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Maximum tree height in European
Mountains decreases above a climate-
related elevation threshold

Check for updates

P. J. Gelabert 1,2 , M. Rodrigues3,4, L. Coll 1,2, C. Vega-Garcia1,2 & A. Ameztegui 1,2

Mountain forests face important threats from global change and spatio-temporal variation in tree
height can help to monitor these effects. In this study, we used the Global Ecosystem Dynamics
Investigation space-borne laser sensor to examine the relationship betweenmaximum tree height and
elevation, and the role of climate, in the main European mountain ranges. We found a piecewise
relationship between elevation and maximum tree height in all mountain ranges, supporting the
existence of a common breakpoint that marks the beginning of tree development limitations.
Temperature and precipitation were identified as the most important drivers of tree height variation.
Additionally, wepredicted significant upwarddisplacement of the breakpoint for the period 2080-2100
under climate change scenarios, potentially increasing the area without growth limitations for trees.
These findings contribute to understanding the impacts of global warming on mountain forest
ecosystems and provide insights for their monitoring and management.

Mountain forests account for 23% of the forested lands worldwide and
sustain about half of the world’s population1. They provide a wide array of
goods and services, such as timber, shelter from animals, air purification,
and carbon sequestration. However, their persistence and ability to provide
ecosystem services, including the provision of timber and non-timber forest
products2, are seriously threatened by the advent of global change3. It is,
therefore, essential to design and adopt the required adaptation strategies.

Tree height is a good indicator of biological productivity and site
quality4 and has recently been used to produce continuous estimates of
aboveground biomass and carbon storage5,6. Additionally, tree height is a
proxy for ecosystem structure, with its heterogeneity being an essential
variable for predicting species richness at different scales7,8. Furthermore,
monitoring tree height can aid in anticipating the effects of global change on
forest ecosystems4.

On a global scale, the determination ofmaximum tree height is shaped
by the convergence of environmental factors and historical land use
legacies9. Existing research consistently points to a positive association
between maximum canopy height and the stability of past climatic
conditions9. Additionally, tree height is shaped by the combined effects of
water and energy availability10. The relative significance of these two com-
ponents varies along latitudinal gradients, with greater energy constraints

observed in boreal forests and an increasingly pronounced water limitation
in lower latitudes9. Moreover, the transformation of forested landscapes
influencedby landuse legacies has played a role indiminishing the stature of
forest canopies over time11,12. Specifically, in the European mountainous
regions, climate mainly drives tree development13–16. In summary, tem-
perature emerges as the primary limiting factor formaximum tree height at
high elevations, while water availability predominantly influences tree
development in lowland areas13,16,17. Nonetheless, microclimate also plays a
key role in mountain forest development18, and soil moisture and nutrient
availability have a role at the local scale19.

Treeheight is often analyzedat the local scale throughfield-based forest
inventories20, which are expensive, time-consuming and limited in extent.
Recently, active remote sensingmethods, and particularly the use of LiDAR
sensors, have been used to produce accurate and dense samplings of forest
structures at large spatial extents21, overcoming optical data limitations22.
However, airborne LiDAR is characterized by its elevated acquisition costs,
unpredictable procurement timelines and limited spatial coverage23. Addi-
tionally, wall-to-wall initiatives face inherent limitations tied to government
funding and prioritization. In this regard, space-borne laser sensors, such as
Global Ecosystem Dynamics Investigation (GEDI) can overcome the
aforementioned limitations and offer a unique solution for tree height
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sampling at a global scale. Nonetheless, these data sources should be used
with caution and considering their limitations and challenges, such as the
footprint elongation that GEDI is known to present in steep slopes24.

In a recent study leveraging airborne LiDAR, we reported non-linear
relations between elevation and maximum tree height in the Pyrenees25. In
particular, we found a piecewise response of maximum tree height, with a
sharp downward profile above a certain elevation threshold or
breakpoint25,26. These results showed the existence of region-wide patterns
in maximum tree height decline with elevation but whether this piecewise
pattern is prevalent in other mountain regions has not yet been confirmed.
In this work, we use the GEDI full-waveform space-borne laser instrument
to investigate the relationship betweenmaximum tree height and elevation,
temperature, and rainfall for the main European mountainous ranges.
GEDI is the first active remote sensing laser sensor onboard the Interna-
tional Space Station tailored to provide detailed 3D information about forest
structure and responses at the regional/global level. The GEDI program
offers global coverage between 51.6°S-51.6°N latitudes, demonstrating
strong performance in characterizing mountain forest ecosystems at the
landscape level27,making it ideal for evaluating the generality of patterns and
processes.

Our main objectives were (i) to ascertain whether the existence of a
‘breakpoint’ in the response ofmaximum tree height to elevation holds over

the main European mountain ranges; (ii) to identify the climatic drivers of
variations in maximum tree height across mountain ranges; and (iii) to
foresee the displacement of the breakpoint under different climate change
scenarios. We hypothesize that the breakpoint observed in the Pyrenees
holds over themainEuropeanmountain ranges,making it a useful indicator
to monitor the early impacts of global warming on mountain forest
ecosystems.

Results
Maximum tree-height decrease in elevation follows a non-linear
profile
We observed a non-linear response in the elevation-maximum tree height
relationship across the main European mountain systems. The data sup-
ported the existence of a unique breakpoint in all mountain ranges but the
elevation where it appeared varied across mountain ranges (Fig. 1). The
Caucasus (1740.2 ± 3.9 m.a.s.l.) displayed the tipping point at higher ele-
vations than the Pyrenees (1490.9 ± 5.7 m.a.s.l.), the Alps
(1474.3 ± 10.8m.a.s.l.) and the Carpathians (1416.2 ± 7.0m.a.s.l.). Above
this breakpoint, maximum tree height declined faster in Eastern Mountain
ranges – Carpathians, −3.31m/100m; Caucasus −2.28m/100m—com-
pared to mountain ranges under greater oceanic influence—Alps,
−1.4 m/100m; Pyrenees, −1.24m/100m. Non-linear modeling

Fig. 1 | Variation in maximum tree height with elevation in the four analyzed
mountain ranges. Alps (green), Pyrenees (red), Caucasus Mountains (yellow) and
Carpathian (blue). Solid colored lines display the predicted relationship between
elevation and maximum tree height, based on the bootstrapped median of model
parameters; points represent GEDI observed tree heights between the 90th and 95th

percentiles. Vertical dashed lines mark the average estimated position of the
breakpoint (with its corresponding value ± standard deviation indicated in num-
bers) across the 1000 bootstrap models. Values below the solid lines report the slope
of the relationship profile beyond the breakpoint. Natural earth’s relief base map in
the background.
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alternatives outperformed the linear regression baseline in all mountain
ranges (Table 1 andTable SI 1)withbothaGaussian anda segmentedmodel
providing a similar fit (R2 > 0.74).

Drivers of the decrease of maximum tree height with elevation
Models predicting maximum tree height from elevation were generally as
good as the best model using climatic covariates, if not better (Table 1 and
Table SI 1). For all the analyzed mountain ranges, temperature variables,
specifically TMeanMaxSummer and LGS, were the best climatic predictors of
maximum tree height variation. However, for the Pyrenees and Alps
Mountains, annual precipitation emerged as a highly influential factor
(Table 1). Non-linear relationships were observed for all climate factors,
with strong evidence of piecewise trends and the existence of breakpoints,
except for summer precipitation in the Pyrenees, as well as for annual
precipitation in the Caucasus and Carpathian Mountains, where the data
patterns did not support segmentation (Table 1). However, the elevation
breakpoint consistently correlatedwith either temperature, precipitation, or
both. In fact, the altitudinal distribution of the temperature-derived
breakpoint closely mirrored the values of the elevation-derived breakpoint,
consistently falling within the interquartile range of the former. The same
happened with precipitation, with the exception of the Caucasus Moun-
tains (Fig. 2).

Climate change effects on the breakpoint position
All the considered climate change models and scenarios foresee an increase
in temperature. Since tree height is closely tied to temperature, we expect a
general upward shift in the elevational positionof the breakpoints by the end
of the century, tracking the increases in temperature predicted by all the
scenarios. Under the Shared Socioeconomic Pathway 245, the upward
displacement of the breakpointwould result in a 60–65%increase in the area
where tree height growth is not limited by temperature. In contrast, the area
without growth limitations under SSP585 increased between 70% and
100%, consistently reaching the current position of the treeline. The general
trend described above was not observed for the Carpathians Mountains,
where the estimated breakpoint is already quite close to the current tree line.
Consequently, we estimated little further expansion of the non-limited
growth area (Fig. 3).

Discussion
Maximum tree height exhibited a clear non-linear response along the ele-
vation gradient in the four mountain ranges analyzed, supporting the

existence of a common pattern in controlling the height development of tree
vegetation. The non-linear, segmented trend allows the detection of an
explicit breakpoint above which maximum tree height starts to decrease
linearly with elevation. This breakpoint reflects the climatic limit beyond
which the suitability for vegetation growth gradually decreases25. We
recognize that elevation acts here as a proxy for climate variability, which is
the real driver of the observed differences in tree height development.
However, the uneven and sparse distribution of stations feeding climate
interpolation models such as WorldClim28 and their low spatial accuracy
hinder their reliability in mountain areas15,29. Despite drawbacks, the high
correlation of climate variables with elevation and the global availability of
topographic data makes the latter a suitable variable for monitoring the
effects of climate change in mountain areas. Given the slim differences in
performance between segmented and Gaussian models, we retained the
segmented approach due to its ability to simplify the link into piecewise
relationships and breakpoint thresholds. Besides, it facilitates further inves-
tigation into the strength of tree height decrease along the elevation gradient.

In three out of the four analyzed mountain ranges (Alps, Carpathian
and Caucasus Mountains), the decrease in maximum tree height with ele-
vation was primarily due to thermal limitations, as shown in Table 1.
Numerous studies have pointed out the limitation to tree development
caused by temperature14,15,30, particularly in mountain ecosystems and at
high latitudes15. The strongest evidence of this phenomenon is the existence
of the treeline, defined as the elevation limit of arboreal growth form31.
However, we proved that such thermal limitation begins at much lower
elevations9,25 andour results contribute to identifying the elevation threshold
where these processes start in differentmountain ranges9,25. Nevertheless, in
mountainous environments, tree height can also be constrained by effects
from wind, snow loads and soil quality, especially at local scales and higher
elevations32–34. In contrast to the other mountain ranges, maximum tree
height development in the Pyrenees seems to be more influenced by pre-
cipitation than by thermal limitations. Due to its proximity to the Medi-
terranean Sea and its west-east disposition, a large part of the Pyrenees
features a Mediterranean-type climate characterized by a marked summer
drought period, especially on the southern slopes. Even when precipitation
was the main driver of maximum tree height development, elevation was
still a good estimator of the breakpoint, suggesting it could be used globally
as an indicator of the relationship between climate and tree height
development17,25,35; always considering latitudinal bias corrections15 and
other tree height modulators such as the mass elevation effect, con-
tinentality, microtopography and soil development14,34,36.

Table 1 | Summary of model performance.

R2

Model Elev TMeanMaxSummer TMeanMinGS LGS PrecAccAnnual PrecAccSummer

Alps Linear 0.53 0.01 0.06 0 0.09 0.41

Segmented 0.78 0.81 0.72 0.82 0.24 0.76

Gaussian 0.8 0.81 0.7 0.76 0.14 0.73

Pyrenees Linear 0.4 0.09 0.02 0.05 0.28 0.41

Segmented 0.71 0.85 0.58 0.5 0.85 NA

Gaussian 0.68 NA 0.42 0.36 0.81 NA

Carpathian Linear 0.58 0.55 0.64 0.58 NA 0.43

Segmented 0.85 0.85 0.83 0.86 NA 0.44

Gaussian 0.88 0.85 0.87 0.88 0.36 0.45

Caucasus Linear 0.46 0.27 0.07 0.4 0.23 0.26

Segmented 0.92 0.9 0.74 0.9 NA 0.36

Gaussian 0.9 0.88 0.75 0.85 NA 0.44

NA values represent models that performed best with a non-segmented pattern or where segmented and Gaussian models were not applicable. R2 Coefficient of determination, Elev elevation,
TMeanMaxSummer mean of summer maximum temperature, TMeanMinGS mean of minimum temperatures in the growing season, LGS length of the growing season (no. of days), PrecAccAnnual annual
accumulated precipitation, PrecAccSummer Summer accumulated precipitation.
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A shift of the optimal growing conditions towards higher elevations is
expected in response to global warming37 (Fig. 3). Furthermore, warming
trends are expected to extend the vegetative season, fostering tree growth in
the future38. Our results predict an upward shift of the breakpoint, often-
times reaching the current treeline,whichwould imply the lifting of climatic
restrictions on the development of trees. As observed in boreal forests39–41,
the upward displacement of such elevation points may imply a substantial
increase in the productivity of these cold-limited forests42. Nevertheless,
under the most extreme scenarios, the positive effects of climate change
could beoutweighedby thenegative impact of hydric limitations in themost
xeric environments43. The enhanced development of these “new” forest
communities may increase the provision of ecosystem services such as
timber and carbon sequestration but simultaneously entail a decrease in
open habitats, impacting the associated biodiversity44,45. Although upward
shifts in the position of the treeline have already beenobserved as a response
to global warming46, the displacement is far from being universal due to the
complexity of factors and nuances influencing the natural afforestation of
treeless areas at the limit of their physiological tolerance14,26. The maximum
height-elevation breakpoint, however, is more likely to relocate, as it indi-
cates aphysiological relationshipbetween treedevelopment andclimate, not
an actual physical limit. This may cause a mismatch between the upward
shift of the breakpoint and that of the treeline, with potential consequences
for the responses of alpine ecosystems to global change.

Finally, while GEDI has proven its capability to characterizemountain
forest structures at the landscape and regional scale27,47, it is essential to
consider certain critical factors when using GEDI data for ecological
applications in such environments. Notably, tree height estimations display
biases primarily driven by slope-related effects and geolocation accuracy27.
Despite having the smallest footprint among space-borne LiDAR systems,
GEDI cannot fully compensate for footprint elongation due to varying
terrain slopes24. Additionally, the expected geolocation error of 10 meters
can contribute to over 50% of the uncertainty in GEDI-derived height
metrics48,49. Furthermore, our familiarity with the region suggests that tree

heights can be overestimated in this study despite the filters we applied to
minimize this effect (see methods). This emphasizes the importance of
cautious interpretation when utilizing GEDI data in mountainous forest
ecosystems, as has been warned elsewhere50. However, our analyses and the
comparisonwith airborne LiDARdata available in thePyrenees suggest that
this overestimation is systematic and does not affect the trends and patterns
observed here.

Methods
Study area
Our study area was restricted by the latitudinal scanning range of GEDI
(51.6 °S–51.6°N). For this reason, we focused the analyses on the main
European mountain ranges within GEDI’s reach, concretely the Pyrenees,
Alps, Carpathians, and Caucasus. Following the FAO global ecological
zoning, we set the lower elevation limit of the analyzed mountain forests at
800 m51.

The Pyrenees are located along the Spain-France border, within
longitudes 2.38°W–3.15°E and latitudes 42.23°N–43.03°N. The highest
summits reach~3400mabove sea level. The lower elevations are dominated
by aMediterranean climate, with an average annual temperature ~8 °C and
annual rainfall circa 800mm, characterized by summer drought on the
southern slopes. Higher elevations transition into high mountain climate,
with mild temperatures and rainfall over 2500mm, the wettest among the
analyzed areas. Dominant tree species include Scots pine (Pinus sylvestris
L.), beech (Fagus sylvatica L.), silverfir (Albies albaMill.) andmountainpine
(Pinus uncinata Ram ex. DC).

The Alps constitute the natural border between Italy, Switzerland
France, Slovenia, and Austria (5.12°E–16.1°E and 45.52°N–47.62°N), reach-
ing ~4800m at their highest summit. Climatically diverse, the Alps exhibit
uneven annual precipitation ranging from 2300mm near the Adriatic Sea to
800mm in the central Alps. The mountain forests of the Alps are char-
acterized by a complexmosaic of mixed coniferous forests. The main species
are spruce (Picea abies L. Karst.), silver fir, beech, and a variety of pines.

Fig. 2 | Elevation breakpoint climate variable relationship. Densities and violins
plots depict the elevation values intersected by A isotherm and B isohyet defined at
breakpoint of maximum tree height-temperature or maximum tree height-
precipitation variables in each mountain range. Vertical lines represent the

breakpoint of the relation maximum tree height-elevation at each mountain range,
and boxplots show the interquartile range and median. No represented data in the
plots correspond to non-segmented patterns of the data.
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The Carpathians, the most continental mountain range among those
analyzed here, cross part of northern Serbia, central Romania, eastern
Ukraine, southern Poland,westernCzechRepublic, northernHungary, and
an important part of Slovakia (18.43°E–26.71°E and 44.73°N–49.1°N).With
peaks reaching 2650m, the Carpathians exhibit. average yearly tempera-
tures ranging from 7 °C at the lowest altitudes to 0 °C at the highest peaks.
Annual rainfall varies from i1,400mmin thenorthern end to 500mm in the

centre of Romania. The dominant tree species are sycamore (Acer pseudo-
platanus L.), beech, silver fir, and spruce (Picea abies).

The Caucasus Mountains form the natural border between Georgia
andAzerbaijan fromRussia (39.13°E–49.37°E and 41.74°N–43.13°N). They
constitute the largest mountain range analyzed in terms of area and eleva-
tion, exceeding 5500m at the highest summits. At lower elevations, beech
(Fagus orientalis Lipsky) and various Quercus species predominate, while

Fig. 3 | Current and future areas without height growth thermal restrictions.
Light purple areas represent the areas without growth restrictions under current
conditions, while dark purple areas represent the projected areas without growth
restrictions by 2100. Numeric values summarize the total area without growth

restrictions for the period 2081–2100; values in brackets report the percentage
increase in unrestricted area compared to current values; gray values refer to the area
with restrictions, defined as the remaining area between the breakpoint in 2100 and
the current treeline. Esri hillside is used as a backdrop.
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higher elevations are dominated by spruce (Picea orientalis L. Peterm.), fir
(Abies nordmanniana Spach.) and diverse pine species. The Caucasus
Mountains represent the most arid mountain system analyzed, with tem-
peratures above 10 °C and precipitation of about 600mm in lower eleva-
tions. At higher elevations, low temperatures predominate, with an annual
average of about 0 °C, and precipitation of ~1000mm.

GEDI dataset
We used the Global Ecosystem Dynamics Investigation (GEDI) dataset,
collected betweenMay 2019 and September 202052. GEDI is a space-borne,
high-resolution laser ranging scanner aboard the International Space Sta-
tion, designed to capture the vertical structure of the canopy layer across
temperate and tropical forests (between 51.6° latitude, northern and
southernhemisphere)53. GEDI consists of three laser sensors, scanning eight
transects spaced 600m along the sensor acquisition range. Each transect
collects waveforms at 25m radial footprints every 60m along the track
direction, with a geolocation error lower than 8m in X/Y coordinates and
10 cm in Z. The GEDI science team derived tree height subtracting the
highest return (first received return) and the elevation, interpreted as the
mode of the lowest value in the received waveform (Figure ED1). We used
the Level 2 A product, including footprint-level elevation and relative
canopy heights (RH)—referred to as the height above the ground of each
energy percentile along thewaveformprofile-. Tominimizenoise in canopy
height detection, we selected only high-quality footprints (quality flag = 1)
collected during nighttime, and with a sensitivity greater than 0.97, as
recommended by the GEDI science team54. To open and process the GEDI
data, we used the “rGEDI” R package55.

It is worth noting that GEDI tends to overestimate tree heights in
mountainous areas50. Therefore, we applied a sequence of filters to reduce
signal noise andminimize overestimation. Firstly, we restricted the analysis
domain to mountain forests, i.e., locations higher than 800m according to
the FAO criteria51. Since noise is concentrated in the upper lands (due to
steep slopes and snow cover50,56,57), we determined the treeline excluding the
top 0.1% footprints of each mountain range to cleanse the upper tail of the
distribution,where the signal consistsmostly of outliers anddetection errors
(Figure SI2 exemplifies the procedure). Then, we applied an outlier filter
along the entire elevation gradient.WegroupedGEDI’s footprints into 50m
interval classes of elevation. Within each 50m interval, we retained only
those footprints fallingwithin the interval’smean of the tree height (RH95 –
tree height observed at 95 quantiles of the returned energy) ± 3 standard
deviations58. After quality control and noise reduction filtering processes, a
total of 780,314 footprints remained.

To retrieve the maximum tree height along gradients of explanatory
variables, we retained only those footprints with tree heights between the
90th and 95th percentiles of RH95 in each 25m elevation interval between
800m and the estimated treeline. Temperature and precipitation data were
subjected to the samemaximum tree height estimation procedure. For this,
we defined interval classes to cleanse noise and calculate maximum height
using the same number of intervals estimated during elevation noise
removal and maximum tree height estimation procedures (remaining
38,883). We adapted the interval size to obtain approximately the same
number of classes obtained in the case of elevation.

Ancillary data
SinceGEDI provides the baseline for calculating relative heights and not the
actual elevation of the ground, elevation data were retrieved from the
NASADEM_HGTdigital elevationmodel (DEM), a 30m spatial resolution
enhancement of the former STRM DEM with improved accuracy by
incorporating data from SAR, LiDAR and optical sensors59. Climate data
were retrieved from the WorldClim 2.128 climate dataset. We extracted
historical (1970–2000) information about seasonal and annual minimum
temperature (Tmin), maximum temperature (Tmax), and Precipitation
(Prec), at a spatial resolution of 30 arc seconds (0.65 km at latitude 45°).
From this data, we derived a set of climate variables with potential phy-
siological effects on tree growth and development, based on the literature15:

(i) length of growing season (LGS), corresponding to the days without tree
growing restrictions (see description below); (ii) average minimum tem-
perature during the growth season (TMeanMinGS); (iii) average summer
maximum temperature (TMeanMaxSummer); (iv) annual precipitation
(PrecAccAnnual) and (v) summer precipitation (PrecAccSummer). In the case of
LGS and TMeanMinGS, we transformed the monthly average and minimum
temperatures into mean and minimum daily temperatures by means of
cubic splines interpolation15, using stats R package. Then, we defined the
growing seasonas the annual countofdaysbetween thefirst spanof at least 6
consecutive dayswithmean temperature>5 °Cand thefirst span—after July
—of 6 days with mean temperature <5 °C, following the Expert Team on
Climate Change Detection and Indices (ETCCDI)60.

Modeling approach
After filtering the data, we ran a series of regression models to assess the
strength and shape of the relationship between maximum tree height, ele-
vation, and climatic variables. For thispurpose,we tested log-linear (Eq. (1)),
segmented (Eq. (2)), and Gaussian (Eq. (3)) univariate models for each
candidate predictor (see previous section). We chose these model for-
mulations based on observed data patterns during exploratory analyses.
Segmented models were parameterized by searching for the optimal
number of breakpoints through a subsampling method, running 50 itera-
tionswith 5 folds, using the segmentedRpackage61. Log-linear andGaussian
models were adjusted following Eqs. 1 and 3 using the “stats”R package. To
avoid potential misspecification of themodel due to spatial autocorrelation,
we fitted 1000 models for each variable and model formulation. In each
iteration,we randomly retainedhalf of the dataset as the trainingdataset and
the other half as test subsamples. We then calculated the median and
standard deviation of all parameter estimates across the 1000 repetitions. In
the caseof segmentedmodels,we also retrieved themedianand the standard
deviation of the breakpoint position and the slope below and above the
breakpoint.We computed theR-squared (R2) and rootmean standard error
(RMSE) – calculated using the validation sample – as indicators of model
performance, using the metrics R package62.

log max:tree height
� � ¼ α1 þ β1 � x ð1Þ

Where α1 is the intercept, β1 is the slope, and x is the predictor of
maximum tree height.

log max:tree height
� � ¼ α1 þ β1 � x 8x ≤Ψ

α2 þ β2 � x 8x>Ψ

�
ð2Þ

Where α1 and α2 are the intercepts, β1 and β2 are the slopes of the
relationship above and below the breakpoint, respectively, while ψ is the
breakpoint.

max :tree height ¼ Hmax × exp � 1
2

x � a
b

� �� �2
ð3Þ

Where a, b, and Hmax are parameters estimated by the model.
a represents the value of x at which the maximum tree height reaches the
highest value, whereas b controls for the width of the curve.

Climate change effects on tree height development
To assess the connection between climate variables and elevation, we
derived isohyets, isotherms, and isolines based on the breakpoints identified
for the relationship between maximum tree height and precipitation, tem-
perature, or other variables, respectively.We then extracted elevation values
corresponding to these isolines, and we evaluated and plotted the distance
between elevation breakpoints derived from climate variables and those
estimated using DEM andGEDI data. Thismethod allows us to analyze the
relationship between climate parameters and elevation.

The effect exerted by climate change on the position of the elevation
breakpoint was assessed by forecasting the position of the climatic
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breakpoints for the Shared Socioeconomic Pathways (SSPs) 245 (CO2

emissions around current levels until 2050, then falling but not reaching net
zero by 2100) and 585 (CO2 emissions triple by 2075). We retrieved spatial
predictions of TMeanMaxSummer in the period 2080–2100 based on the
ensemble predictions from eight general circulationmodels (GCMs): BCC-
CSM2-MR63, CNRM-CM6-164, CNRM-ESM2-165, CanESM566, IPSL-
CM6A-LR67, MIROC-ES2L68, MIROC669, MRI-ESM2-070 under the sce-
narios SSP245 and SSP585. We then shifted the position of the breakpoint
according to future climatic conditions, moving it upwards at a rate of
100m.a.s.l. for each 0.65 C° increase in TMeanMaxSummer with respect to
current conditions at the breakpoint.

Since the dynamics of the treeline are likely to follow different patterns
and have been proven to present great inertia, we opted for a conservative
approach, and the upward displacement of the breakpoint was restrained to
the current position of the treeline. Thus, if climate scenarios predicted that
the breakpoint position would be located above the current treeline, we
placed it at the treeline, never above it. We used the terra71 and tidyverse72 R
packages to manage all raster and tabulated data.

Data availability
The dataset associated with this paper comprises GEDI 2A data collected
from 2019/05/01 to 2020/09/03, along with ancillary data (NASADEM &
WorldClim) at the footprint level. Additionally, footprints are filtered by
elevation ranging from800meters above sea level to themaximumelevation
calculated for each mountain range (please see Methods/GEDI Dataset
subsection). Each file encompasses the described data for a specific
mountain range (specified in thefilename) and is presented as a*.RDatafile.
This data is prepared for modeling and plotting and is accessible at: https://
doi.org/10.5281/zenodo.10490202.
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