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Estimating weakening on hillslopes
caused by strong earthquakes
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The weakening of hillslopes during strong earthquakes increases landsliding rates in post-seismic
periods. However, very few studies have addressed the amount of coseismic reduction in shear
strength of hillslope materials. This makes estimation of post-seismic landslide susceptibility
challenging. Here we propose a method to quantify the maximum shear-strength reduction expected
on seismically disturbed hillslopes. We focus on a subset of the area affected by the 2008 Mw 7.9
Wenchuan, China earthquake. We combine physical and data-driven modeling approaches. First, we
back-analyze shear-strength reduction at locationswhere post-seismic landslides occurred. Second,
we regress the estimated shear-strength reduction against peak ground acceleration, local relief, and
topographic position index to extrapolate the shear-strength reduction over the entire study area. Our
results show a maximum of 60%–75% reduction in near-surface shear strength over a peak ground
acceleration rangeof 0.5–0.9 g.Reductionpercentagescanbegeneralizedusing adata-drivenmodel.

Earthquakes and rainfall are the most common triggers of landslides. Thus,
many papers have been published regarding their hazardous consequences
on slope stability1–4 and their influences on landscape evolution5–9. Global
predictive models separately exist for both earthquake- and rainfall-
triggered landslides10,11. However, few predictive models include the com-
pound effects of earthquakes and rainfall, and they are only available for
specific areas, where bothmulti-temporal landslide inventories and proxies
representing the triggering factors exist12.

The predictive capacity of models targeting landslides is limited
primarily by the accuracy of model inputs and, in particular, the avail-
ability of landslide inventories and estimates of triggering factors13. Use of
physical models decreases the strong data dependency with respect to
landslide inventories, but characterizing shear strength at global and
regional scales remains challenging14. But if the geotechnical character-
istics of hillslopes, as well as the triggering factors of rainfall and seismic
shaking, can be reasonably estimated, hazard from earthquake- and
rainfall-triggered landslides can bemodeled15–18. Nevertheless, identifying
the compound effect of earthquakes and rainfall is still difficult19. For
example, modeling hazard from rainfall-triggered landslides in an area
recently struck by an earthquake requires a better understanding because
post-seismic hillslope susceptibility varies mainly depending on landslide
characteristics (e.g., type of landslide material, slope, and landslide geo-
metry) and the mechanism controlling strain accumulation within the
landslide body19,20.

Further complicating matters is that laboratory-scale analyses show
that post-seismic hillslope strength can be unchanged, increased, or
decreased compared to its pre-seismic counterpart19,20. Most commonly,
however, strong ground shaking weakens hillslopes21,22. This weakening,
which is also observed in regional-scale assessments using multi-temporal
landslide inventories23–26, commonly is referred to as the earthquake legacy
effect27–29. Themagnitude and duration of the legacy effect can be estimated
by examining reactivated or new landslides that occur in post-seismic
periods29,30.

Coseismic hillslope weakening is caused by ground shaking that dis-
turbs hillslopeswhether or not landslides are triggered. This disturbance can
cause a reduction in shear strength (RSS) of hillslope materials. To accu-
rately characterize the resultant elevated landslide susceptibility in post-
seismic periods using physical modeling, the amount of RSS needs to be
estimated. Theoretically, this could be done by detailed geotechnical char-
acterization of hillslope material in pre- and post-seismic periods. In this
context, typeof hillslopematerials, hillslope geometry, and failure surface31,32

also need to be characterized. As a result of such investigations, the most
appropriate failure criterion is selected for a given hillslope to estimate its
strength. For instance, the stability of ahillslopegovernedby soil, intact rock,
or discontinuities could be assessed by using Mohr-Coulomb33, Hoek-
Brown34,35, and Barton-Bandis36,37 faliure criteria, respectively. However, in
regional-scale analyses, such detailed geotechnical investigations on a
regional scale are impractical because of the time and cost required.
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To address these limitations, some methods coupling active geo-
technical seismic surveys with outcrop-scale engineering desciptions/tests,
which are used to classify rockmasses based the geological strength index34,
have been proposed38,39. However, even those methods fail to capture slope
shear strength at a regional scale and thus do not address the RSS.

In light of these limitations of physical sampling and testing, we aim to
capture the amount of RSS of hillslope materials following strong earth-
quakes by carrying out back analyses40–42. Todo so,weanalyze a subset of the
area affected by the 2008 Mw 7.9 Wenchuan, China earthquake43. The
earthquake triggered ~200,000 landslides around the Longmen
mountains44. In addition to triggering widespread coseismic slope failures,
the earthquake also increased the post-seismic landslide frequency21,25,45.
Although it was argued that the legacy effect of the earthquake on hillslope
stability could last several decades24, a study of the epicentral area of the
where peak ground acceleration (PGA) ranged from 0.4 g–1.0 g suggested
that the legacy effect lasted ~7 years46. In this study, we focus on the same
area (Fig. 1)47.

Landslides that occurred in our study area were mapped by Fan
et al.43,48. They generated one coseismic and five post-seismic land-
slide inventories obtained by comparing successive images acquired
in 2011, 2013, 2015, 2017, and 2018 (Supplementary Fig. 1). They
assessed the average uncertainty in landslide polygons as ± 19 % in
terms of total landslide area based on comparison between five
geomorphologists that mapped the same area. They mapped remo-
bilized landslides and new landslides triggered in post-seismic peri-
ods of the 2008 Wenchuan earthquake. We exclude remobilized
landslides from our analyses because we lack access to multi-
temporal digital elevation models (DEMs) of hillslope geometry
before and after the remobilization. Considering remobilized cases
would introduce additional uncertainties in the back-analysis.
Therefore, we focus exclusively on coseismic landslides and the newly
activated ones that occurred post-seismically (Supplementary
Table 1) to estimate the RSS responsible for their initiation.

To estimate the shear strength of slope materials, we limit our study
area to locations where post-seismic landslides occurred. Specifically, we
back-analyze unfailed hillslopes during the coseismic event and both
unfailed and failed hillslopes in the post-seismic periods. By doing so, we
aim to estimate shear strength at locationswhere hillslopes did not fail in the
coseismic event but rather in one of the post-seismic periods. We then
calculate the RSS, which represents the decrease between the shear strength
in the coseismic and post-seismic periods. Ultimately, we analyze the spatial
distribution of RSS in relation to topographic and seismic variables using a
data-driven model (Gaussian Generalized Linear Model, GLM) and
extrapolate estimated reductions over larger areas. Our findings provide a
comprehensive insight into post-seismic hillslope reaction to strong ground
shaking.

Results
Estimating strength parameters
The study area includes five lithologic units (National Geological Data
Library of China Geological Survey, http://www.ngac.org.cn): andesite,
phyllite and schist, lithic sandstone, granite, and diorite (Fig. 1). To estimate
shear strengths of these lithologic units, we estimate the average landslide
thickness in the study area. We use published landslide area-volume rela-
tionships for landslide thicknesses as great as 5m (Fig. 2)49,50. We include a
sensitivity test for a range of potential values (2m, 3m, 4m, and 5m) to be
separately introduced in our back-analytical routine51,52.

For each post-seismic landslide location, we assignmaterial and shear-
strength properties (γ;φ0; c’) to each grid cell (Table 1) based on published
values corresponding to the five lithologic units in the area14,15,53–56. For the
identified range of cohesion and friction-angle couples, we iteratively test
shear-strength values from the literature that meet the failure and stability
conditions for both coseismic and post-seismic periods. Figure 3 shows an
example for granite hillslopes where landslide thickness is 3m. We run the
same analyses for each lithologic unit for the four landslide thicknesses (see
Supplementary Fig. 2).

Fig. 1 |Maps showing the study area. aLocationmap.b Study area overlain by faults
and earthquake epicenter. c Major geologic units in study area. d Peak ground
acceleration map of the 2008 Wenchuan earthquake bounded by the study area.

Surface rupture is digitized from Xu et al.47 and geologic map is taken fromNational
Geological Data Library of China Geological Survey (http://www.ngac.org.cn).
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Estimating RSS
The approach presented above allows us to identify themean shear strength
of hillslope materials for post-seismic landslide locations in both coseismic
and post-seismic periods. We then compare these post-seismic shear
strengths with their coseismic counterparts and calculate the difference,
which yields the RSS due to the earthquake.

Seismic groundmotion in the study area ranged from0.4 g–1.0 g; thus,
we calculate the RSS of hillslopes across this range (Fig. 4). Figure 4a shows
that the RSS ranges from 40–80 kPa where the landslide thickness is 2 m.
Results also show that the RSS is positively correlated with PGA. This
indicates that hillslopes affected by stronger ground shaking have higher
RSS in post-seismic periods. We also show that greater RSS is required for
deeper landslides to fail. For example, for a landslide thickness of 5m, the
estimated RSS is 120–180 kPa (Fig. 4d), whereas its counterpart for a
landslide thickness of 2m is 40–80 kPa. This does not mean that the per-
centage of RSS is necessarily higher for deeper landslides because this
amount changes depending on the initial shear strength in the coseismic
phase. Shear strength along the failure surface increases as the thickness of a
landslide increases because of increasing normal stress at depth.Therefore, a
higher RSS is required to cause failure of a deeper landslide.

To express RSS in terms of percentages, we compare them with their
coseismic counterparts (Fig. 5). Results show that for all thicknesses, RSS
generally varies between 60% and 75% (Fig. 5e).

Extrapolating RSS through a data-driven model
This stage of the analysis estimates RSS only within mapped coseismic
landslides because we lack information about unfailed slopes. Therefore, we
include afinal step aimedat regionalizing theRSSmodel.Weuse aGaussian
Generalized LinearModel (GLM) trained to explain the spatial variability in
RSS as a function of PGA, local relief (LR), and topographic position index
(TPI). Because the RSS model is based on slopes that failed, it reflects the
maximum possible RSS, a worst-case scenario. By regionalizing this model,
this scenariopropagates everywhere and thus overestimates the instability of
slopes that might have experienced some RSS but not enough to cause
failure. This limitation cannot be overcome unless RSS is estimated in
unfailed slopes, a capability beyond our approach. Nevertheless, extra-
polating the maximum RSS constitutes a useful experiment. Figure 6
summarizes the numerical aspects of the model: the dominant covariate is
LR (mean βLR =−2.62), followed by PGA (mean βPGA = 1.89) and TPI
(mean βTPI = 0.19). All variables are significant (i.e., the distribution of
regression coefficients does not intersect the zero line, Fig. 6a), which also is
confirmed by p-values < 0.001 calculated for LR, PGA, and TPI.

The sign and the absolute value of the regression coefficients indicate
the role of each covariate. Our findings show that LR is strongly negative,
PGA is strongly positive, and TPI is slightly positive. We interpret these
findings in the discussion section.

Themodelfits the datawell, as shownby the clustering of observed and
predicted RSS values along a 45° line (Fig. 6b). This is maintained from low
to high quantiles, with the exception of very large observed RSS values,
which are slightly underestimated (as shown via the probability density
function (PDF) of the residuals, centered at zero and with few very positive
cases). The deviation from the fittedmodel for RSS values of >70%might be
due to the range of RSS values in the target dataset. Figure 5 shows that a

Fig. 2 | Estimated landslide thickness based on two landslide area-volume relationships proposed for the landslides triggered by theWenchuan earthquake. aLandslide
thickness distribution. b Curves representing the landslide area-volume relationship.

Table 1 | Cohesion and friction-angle couples for the five
lithologic units

Lithology Cohesion (kPa) Friction angle (0)

Andesite 39 42

Phyllite, schist 27 35

Lithic sandstone 29 39

Granite 40 44

Diorite 40 43

These values are used asmean values to build a Gaussian distribution to estimate a range of values
fulfilling the required stability and failure conditions. Lithologic descriptions are taken from the
National Geological Data Library of China Geological Survey, http://www.ngac.org.cn.
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large number of our landslides have RSS values ranging between ~65%
and ~70%.

Applying a predictive equation spatially requires assessing both the
goodness of fit and the predictive performance of the data-driven model.
Therefore, we include random cross-validation with a 90/10 split, iterated
100 times. Results are shown in Fig. 6c, d, with very high values of the
PearsonCorrelationCoefficient (PCC, centeredat 0.81) associatedwith very
low values of Mean Absolute Error (MAE). Notably, the PCC distribution
appears to be positively skewed, implying that in most of the 100 cross-
validation replicates, the prediction is better than what is shown through
the mean.

Having shown that our RSS prediction is reliable both for interpreta-
tion and performance, we produce a predictive equation for the entire study
area (Fig. 7). RSS increases from northwest to southeast. As would be
intuitively expected, it is thus greatest near the fault, where ground shaking
was the most intense.

Discussion
Geotechnical characterization of hillslope materials is by far the greatest
challenge for physically based models. Most regions of the world lack
available high-quality shear-strength data. Perhaps more challenging is the
inherent spatial variability in the physical properties of mapped geologic
units and consequent difficulty in characterizing rock-mass properties at
regional scale7,34,35. For bedrock slopes, overall rock-mass strength is gov-
erned more by pre-existing discontinuities (faults, joints, bedding planes,
etc.) than by the strength of intact material such as might be sampled and
tested in the laboratory. The shape and dimensions of bedrock landslides
commonly are defined by the presence, orientation, and spacing of such
discontinuities35,57,58. And in both rock and soil, mapped geologic units

generally include layers ofwidely differing strength properties, whichmakes
assigning a single strength to a unit inherently uncertain14. In spite of these
difficulties, laboratory-based cohesion and friction-angle couples are used
widely at regional scale in physically based slope stability analyses15,59,60.
Selection of cohesion and friction-angle couples is a source of uncertainty in
these and other mechanistic approaches.

Our study aims to minimize the uncertainties detailed above by
combiningmultiple approaches. First, we apply back-analyses for all multi-
temporal landslide inventories. This means that we identify cohesion and
friction-angle couples fulfilling stability and failure conditions in coseismic
and post-seismic phases, respectively, though the initial shear-strength
parameters are material properties taken from the literature. We then build
theoretical Gaussian distributions around these mean values to simulate a
wider range of values to model the instability conditions. To minimize or
unfold various source of uncertainties regarding parameter selection, we
replicate our analyses for a range of values for additional parameters. For
example, we test a wide range of COV values to identify the most suitable
Gaussian distribution that cohesion and friction-angle values could follow.
We should stress that although shear strength parameters generally follow a
normal distribution61–63, this assumption may not hold everywhere.
Therefore, upon acquisition of site-specific geotechnical analyses thatwould
yield skewed distributions of shear-strength parameters, these would need
to be addressed accordingly. In other words, onewould need to fit a suitable
distribution to the data and simulate from there. However, in the context of
the analyses presented here, such information is not available.

Also, we replicate our analyses for different landslide thicknesses to
assess the associated sensitivity in the RSS estimates.We run this sensitivity
test for landslide thicknesses ranging between 2mand5m.Where landslide
thickness is <2mor>5m, the givenrangeof shear strengthwill not fulfill the

Fig. 3 | An example for 3-m-thick landslides on granite slope showing the shear-
strength range in each time window. The black curves are the shear strength
calculated by random cohesion and friction-angle couples built based on the
Gaussian distribution. The horizontal boxplots are selected shear-strength ranges
fulfilling unfailed hillslopes in coseismic (blue boxplots) and failed hillslopes in post-

seismic phases (red boxplots). The panels show the shear strength range for each
time windows of (a) coseismic phase, (b) 2008–2011, (c) 2011–2013, (d) 2013–2015,
(e) 2015–2017, (f) 2017–2018. Supplementary Fig. 2 shows similar plots for other
lithologic units and landslide thicknesses.
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failure condition in the post-seismic phase; thus, we do not expand the
sensitivity test for those shallower and deeper landslides. Despite this lim-
itation, the performed test still demonstrates the influence of landslide
thickness in RSS calculations.

Second, we complement this approach by calculating the difference in
shear strength corresponding to stable and unstable conditions, which we
express as a percentage. In a regional analysis, strength differences between
units aremore important than highly accurate strength estimations for each
unit15. This certainly is true in our analysis, and in a similar sense, the RSS is
of greater interest than the absolute strength. Therefore, targeting not the
actual shear strength but the required reductionof themby testing a rangeof
possible cohesionand friction-angle couples, aswell as landslide thicknesses,
is a way to minimize uncertainty.

Other approaches to capture theuncertainty inmodel inputshave been
suggested, themost commonofwhich is logic trees,wherein estimatesof the
upper, lower, and most likely values of input parameters are estimated, and
weights are assigned to each value formodel iteration51,64. These approaches
are simple to use and intuitive, but choosing weighting factors can be sub-
jective and difficult to rationalize65.

Our approach does not completely remove the uncertainties described
above because it is based on several simplifications. Hillslopes do not
necessarily even experience a weakening effect after an earthquake; they can
be strengthened or weakened in post-seismic periods depending on type of
hillslope material, hillslope geometry, intensity of ground shaking, and
accumulated shear strain along the failure surface19,20. Nevertheless, char-
acterizing these parameters requires detailed geotechnical field and
laboratory investigations, which is practical for regional-scale analyses.

Ideally, we would segregate the analysis based on different types of
landslides. Also, focusing on landslide source areas rather than entire
landslide areas would yield more accurate results. Unfortunately, the
landslide inventories analyzed make no such distinctions.

Another simplification is expressing ground shaking using only PGA
provided by empirical equations. Although this ignores site effects, fre-
quency content, and duration of shaking66, it is a widely used approach in
regional-scale slope-stability assessments14,41 because numerical earthquake
simulations of these parameters over broad regions are both uncommon
and time consuming67,68.

Also, we usem, a value representing the proportion of a landslide block
that is saturated in response to the extreme rainfall events, because identi-
fying the absolute groundwater level at regional scale is impossible. How-
ever, m could also be assigned, for instance, considering average or
cumulative precipitation for a given period69. Therefore, in the Method
section, we provide sensitivity analysis on RSS depending on the m value.

Our findings show that RSS has a strong positive correlation with
landslide thickness and that variation in RSS can be expected at different
landslide depths (see Fig. 4). To further explore this variation, we examine
the converted RSS values in percentages and observe consistent results,
though depth differences are far less pronounced than for the absolute
values and converge at higher ground motions (see Fig. 5). One possible
reason for the depth-dependence of RSS is that coseismic slope damage
occurs at several scales, fromweakening interparticle cohesion to fracturing
slopematerial at centimeter tometer scale. Thus, deeper slides characterized
by larger volumes would accumulate slope damage across all scales, and
shallow slides are likely to have proportionally less damage.

Fig. 4 | Reduction in shear strength (RSS) in response to range of PGAvalues.RSS generated for landslide thicknesses of (a) 2 m, (b) 3 m, (c) 4 m, and (d) 5 m.Gray shaded
area indicates the 99% confidence interval.
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Overall, our analyses show that near-surface rock strength can be
reduced as much as 75% if a hillslope experiences ground shaking >0.9 g.
Although this is the maximum theoretical strength reduction, it still is a
dramatic hillslope weakening process.

We extrapolate our approach to parts of the study area unaffected by
mapped landslides bybuilding adata-drivenmodel.Weapply the calculated
RSS values to the rest of the study area and then interpret the role of our
predictive variables based on regression coefficients. LR is anti-correlated

with RSS. Greater values of LR correspond to large local variations in ele-
vation, and thus this it is generally correlated with stronger rocks, which are
more resistant to erosion by frost cracking or landsliding70. As for PGA,
higher shaking levels could damage both unconsolidated and consolidated
materials, though perhaps not to the same extent. Most unconsolidated
materials have some cohesion, whichwould likely be reduced or eliminated
by strong shaking. More consolidated materials would likewise undergo
reduction in cohesion and possible fracture formation. However, we lack

Fig. 5 | Reduction in shear strength (RSS) expressed as percentages for landslide
thicknesses. RSS generated for landslide thicknesses of (a) 2 m, (b) 3 m, (c) 4 m, (d)
5 m. Panel (e) showsmean values estimated from all landslide thicknesses, and panel

(f) shows best linear fits provided for all thicknesses. Gray shaded area indicates the
99% confidence interval.

https://doi.org/10.1038/s43247-024-01256-3 Article

Communications Earth & Environment |            (2024) 5:81 6



sufficient observations in each lithologic unit in post-seismic landslide
locations to derive a statistically sound conclusion. Therefore, further ana-
lyses are required to test the transferability of our approach to other land-
scapes. Also, the RSS of different lithologic units requires further
examination. In this context, multi-temporal landslide inventories gener-
ated for other earthquake-affected areas12 and, in particular, inventories
representing the temporal variations in spatial distributions of landslides71

are primary targets to test the transferability of the proposed approach. RSS
would be different for reactivated versus new landslides. Also, landslide
polygons separately generated for source and runout areas would provide
better insight into RSS because the source is themain area needs to be taken
into account while checking slope stability. However, landslide inventories
rarely differentiate source areas from runouts72,73.

Themarked increase inRSSwith proximity to the fault zone (see Fig. 7)
shows the dominant role of seismic ground motion in weakening slope
materials. In thenear-fault area, static strain inducedby faultmovement also
can weaken near-surface material74. The combined effects of fault-driven
near-surface deformation and extreme ground shakingmake this zone near
the fault particularly susceptible to RSS and consequent slope failure.
However, these aspects also require further investigations and seismic
surveys, which have been used to assess hillslope strength39,75.

The ideal validation of ourmodeling approach would require a field
survey to measure hillslope material strengths in both pre-seismic and
post-seismic periods. Such data collection generally is unfeasible, and we

know of no cases where it has been done. In a few instances, pre-existing
geotechnical data have been compiled after a major earthquake to
facilitate modeling slope conditions at the time of the seismic shaking.
For example, after the Northridge, California (USA) earthquake in
199476, Jibson et al.15 compiled pre-existing geotechnical data across the
region to model pre-seismic slope conditions. A program to sample and
test a statistically significant number of samples in the dozens of geologic
units in the area after the earthquake would have been cost-prohibitive
and nearly impossible in practice. Jibson and Michael59 compiled geo-
technical data to construct a seismic landslide hazardmap of Anchorage,
Alaska (USA), which provided needed pre-seismic data when the 2018
Anchorage earthquake occurred77. Again, though, collecting and testing
large numbers of soil and rock samples following the earthquake could
not reasonably be undertaken. Pre-seismic geotechnical data generally
come from local government repositories that contain reports from
private consultants who perform laboratory shear-strength testing for
building projects. Such repositories can contain hundreds or thousands
of geotechnical reports that accumulate over years to decades and thus
have a statistically robust amount of data in different geologic units in
many locations. Any attempt to replicate such a dataset after an earth-
quake would be impossible. Also, the coseismic damage to slope mate-
rials occurs at landscape scale; collecting samples small enough for
geotechnical testing would miss the larger extent of the coseismic dis-
turbance. This is the main justification for our experimental design. At

Fig. 6 | Outputs of the data-driven model (Gaussian GLM). a Regression coefficients. b Observed versus fitted values with residuals. c Pearson Correlation Coefficient
(PCC). d Mean Absolute Error (MAE) of the validation results.
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present the only approach we know of to estimate coseismic RSS is back-
analysis, and we offer one approach to this. This may prove to be useful
in other seismically active areas, albeit more experiments are required to
explore its portability, reliability, and consistency, especially for different
earthquake magnitudes, geologic settings, and terrain complexities.

Methods
Inputs
The multi-temporal landslide inventories associated with the 2008
Wenchuan earthquake were mapped mainly based on high-resolution
(SPOT-5 and 6, Worldview-2, Pleiades) satellite imagery43. The dataset
provides polygons of remobilized and new landslides.

Source and runout areas of landslides were not differentiated in the
dataset; thus, to estimate representative topographic, seismic, and meteor-
ological variables for each landslide, we determine the highest elevation
point in eachpolygon. For thosepoints,we extract the corresponding factors
for both back-analysis and developing the data-driven model. Specifically,

for the back-analyses we identify the main environmental and triggering
conditions controlling the slope stability, including lithology, slope steep-
ness, ground shaking, and rainfall. We use NASA’s (earthdata.nasa.gov)
DEM (12.5m spatial resolution) for topography, theU.S. Geological Survey
(USGS) ShakeMap of the 2008 Wenchuan earthquake78 for PGA (~1 km
spatial resolution), and rainfall data from the Climate Hazards Group
InfraRed Precipitation with Station (CHIRPS, ~5 km spatial resolution).
Lithologic descriptions are taken from theNational Geological Data Library
of China Geological Survey (http://www.ngac.org.cn). As for the data-
driven model, we use PGA, LR, and TPI.

Estimating reduction in shear strength
We follow a four-step methodology: (1) pre-processing, (2) back-analysis,
(3) estimating the RSS, and (4) extrapolating the estimated RSS via a data-
driven model (Fig. 8).

Step-1
Step-1 involves pre-processing the data. We gather cohesion and friction
angles (Table 1) proposed in the literature for the lithologic units we have in
our study area. We use these couples later on to estimate shear strength of
hillslope materials. We assume that effective shear-strength (τ′) parameters
follow the Mohr-Coulomb failure criterion:

τ0 ¼ σ 0 tanφ0 þ c0 ð1Þ

where φ′ is the effective internal friction angle, c′ is the effective cohesion,
and σ′ is effective normal stress, which can be expressed as:

σ 0 ¼ ðγt � γwtmÞ cos α ð2Þ

where γ is the unit weight of the soil/rock material, γw is the unit weight of
water, α is the slope angle (°), t is the landslide thickness, and m is the
proportion of the landslide block that is saturated. Thus,m = 0 refers to dry
conditions, whereasm = 1 indicates fully saturated conditions.

Step-2
In this step, we back-analyze the slopes to identify cohesion and friction-
angle couples fulfilling the stability or failure conditions based on a set of
assumptions for coseismic and post-seismic periods, defined below.

Coseismic conditions
For coseismic conditions, we estimate the shear strength (τ0co) of hillslope
materials, where post-seismic landslides are stable during the earthquake,
using two assumptions: (1) hillslope materials are dry and (2) the hillslope
remains stable if the critical acceleration (ac) is greater than the estimated
PGA at any given location79. We check the first assumption by calculating
the standard precipitation index (SPI)80, a widely used index expressing the
droughtiness of an examined period for a given location81,82. We calculate
SPI for our study area for the month of the earthquake (May 2008) and for
the two prior months using the 10-year CHRPS daily precipitation dataset
between 2008 and 2017. SPI values for those periods are−1.09 (moderately
dry) and −1.58 (severely dry), respectively. Based on these findings, we
assume that the contribution of precipitation to landsliding was negligible
during the coseismic event.

As for the second assumption, we characterize seismic slope stability
based on the Newmark approach79, which models the sliding mass as a
rigid blockon an inclined plane. The block has a known critical acceleration,
the seismic acceleration required to overcome basal shear resistance and
initiate permanent downslope displacement. The critical acceleration can be
approximated accurately as follows:

ac ¼ ðFS� 1Þg sin α ð3Þ

where FS is the static factor of safety, g is the acceleration of gravity
(9.81 m/s2), and α is the slope angle79. A further simplification generally

Fig. 7 | Spatial distribution of estimated RSS based on the fitted model. The red
star indicates the epicenter of the Wenchuan earthquake; black lines show the
coseismic surface rupture. The equation shown above corresponds to the linear
combination of each model component.

https://doi.org/10.1038/s43247-024-01256-3 Article

Communications Earth & Environment |            (2024) 5:81 8

http://www.ngac.org.cn


applied is that landslides are infinite-slope failures, which allows
calculation of FS as follows:

FS ¼ c0

γtsin α
þ tanφ0

tanα
�mγwtanφ

0

γ tanα
ð4Þ

in which the first term accounts for the cohesive component of the
shear strength, the second term for the frictional strength, and the third

term for the reduction in frictional strength due to pore-water
pressure15.

Post-seismic periods
We quantify the post-seismic shear strength (τ0post) analogously to the
coseismic situation by assuming that the post-seismic landslides were trig-
geredby extreme rainfall events.Weuse a rangeofm values representing the
groundwater response to the extreme rainfall events recorded during the

Fig. 8 | Flowchart for identifying the reduction in effective shear strength (RSS). c0co and φ0co are cohesion and friction angle of post-seismic landslide locations during the
earthquake where they were still stable. c0post and φ0post refer to their post-seismic counterparts representing the failure condition.
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examined time windows69. We calculate the mean of extreme daily pre-
cipitation (above 95th percentile) in each grid for each post-seismic period
(SupplementaryFig. 3); then,we assignmvalues to eachgridby rescaling the
calculated extreme precipitation values between 0 and 1. Failure is assumed
tohaveoccurred in cellswhereFS < 1.This approach is consistentwithother
studieswhere precipitation is used to diminish the influenceofmeteorologic
effects from post-seismic landsliding and to isolate the role of earthquake
legacy effect28.

Based on this approach, we also quantify the influence of m in the
calculationofRSS for the coseismicphase,whichwe assume it is dry.Despite
this assumption, supported by SPI, we also run our analyses for a hypo-
thetical fully saturated condition, where m = 1. The result shows a max-
imum uncertainty of 3.36% in RSS caused by groundwater level
(Supplementary Fig. 4).

Back-analyses
We first test the role of two variables capable of influencing the slope-
stabilitymodel: landslide thickness and the coefficient of variation (COV) of
distributions of cohesion and friction-angle pairs.

For each landslide thickness, we randomly create shear-strength
parameters using aMonte Carlo simulation, a commonly used approach
for addressing the uncertainty of soil and rock properties in engineering
geological problems63,83,84. To run the simulations, we estimate the dis-
tribution of shear-strength parameters. Ranges of cohesion and friction
angle for a given rock or soil unit commonly are represented using a
Gaussian distribution61–63. However, the shape of the distribution needs
to be identified because different variances around the mean can lead to
large simulation differences. Therefore, we test different COV values,
calculated as the standard deviation divided by the mean, to control the

Fig. 9 | Variation in COV values with respect to
TrueNegativeRate (TNR).Panels showing (a)map
of estimated TP, FN, and TN, (b) cohesion dis-
tribution of granite using different COVs, and (c)
variation between cohesion COVs and TNR for
different landslide thicknesses.
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width of the Gaussian distribution. Because we assume both cohesion
and friction angle follow the Gaussian distribution, while testing COV
values for one of these shear-strength parameters, we keep the other
constant. Following Phoon and Kulhawy85, we set the COV of friction
angle at 0.15. For cohesion, we assign different COVs for different
landslide thicknesses. This step does not involve back-analysis, but
rather the direct solution of the Newmark method for the coseismic
landslide inventory. We use the cohesion and friction-angle couples
suggested in the literature as the beginning means (Table 1) and then
build theoretical Gaussian distributions around these mean values for
each rock unit (Fig. 1). This allows estimation of the COVs that best
match the unfailed hillslopes.

To numerically identify the best match, we target unfailed hillslopes
during the co-seismic phase. For those stable hillslopes, we test different
COV values and accordinly generate cohesion and friction-angle couples.
Based on those couples, we calculate critical acceleration using Eq. 5. If the
givenCOV value of cohesiondoes not ensure the stability of a givenhillslope
(ac < PGA), then we label the hillslope as False Negative (FN); otherwise
(ac < PGA), we label it as True Negative (TN). As a result, we calculate the
True Negative Rate (TNR) for all tested COVs of cohesion and define the
best match as giving highest value (Fig. 9):

TNR ¼ ½TN=ðTNþ FNÞ�× 100 ð5Þ

These analyses show that COVs of 0.39, 0.78, 1.2, and 1.55 give the
highest TNRs for thicknesses of 2m, 3m, 4m, and 5m, respectively. As
mentioned above, these values are estimated for a fixed COV of friction
angle (COV = 0.15). However, to assess the uncertainty of using such a fixed
value, we also testCOVs ranging from 0.12 to 0.22. Specifically, for different
COVs of friction angle, we keep its counterpart for the cohesion and cal-
culate its influence on RSS. This test show that the variations in RSS due to
the choice of COV is <2.1% (Supplementary Fig. 5).

Step-3
We run 1,000 Monte-Carlo simulations to repeat all steps summarized
above to minimize the error due to a fixed parameter choice and to deter-
mine a final result as the mean of 1,000 simulations. In each simulation, we
randomly select 5,000 cohesion and friction-angle couples to calculate FS
and ac. Then, we calculate the RSS between co-seismic (τ0co) and post-
seismic (τ0post) phases, represented by actual values (RSSv) and percentages
(RSSp):

RSSv ¼ τ0co � τ0post ð6Þ

RSSp ¼
τ0co � τ0post

� �

τ0co
× 100

2
4

3
5 ð7Þ

Up to this point, the estimated RSSs are generated only for post-
seismic landslide locations. However, RSS likely occurred across the
entire region. We therefore introduce a final step to regionalize the
greatest expected RSS across the study area. To do so, we use a Gen-
eralized LinearModel (GLM)where the RSS is the response (dependent)
variable, assumed to have a Gaussian distribution. We use three input
(independent) variables: (1) Local Relief (LR), the difference in elevation
between each grid cell and the mean of all grid-cells within a 100 m
radius; (2) Topographic Position Index (TPI86), a terrain classification
method indicating the relevant position of a given location with respect
to its neighborhood; and (3) PGA.

The resulting GLM can be denoted as

EðYÞ ¼ β0 þ βLRLRþ βTPITPI þ βPGAPGA ð8Þ

where E(Y) is the expected shear strength reduction (RSS), β0 is the global
intercept, and βLR, βTPI, βPGA are the regression coefficients estimated for
each corresponding covariate.

To verify the functionality of themodel, we cross-validate by sampling,
without replacement, 100 times the data, and extracting a subset made of
90% of the data for calibration and 10% for validation. At each iteration, we
store the Pearson Correlation Coefficient (PCC) and the Mean Absolute
Error (MAE).

Data availability
Multi-temporal landslide inventories generated by Fan et al. (2019) are
available through the following link: https://zenodo.org/records/1484667.
The ShakeMap formU.S.Geological Survey (USGS) is available through the
following link: https://www.usgs.gov/. The rainfall data from the Climate
Hazards Group InfraRed Precipitation with Station Data is also available
through the following link: https://developers.google.com/earth-engine/
datasets/catalog/UCSB-CHG_CHIRPS_DAILY. Geologic map is taken
from National Geological Data Library of China Geological Survey: http://
www.ngac.org.cn/Map/Document?guid=EC7E1A7A78DA1954E043010
0007F182E. All other dataset used in the manuscript are available through
the following link: https://zenodo.org/records/10302609.

Code availability
The source code used in the analyses is available through the following link:
https://zenodo.org/records/10302609.
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