisation. The regular-
isation is important in the case of highly correlated input variables, which
cannot be excluded for the regression problems we are dealing with. For
non-linear kernels, the regression scheme becomes a non-parametric,
non-linear regression. We employ the ‘rbf’-kernel, which establishes an
approximation in an infinitely high dimensional smooth space. The
method has two parameters, α and γ. α is a regularisation parameter and
needs to be determined experimentally (hyperparameter fitting) to
obtain the best regression results. The γ is a squared inverse length scale
and can be derived from the data. For details, we refer to ref. 86.

We use the implementation of the kernel ridge regression provided as
the module KernelRidge90. The predictors and the response variable are
normalised to zero mean and unit variance. The two parameters are set to:

α ¼ 2 � 10�4 ð5Þ

γ ¼ h�2; h ¼ 6 p80ðdÞ; d :¼ fk Xi � Xjk2ji; j 2 0; n½ ½; i≠ jgÞ; ð6Þ

where Xi 2 R8; i 2 0; n½ ½ denotes the vector of the (normalised) values of
all predictor variables at time ti and p80(Q) denotes the 80-th percentile of a
set d of real numbers. The choices for α and γ have been determined
experimentally. Note that the value for γ is relatively small, indicating a
rather slowly varying behaviour of the response variable. As the
approximation is good and better if compared with non-smooth regression
schemes (like random forest or kernel ridge regression with Laplacian
kernel), we can also conclude that the response variable is also smooth
depending on the predictors. The value of α is small, indicating that
regularisation due to highly correlated input variables is of minor
importance.

Permutation feature importance.We determine the importances of the
predictor variables inmodelling the response variable using permutation
feature importance. We use a modified version of permutation feature
importance due to our focus on inter-annual variability. To explain our
procedure, we first recall the standard definition of permutation feature
importance. Let X≔ (x1,…, x8) be the collection of the eight values
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vectors of the eight predictor variables andXi :¼ ðx1; . . . ; ~xi; . . . ; x8Þ the
same collection, where the i-th variable shuffled, indicated by ~xi. Then,
the permutation feature importance of the i-th predictor variable, derived
from R2 score, is defined by:

fii :¼ R2ðy; f ðXÞÞ � R2ðy; f ðXiÞÞ ð7Þ

where f ( ⋅ ) denotes the regression function obtained, in our case, from the
kernel ridge regression modelling y by X. To estimate the importance of
predictor variables inmodelling the inter-annual variabilities, wemodify the
shuffling of the data xi and apply the modified R2-score, leading to our
definition of the absolute feature importance RIai . Let i 2 0; 8½ ½ then:

~xi :¼ shuffle ðxresiduali Þ þ xtrendi þ xseasonali ; ð8Þ

Xi :¼ ðx1; . . . ; ~xi; . . . ; x8Þ; ð9Þ

fii :¼ R2;residualðy; f ðXÞÞ � R2;residualðy; f ðXiÞÞ: ð10Þ
The relative importance of the i-th predictor RIi is defined as the

normalisation (scaling) of the absolute feature importance (fii) to have a
unit sum.

Bootstrapping. We use simple non-parametric bootstrapping with 50
resamples of each time series. Accordingly, 50 regressions are carried out
per time series, and every time series is split into a train and a test set,
where the size of the test set is ~36.8% of the length of the time series, and
the training set contains about 63.2% unique values / 36.8% duplicates.
Consequently, across the bootstrap samples, each point in time is, on
average, 50 × 63.2% = 31.6 times part of the training set and
50 × 36.8% = 18.4 times part of the test set. This split is used to estimate
the average training prediction and its standard deviation, as well as the
average test prediction and its standard deviation. The estimation of the
average R2,residual score and its standard deviation is obtained by the simple
non-parametric bootstrapping as well, and similarly, the estimation of
the relative feature importance.

Clustering and classification
Dimension reduction : t-stochastic neighbour embedding (t-SNE).
Defining similar regions from 8-dimension space is not necessarily
straightforward with classical clustering techniques such as K-means,
especially when the 8 relative importances (RI) of the predictors have (a
priori) no reason to be Gaussian56,91. Originally created for high-
dimensional data visualisation92, t-SNE algorithm provides the intuition
of the data feature proximity in high-dimensional space in a lower-
dimensional representation, i.e., a dimension reduction preserving the
topology (local and global structure) of the high-dimensional data. In our
case, first, the grid-points with sea-ice concentration RI greater than 0.1
are removed. Then, t-SNE maps each 6-dimensional (atmCO2 is exclu-
ded because of the very small RI as well as siconc) object onto a point in
3D phase space and ensures a high probability of similar objects
remaining close in both the high- and low-dimensional space. Given a set
of N 6-dimensional elements (grid-points) x1,⋯ , xN, the t-SNE algo-
rithm performs a reduction by minimising the Kullback-Leibler (KL)
divergence93. The KL divergence is a measure of the dissimilarity of two
probability distribution functions, which in this study assess howwell the
statistical properties are preserved from high to low dimension. For two
objects xi and xj the high-dimensional space and yi and yj their low-
dimensional counterparts, t-SNE defines the pairwise similarity prob-
abilities, pij as:

pij ¼
expð�jjxi � xjjj2=2σ2i Þ

P
k≠l expð�jjxk � xljj2=2σ2i Þ

ð11Þ

σi is the variance of the Gaussian that is centred on data-point xi. A Student
t-distribution with one degree of freedom is used as the heavy-tailed
distribution in the low-dimensional map. Using this distribution, the joint
probabilities qij are defined as:

qij ¼
ð1þ jjyi � yjjj2Þ

�1

P
k≠lð1þ jjyk � yljj2Þ

�1
ð12Þ

Thus, the Kullback-Leibler divergence between a joint probability
distribution, P, in the high-dimensional space and a joint probability
distribution, Q, in the low-dimensional space is:

KLðPjjQÞ ¼
X

i

X

j

pij log
pij
qij

ð13Þ

The t-SNE is performed using the implementation of R package ‘Rtsne’94

available in the free software R95.

Model-based clustering. Our approach consists in clustering all the
grid-points y in the low-dimensional space for each ESM regrouping
preindustrial, historical, SSP126 and SSP585 scenarios. It is based on the
Expectation-Maximization (EM) algorithm96. This EM clustering algo-
rithm fits a multivariate probability density function (pdf), f, to our data
in order to classify the grid-points. Themultivariate pdf is aweighted sum
of K Gaussian pdfs fk (k = 1,⋯ , K) or Gaussian Mixture
Model97,98 (GMM):

f ðyÞ ¼
XK

k¼1

πk f kðy; αkÞ ð14Þ

where αk contains the parameters (means μk and covariancematrix Σk) of fk
and πk is themixture ratio corresponding to the prior probability that y (i.e.,
a grid-point value) belongs to fk. The parameters αk and πk (k = 1,…,K) of
the GMM are to be estimated. The estimation is performed using the R
package ‘Mclust’99.

The parameters of the GMM are the means μk, covariance matrix Σk,
and mixture ratio πk, describing the K Gaussian distributions. Their esti-
mation is performed through iterative the ExpectationMaximization (EM)
algorithm bymaximising the likelihood100. GMMparameters are initialised
by the result of a hierarchical model-based agglomerative clustering. Thus,
local maxima are avoided when optimising the likelihood function (e.g.,
ref. 99). EM is based on the possibility to calculate π when knowing α and
vice-versa, thus optimising both. After the initialisation, the Expectation-
step (or E-step) estimates the posterior probability τik (update ofπ

i
k) that the

grid-point yg belongs to fkwith the current parameter estimates (at iteration
i):

τikðyg Þ ¼
πi
k f kðyg ; αikÞ

PK
k¼1 π

i
k f kðyg ; αikÞ

ð15Þ

Then, the Maximization-step (or M-step) uses the posterior prob-
abilities to improve the estimates of GMM parameters (iteration i+ 1):

πiþ1
k ¼ 1

n

Xn

g¼1

τikðyg Þ ð16Þ

μiþ1
k ¼ 1

n πiþ1
k

Xn

g¼1

xg τ
i
kðyg Þ ð17Þ

Σiþ1
k ¼ 1

n πiþ1
k

Xn

g¼1

τikðyg Þ yg � μiþ1
k

� �0
yg � μiþ1

k

� �
ð18Þ
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where n is the number of grid-point. The algorithm repeats the E- and
M-steps iteratively until termination whenmodel parameters converge and
the maximum likelihood is reached (convergence of the log-likelihood
function) or after a maximum number of iterations.

Finally, each clusterCk of grid-points is defined based on the Gaussian
pdfs, according to the principle of posterior maximum:

Ck ¼ fy; πk f kðy; αkÞ≥ πj f jðy; αjÞ; 8 j ¼ 1; . . . Kg ð19Þ

In other words, each grid-point is assigned to the cluster for which the
probability of belonging is maximum. The freedom of EM in the definition
of the biomes depends on the number K of clusters and on the constraints
applied to the covariance matrices.

Different values of K (from K = 1 to K = 125) have been evaluated
through the Bayesian Information Criterion101 (BIC). Optimising the BIC
achieves a compromise between a good likelihood and a reasonable number
of parameters.

The Bayesian Information Criterion (BIC) is a criterion for model
selection that helps to prevent overfitting by introducing penalty terms for
the complexity of the model (number of parameters). In our case, mini-
mising the BIC achieves a good compromise between keeping the model
simple and a good representation of the observed data.

BICðKÞ ¼ p logðnÞ � 2 logðLÞ ð20Þ

where K is the number of clusters, L the likelihood of the parameterised
mixturemodel, p the number of parameters to estimate, and n the size of the
sample (around 200 thousand grid-points).

Tree based classification. Depending on the ESM, the optimal number
of clusters varies from 80 to 105 which is too numerous to be interpreted.
One way to regroup them to be interpreted is to build a decision tree, that
is, a classification method in the form of a tree structure separating a
dataset into smaller and smaller subsets. Starting from a known partition
(obtained from the GMM clustering), the method predicts the class to
which a grid-point belongs, following some decision rules based on the
predictors’ relative importances. For this purpose, R package “rpart”102

has beenused, basedmainly on ref. 103 and on binary trees: each node has
at most two children. Each new separation according to a decision rule
between the nodes have been performed viamaximal impurity reduction,
with the use of the Gini index as an impurity function. That means that
the tree tries to build nodes containing as few clusters as possible from the
reference partition. The trees are grown to a certain level of complexity,
then pruned to nine terminal nodes. The pruning is done by setting the
complexity parameter, measuring the “cost” of adding another expla-
natory variable among the 8 possible ones in the decision tree. For more
technical details, see ref. 102.

Data availability
CMIP6outputs are available from theEarth SystemGridFederation (ESGF)
portals (e.g. https://esgf-node.ipsl.upmc.fr). The inputs and outputs of the
kernel ridge regression are available at https://doi.org/10.11582/2023.
00017104.

Code availability
The code for the kernel ridge regression analysis are available at https://doi.
org/10.11582/2023.00017104. The codes for the clustering analysis are
described at https://cran.r-project.org/web/packages/Rtsne/index.html [last
access 7-dec-2022] (t-SNE), https://cran.r-project.org/web/packages/
mclust/index.html [last access 7-dec-2022] (model-based clustering
GMM) and https://cran.r-project.org/web/packages/rpart/index.html [last
access 7-dec-2022] (classification tree). The code for producing the figure is
available at https://github.com/damiencouespel/article_kr_regression_
co2_flux_cmip6_diagnostics105.
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