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Full seismic waveform analysis combined
with transformer neural networks
improves coseismic landslide prediction

Check for updates
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Seismic waves can shake mountainous landscapes, triggering thousands of landslides. Regional-
scale landslide models primarily rely on shaking intensity parameters obtained by simplifying ground
motion time-series into peak scalar values. Such an approach neglects the contribution of ground
motion phase and amplitude and their variations over space and time. Here, we address this problem
by developing an explainable deep-learning model able to treat the entire wavefield and benchmark it
against a model equipped with scalar intensity parameters. The experiments run on the area affected
by the 2015Mw7.8 Gorkha, Nepal earthquake reveal a 16% improvement in predictive capacity when
incorporating full waveforms. This improvement is achievedmainly ongentle (~25°) hillslopes exposed
to low ground shaking (~0.2 m/s). Moreover, we can largely attribute this improvement to the ground
motion before and much after the peak velocity arrival. This underscores the limits of single-intensity
measures and the untapped potential of full waveform information.

Earthquakes can cause hundreds of thousands of landslides, and in some
cases, the losses may exceed those directly associated with the ground
shaking1. This hazard chain takes place in just few minutes as the wavefield
transits and interacts with the terrain, leading to widespread slope
instabilities. Such short-term interactions can have repercussions lasting
tens of years2. Therefore, understanding the failure mechanisms within
those few minutes is vital to foresee the full chain of events2–4.

Physics-based and data-driven solutions2 encompass most of the
available coseismic landslide models. Physics-based ones rely on geo-
technical data, information hardly accessible for regional scale
assessments5. Therefore, the main difference between these two
approaches resides in the flexibility of data-driven models to be applied
for regional or even global scale analyses. As for the physics-based
category, Jibson5 mainly divides them into three alternatives: pseudo-
static, stress-deformation, and permanent-deformation5. Permanent-
deformation techniques such as the Newmark6 method and its
simplifications7 are most commonly used for regional coseismic landslide
modeling. This approach identifies critical acceleration thresholds in the
ground motion signal, above which a given slope exhibits permanent
deformation. This framework assumes that the main factors responsible
for higher slope deformation are large amplitude and duration of
shaking8. The main limitation in the applicability of the Newmark
method is in the sparse density9 of seismic stations. Therefore, spatially

continuous records of ground motion data cannot be retrieved even in
tectonically active regions, where dense seismic networks are deployed9,10.

Data-driven approaches offer an alternative by using proxies rather
than parameters required in physics-based methods11. Statistical methods
such as binomialGeneralized Linear12 andAdditive13Models reflectmost of
the literature until recently when they shared the stage with machine
learning14 approaches. Overall, data-driven models perform analogous
operations, where a set of explanatory variables is used to optimize the
numerical distinction between slopes that have failed in response to ground
shaking and those that did not. Todate, data-driven approaches incorporate
several ground motion intensity parameters such as peak ground velocity
(PGV), acceleration (PGA), or Arias intensity2. Dahal et al.15 use synthetic
waveforms to test 28 ground motion parameters and demonstrate that
frequency content, total shaking, and duration can complement the infor-
mationusually carried by peak proxies.However, even these parameters still
convey a scalar representation of the full waveform, and they do not reflect
the characteristics of seismic waves (e.g., frequency content and duration)
that may play a role in the occurrence of landslides.

The problemof suitably exploiting time series exists across all scientific
fields. For instance, a branchofmachine learningknownasnatural language
processing has been developed to recognize important characteristics in the
continuous signal of written and spoken language. The two most common
solutions correspond to long short-term memory16 (known as LSTM) and
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gated recurrent units17 (known as GRU). However, both have limits in
capturing long-range dependencies in time-series data because of their
sequential processing nature18–20. In otherwords, their structure sequentially
processes the signal, and the influence estimated at each step is a priori
constrained to decay over time. Thus, both models tend to forget the con-
tribution coming from portions of the time sequence that are far away from
each other. In geoscience, these models have been demonstrated to be
convenient in the context of long-term precipitation analysis and associated
landslides because they naturally reflect the different contributions coming
from early preparatory21 and triggering22 precipitation. However, in the
context of earthquake-induced landslides, the energy released by an earth-
quake propagates on very short timescales, making sequential models
unsuited to treat an impulsive signal.

Conversely, a transformer architecture relies on an attention
mechanism23 capable of looking at portions of the time series without prior
assumptions on how certain information should be forgotten moving away
from the start of the sequence24. Due to their flexibility, transformers have
become a staple in computer vision25,26, natural language processing27 and
constitute the fundamental backbone of the famous ChatGPT model
series28.

Therefore, here, we aim to remove any scalar simplification require-
ment and implement a modeling architecture capable of interpreting the
ground motion time series as a whole. For this reason, we designed an
experiment where the prediction of coseismic landslides is tasked to a
transformer architecture fed with full waveform. We also translated the
model results to examine which segments of the synthetic waveforms carry
relevant information for landslide hazard assessment. This model is
benchmarked against a standard scalar counterpart to test whether the use
of full waveforms is useful in the first place.

The study area where we run our experiment corresponds to the
Nepalese landscape struck by the 7.8 Mw Gorkha Earthquake in 2015, for
which ground motion simulations15, landslide inventory29, terrain30, and
geological31 data are available. The earthquake occurred along the Main
Himalayan Thrust (MHT) fault, and the hypocentre is located in the
Northwestern sector (Fig. 1). The unilateral rupture propagated 110° east,
lasting for ~50 s32, and the strike and dip of the fault was 293° and 7°,
respectively33. Overall, more than 8,800 people were lost, with 23,000
injured34, followed by widespread infrastructural damage. An area of
28,344 km2 was scanned, and a polygonal inventory containing 24,990
coseismic landslides associated with this event was mapped (Fig. 1)29. We
defined our experiment over the same region to ensure the validity of
landslide presence/absence information and obtained ground motion data

from the simulations made by Dahal et al.15. The authors simulated the
Gorkha earthquake by using the finite fault model built by Wei et al.35,
including the 3D topography through Salvus36,37. The 1D velocity structure
is the same as proposed byMahesh et al.38 with amesh capable of simulating
up to3.0 Hz,although thewaveformswerefiltereddown to1.5 Hzdue to the
limitations in subsurface data and finite fault model.

Using the simulation byDahal et al.15, full waveformswere extracted at
the crown of each landslide reported by Roback et al.29. These locations
constituted our landslide presence data. In binary classification, it is also
necessary to extract the landslide absence information39. Therefore, we
extracted a random and equal number of stable slopes at least steeper than
10° and located 500m away from a failed slope. The combination of
landslide presence and absence will constitute the modeling target of our
analyses.

Results
Benchmarking
We recall that our transformermodel is equippedwith a full waveform time
series (Mod1) and that we benchmarked its outputs against a standard
model that simplifies the groundmotion into its peak velocity (Mod2). The
difference between the two is significant, as demonstrated by a 22% increase
in performance. To enrich our experiment, we also added terrain and
lithological information to the two models above (i.e., Mod3 and Mod4,
respectively). As a result, the performance observed inMod1 (AUC= 0.94)
increased to 0.96 in Mod3. As for the jump from Mod2 to Mod4, this
translated into a performance of 0.72 and 0.80, respectively. Therefore, even
the more complex benchmark still showed an overall improvement of 16%
between Mod3 and Mod4 (Fig. 2a).

A similar modeling performance among the four models is also
maintained when examining accuracy, intersection over union (IOU), and
F1 scores (Fig. 2b). Mod2 and Mod4 appear significantly less capable of
distinguishing failed slopes compared to Mod1 and Mod3, respectively.
Also, the role of terrain and lithological characteristics led to a larger per-
formance increase fromMod2 toMod4 (i.e., 8%) rather than fromMod1 to
Mod3 (i.e., 2%), likely because the latter canalready rely ona large amountof
information carried by the full waveforms.

Aside from the performance metrics, we also presented the spatial
pattern of landslide probabilities for each model (Fig. 3). The output of
Mod2 appears spatially smoothed (Fig. 3b). Even when including terrain
and lithology, Mod4 still exhibits a smooth spatial pattern (Fig. 3d) repre-
sented by smeared values that are in the medium to small range without a
clear distinction between landslide and non-landslide locations. Actually,

Fig. 1 | Study area, ground motion simulation
extent, and observed landslides. aDashed polygon
shows the ground motion simulation domain
defined by Dahal et al.15; the black solid polygon
represents the study area where Roback et al.29 per-
formed the landslide mapping. The epicenter is
symbolized with a star, whereas locations where the
landslide was initiated, are plotted with a red dot.
Themain Himalayan thrust fault system is shown in
a yellow soild line. b Location of the study area with
respect to administrative boundary of Nepal. Base-
map source: Esri, USGS, and the GIS User
Community.
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what happens is that coseismic unstable slopes become associated mostly
withhigh relief (Fig. 3e) andonlymarginallywithhigh shaking (Fig. 3f).As a
result, Mod4 largely overestimates slope instabilities in the north-east and
north-west sectors, an effect that was not present in the simpler Mod2.
Despite the spatial differences, another element of concern in both Mod2
andMod4 is in their range of probabilities, which is biased toward small and
medium values.

The use of full waveforms in Mod1 (Fig. 3a) largely addresses both
issues mentioned above. The landslide predictive pattern appears less
smooth, and the probability contrast between stable and unstable slopes
becomes muchmore evident (the range now extends from 0 to 1). Another
characteristic is that probabilistically unstable slopes cluster at the center of
the study area. However, this sector unrealistically appears homogeneously
unstable.Only inMod3 (Fig. 3c), combining terrain and lithology to the full
waveforms’ information, do the predictive patterns reach their best
expression among all models.

Explainability
In the previous section, we acknowledged that the best performancemetrics
are obtained for Mod3. In this section, we will explore the reasons
behind such a result, comparing Mod3 against its simpler version, Mod4.
To do so, we identified failed slopes to which both models assigned
landslide occurrence probability equal to or greater than 0.5, or
(p Mod4h i≥ 0:5 ^ p Mod3h i≥ 0:5jy ¼ 1). These are unstable slopes cor-
rectly classified by bothMod3 andMod4. Similarly,we checked failed slopes
that onlyMod3was able to characterizewith aprobability equal to or greater
than 0.5, or (p Mod4h i < 0:5 ^ p Mod3h i≥ 0:5jy ¼ 1). These are unstable
slopes correctly classified only by Mod3. In Fig. 4, we plot each of the two
respective groups (panels a–c and d–f) according to the results obtained for
the three main directions: East–West, North–South, and Up–Down. Along
the y-axis, we present the 2-dimensional histogram of the explainability
score generated by Mod3 for each time step of all waveforms, shown along
the abscissa. The explainability score quantifies each time step’s contribu-
tion with respect to the final landslide occurrence probability. The x-axis is
organized according to the PGVarrival (set at zero and symbolizedwith the
solid purple line).

The first observation to be made is that in both cases, the direction
where most of the explainability is scored corresponds to East-West, which
is also the main direction of the rupture propagation during the Gorkha
earthquake. The most important element to be stressed is the comparison
between the E–W direction belonging to panels a and d. In the first case,
wherebothMod3andMod4correctly perform,most of the yellowgrids (the
frequency of explainability scores) cluster around the PGV arrival. This is
actually why the twomodels agree, as even a scalar representation of the full
waveform would point at this approximate portion of the signal without
relying on the information coming from the rest of thewaveform.However,
the situation is very different in panel d, where only Mod3 suitably

recognizes landslides. There, the explainability scores shown in panel d do
not only cluster around the PGVarrival as shown inpanel a. Conversely, the
explainability is shown to be densely distributedovermost of the time series,
even ~120 to ~160 s after the PGV.

This observation requires further investigation into what it potentially
implies numerically, geographically, physically, and geomorphologically.
Numerically, Mod4 is blind to the occurrence of 5260 landslides (or 21.26%
with respect to the total). Conversely,Mod3 onlymisses 2059 landslides (or
8.32% with respect to the total) and captures 3201 landslides that Mod4
misses. As for what this translates in terms of landslide area,Mod4 captures
landslides that failed up to8.4 km2 as compared to the 11.1 km2 estimatedby
Mod3. Notably, the observed total failed surface is equal to 11.7 km2. Thus,
Mod4 misses ~28% of the failed surface, whereas Mod3 only misses ~5%.
Lookingmore into the extremes of the landslide area distribution, above the
95th percentile,Mod4 identifies landslideswith an area of ~3700m2, whereas
the same estimated by Mod3 is ~4300m2. The observed reference is
4315.99m2. We also explore frequency area distributions40 in Supplemen-
tary Fig. 1, observing a higher capacity ofMod3 to predict the two tails of the
distribution as compared to Mod4.

Extending the investigation towards geographic implications, we plot
the landslide probability difference (Mod3–Mod4) in Fig. 4g. There, both
models agree at locations highlighted in yellow (probability difference ~0)
and disagree wherever the map presents blue (Mod4 >Mod3) and red
colors (Mod3 >Mod4). Interestingly, the highest positive differences in
probability (Mod3 >Mod4) cluster along topographic incisions (valleys)
running roughly orthogonal to the Himalayan direction.

As for the physical meaning behind Mod3 and Mod4 differences, we
revise the idea behind Fig. 4, leave behind probabilistic considerations, and
focus on failed slopes. In Fig. 5, we select two representative slopes correctly
classified by bothMod3 andMod4, and two slopes only failed according to
Mod3. In such a way, we graphically present the actual waveforms (gray
lines) against their site-specific Mod3 scores, exploring potential physical
considerations.

Panels a and b show that landslides recognized by both Mod3 and
Mod4 exhibit the largest explainability score (green line) close to the PGV
(zero along the abscissa). The situation appears very different for landslides
only predicted by Mod3. Panel c of Fig. 5 shows two large explainability
scores in the early stages of the waveform. The first one is well aligned with
the P wave arrival time, an observation that could indicate the ability of our
transformer model to capture the influence of waveform phases. Panel d of
Fig. 5 depicts another situation where the explainability scores in the early
stages of the waveform are relatively low, and a peak score is visible around
150 seconds after the PGV. These results highlight the inadequate capacity
ofPGVto reflect influencesacross the fullwaveformand, in turn, the limited
capacity to explain the whole coseismic landslide population. This also
means that theMod3 extracts valuable information from the full waveform,
towards which Mod4 is blind.

Fig. 2 | Performance evaluation of the models.
a Receiver operating characteristic (ROC) curves
and b full suite of examined metrics, including the
area under the curve (AUC), accuracy score (ACC),
intersection over union (IOU) and F1 score.
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To conclude the investigation, we explore the geomorphological dif-
ferences between Mod3 and Mod4 (Fig. 5e). There, we plot landslide
locations correctly predicted by both (in green) and those only recognized
by Mod3 (in red). Landslides located by Mod3 occur on a gentler topo-
graphy (Fig. 5f, maximum density at 30°) and with a lower shaking (Fig. 5g,
maximum density at 0.2 m/s) compared to landslides predicted by both
models (maxima at 40° and 0.4 m/s, respectively). Along the same reason-
ing, we also classified the Nepalese landforms41 and checked which type is
associated with the most misclassifications in Mod4 (Fig. 5h). Open and

upper slopes, midslope, and high ridges are also well represented in Mod4.
However, Mod4 fails to predict failures at locations close to valleys, stream
slopes, and midslope drainages. These are otherwise well recognized as
unstable by Mod3.

Overall, these results imply that landslides on less susceptible hillslopes
can be more successfully predicted by exploiting the full waveform infor-
mation. Conversely, landslides triggered on high susceptible hillslopes (i.e.,
characterized by steep topography and high ground shaking) are already
predictable using traditional peak intensity parameters. The realization of

Fig. 3 | Spatial distribution of the model outputs together with observed landslides, relief, and peak ground velocity. Mod1 to Mod4 output converted in map form
(panels a–d). Panel e shows the reliefmap, whereas panel f reports the PGVoverlayed by the landslide inventory. Basemap source: Esri, USGS, and theGISUser Community.
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such distinction is particularly important because very steep and heavily
shaken slopes are already intuitively susceptible. Thus, predicting that
location should not require large modeling efforts, and the less susceptible
slopes should rather be the target.

Discussion
Traditionally, data-driven coseismic landslide modeling approaches have
always focused on ground motion intensity parameters2. These are

essentially single scalar representations of the whole seismic sequence42. In
turn, this has hindered considerations of the full characteristics of seismic
signals. Even though intensity parameters carry important information
about the seismicwaveforms, they cannot accurately informabout thephase
and amplitude and their temporal variations during the earthquake
propagation43.

Our findings based on the coseismic landslides triggered by the 2015
Gorkha earthquake showed that the full waveform information translates

Fig. 4 | Difference in explainability scores and predicted probability between
static and full waveformmodels.Explainability scores for all slopes in the study area
were correctly classified by Mod3 and Mod4 (panels a–c), and failed slopes were
recognized only by Mod3 (panels d–f). The purple line points at the arrival of the

PGV. Panel g and h present the difference in probability between Mod3 and Mod4
(i.e., Mod3–Mod4) for the entire study area as well as a zoomed location, respec-
tively. Basemap source: Esri, USGS, and the GIS User Community.
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into aminimum16% increase across all the examined performancemetrics.
This occurs because earthquake properties such as amplitude, phase, fre-
quency, and duration are embedded in the seismic waves. When exploring
this theme further, what stood out is that Mod3 and Mod4 mostly agree in
the northern sector of the earthquake-affected area. As for the slopes below

the highmountain range, in particular, the use of PGV is not enough.Mod4
produces very smooth predictive patterns, underestimating the middle
section of the Himalayan topographic profile and overestimating failures in
safe locations. Notably, also the U.S. Geological Survey (USGS) near-real-
time system44 seems to overpredict coseismic landslides45.

Fig. 5 | Evaluation of landslide predictions in relation to groundmotion data and
geomorphological characterstics. Panels a–d present the Mod3 scores against the
synthetic waveforms. The x-axis is centered at zero, which corresponds to the PGV
arrival time. Panels a and b correspond to slope examples correctly classified by

Mod3 and Mod4; panels c and d only apply to correct classification examples from
Mod3. Panel e presents the spatial distribution of the respective landslides. Panels
f, g, and h show the difference in terms of slope, PGV, and landforms, respectively.
Basemap source: Esri, USGS, and the GIS User Community.
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To benchmark our full waveform approach, below, we will present a
series of additional experimentswhereourMod3 is compared toalternatives
equipped with scalar ground motion estimates. Looking into what is
available at the USGS ShakeMap service46, some parameters constitute the
standard for the coseismic landslide community44,47, and they are usually
available in multiple versions, one empirically generated right after a major
earthquake and few updates as more data becomes available with time48.
Here, we opt to benchmarkMod3 against an equivalent that uses PGA and
PGV, both in theirfirst (2015) and last (2020) updated versions48.Moreover,
we also include two more tests that look back at the original simulations
from Dahal et al.15. The first one calculates Arias Intensity49,50, a common
scalar proxy for amplitude and duration and widely used for coseismic
landslide prediction51. The second onemakes use of the full waveforms, like
in Mod3, but filters out frequencies above 0.5 Hz. The rationale behind the
latter is to include a sensitivity analysis. All the corresponding results are
reported in Table 1. There, Mod3 outperforms all the alternatives across all
metrics. The two pairs of USGS intensity parameters perform between ~8%
and 13%worse than ourMod3. An even greater loss in performance is seen
with Arias Intensity, likely because the synthetic waveforms do not contain
high frequencies. For the very same reason, we interpret the minimal per-
formance loss over thefilteredwaveforms. Furthermore, it is also interesting
that Mod4 performs worse than the analogous equipped with ShakeMap
intensity parameters. This demonstrates that the inclusion of high fre-
quencies adds valuable information in the case of a scalar model. Never-
theless, this performance is still far from what full waveforms can achieve.

Moving away from performance-oriented considerations, Mod3
assigns its largest scores both close to the timeof thepeak velocity arrival and
far from it. Determining which physical information corresponds to these
portions of the ground motion sequence is not straightforward. Mod3
captures the E-W direction as responsible for most instabilities (see Fig. 4,
panels a and d). This is reasonable as it alignswell with theMainHimalayan
Thrust rupture, oriented at 110°.

Looking at single slopes such as in Fig. 5 (panels c and d), our trans-
former seems to highlight the importance of specific sections of the full
waveform, these being potentially linked to the phase information, the
interactions with topography, and surface wave arrival. We recall here that
deep learning architectures are highly nonlinear and transform the available
information into features from which a clear interpretation becomes
challenging52. Therefore, the considerationswe present below correspond to
our understanding, something usually referred to as attribution in the
literature53,54. For instance, Fig. 5 shows explainability scores that mark
specific sections of the full waveform. Panel c highlights two explainability
peaks very close to each other, one reasonably well alignedwith the P phase
arrival and onemost likely with the S. This could be interpreted as the effect
of two very different motion patterns affecting a given hillslope almost
simultaneously. However, this could be the result of a number of inter-
pretations. This is also the case for panel d. There, despite the similarity of
the waveform with the one mentioned above, a relatively smaller explain-
ability score can be seen in the early stages, followed by amuch larger one in
the late stages. This could be due to the different terrain and geological
characteristics of the two sites, as well as the total shaking duration effect. A
quick shaking, as intense as it may be, could still leave a slope unfailed.
Conversely, a prolonged yet milder shaking could bring a slope to the brink
of failure.

Focusing on the portion of the landscape these slopes occupy, Fig. 5
(panels f and g), a static PGV model identifies coseismic failures in slopes
around 40° steep and with peak velocities of around 0.5 m/s (i.e., open and
upper slopes,midslope and high ridges). Yet, slightly gentler slopes 30° with
peak velocities centered around 0.25m/s) are only predictedwhenusing full
waveforms, highlighting Mod3’s ability to predict failures occurring in the
proximity of midslope drainages, valleys, and streams. These landforms,
especially if far away from the source, only fail when considering the whole
ground motion signal.

Although these are interesting observations, they still do not support
near-real-time landslide hazard assessment tools. A number of reasons
make this the case. Firstly, ground motion simulations require a relatively
long time to generate, even when using high-performance computing
facilities. Secondly, a good earthquake rupturemodel is usually not available
right after an earthquake, thus limiting the quality of the synthetic wave-
forms. In relation to the quality, more could be said because coseismic
landslidesmay also occur due to topographic amplification, a phenomenon
that is dependent on the interaction between earthquake and landscape
characteristics55. Therefore, to obtain a reliable description of the process, a
3D subsurface velocity structure, aswell as the geotechnical characterization
of the study area, may be required.

Therefore, in light of near-real-time requirements for disaster rescue
operations, our Mod3 is still unsuitable at the current state of technology.
This implies that we are and will still likely be largely dependent on peak-
intensity models in the future to help mountainous communities that have
suffered a large earthquake in a timely manner. However, further devel-
opment toproducemore reliable and fast groundmotion simulationswould
definitely help make our approach operational.

Alternatively, scenarios could also be built prior to an earthquake
occurrence. One could simulate several theoretical earthquakes and use the
synthetic waveforms to obtain coseismic landslide scenarios that could
be stored in an emergency response system56. Then, if and when an earth-
quake of similar characteristics would take place, the predicted scenario
couldbeused to strategizedisaster relief actions.Themain limitationswould
boil down to the requirements for the numerical reproduction of shaking,
especially indata-scare regions. In fact, the rupture geometry, energy release,
and the subsurface structure are fundamental requirements for a reliable
ground motion simulation. There are already challenges for data-rich
situations, and they would become less and less reliable in regions with
proportionally less information available.

Another fundamental element to be explored in the future lies in the
size of coseismic landslides and the dependence on the full waveform
characteristics. Frequency content and duration of ground shaking may
alter the size of coseismic landslides57. For instance, higher frequencies exit
hillslopes to the point of releasing small failures, and low frequencies exit
much larger landslide bodies58,59. These arguments are not been tested yet in
regional scale assessments exploiting the fullwaveforms.Andyet, our results
show that the use of full waveforms could enable a better prediction of
landslide sizes and with it, the threat they pose to mountainous
communities.

Aside from the long-term potential, the overarching theme related to
theuse of fullwaveforms to estimate coseismic landslides iswherewebelieve
research should mostly be dedicated to in the coming years. Future steps
should involve testing a similar framework for different terrains, earthquake

Table 1 | Model performance compared to multiple benchmark datasets

Model

USGS PGV (2015) USGS PGV (2020) USGS PGA (2015) USGS PGA (2020) Arias Intensity Filtered Frequency Mod3 Mod4

Metric AUC 0.86 0.83 0.88 0.88 0.82 0.95 0.96 0.80

Accuracy 0.77 0.76 0.79 0.80 0.73 0.88 0.89 0.72

IOU 0.64 0.64 0.67 0.67 0.55 0.80 0.81 0.59

F1 score 0.78 0.78 0.80 0.81 0.71 0.89 0.90 0.74
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magnitudes, and rupture mechanisms. If analogous conclusions could be
reached for different contexts, then the knowledge obtained could definitely
be translated into better disaster responses inmountainous regions affected
by large earthquakes.

Methods
The model in this study incorporates the entire ground-motion signal with
morphometric parameters with a modified transformer neural network to
include the terrain and lithological factors. In addition, we developed an
explainable AI approach that enables us to understand how the model uses
waveform information to predict landslides. This method allows both
waveform and other predisposing conditions to be considered simulta-
neously. We then compared our model with three different models
(benchmarkmodels, see Table 2), which included intensity parameters and
removed morphometry. The tested benchmark models included ground
motion waveform only (Mod1), peak ground velocity only (Mod2), terrain,
lithology, and ground motion waveform (Mod3), terrain, lithology, and
peak ground velocity (Mod4). Furthermore, we developed an explainable
artificial intelligence approach to understand the role of ground motion
signals. The following section will further explain the details of each
developed method.

Model definition and training
The existing transformer models25,60 only work with waveform data and do
not include static variables, which are more common in geoscientific pro-
blems. In earth surface processes, many parameters are temporally varying
(dynamic), whereas some stay the same over human timescale (static). In
our case, ground motion is a dynamic variable, whereas the terrain prop-
erties are static. To resolve this problem,wemodified the vanilla transformer
neural network from Vaswani et al.60 to include static covariates.

Landslides (L s; tð Þ) are a spatiotemporal processes that are considered
stochastic for modeling purposes61. In this case, let us assume that the
landslide is a stochastic spatial process L sð Þð Þ becausewe do not consider the
multiple time frames to model a spatio-temporal process. Being a binary
variable, a landslide can be represented by Bernoulli distribution as:

L sð Þ∼Ber p sð Þ� �

Where the probability of landslide p sð Þ 2 0; 1ð Þ is what we try to estimate as
a landslide susceptibility. For this, the landslide susceptibility is a function of
different terrain and geologic as well as seismic variables. The main dis-
tinction between those two variables are that terrain and geologic factors are
static and does not change during an earthquake event while the seismic
energy is dynamic and changes over the time. Therefore,we candefine them
as static covariates XS sð Þ ¼ xS sð Þ and dynamic covariates as
XD s; tð Þ ¼ xD s; tð Þ. Now the landslide susceptibility, defined by the
probability of occurrence of landslide is given by: p sð Þ ¼ Pr 2
ð0; 1Þ : PrfL sð Þ ¼ 1jXs sð Þ ¼ xs;XD s; tð Þ ¼ xD s; tð Þg. To model this we use
the deep learning model which will represent the potentially highly non-
linear function which estimates p sð Þ given the input variables.

Now, to design the deep learning model, let the encoding part of the
transformermodel fromVaswani et al.60 be τ s;tð Þ. The function τ s;tð Þ takes the

input data XD s; tð Þ and generates feature space over the spatial domain s as
f 1 sð Þ ¼ τ s;tð Þ XD s;tð Þð Þ, where all the processing for dynamic data occurs, such
asmulti-head attentionandpositional encoding.Then, let us assume there is
a deep neural network δ sð Þ, which is a function of static covariatesX sð Þ ¼ xs
and produces the feature space f 2 sð Þ ¼ δ sð Þ Xs sð Þ ¼ xs

� �
. We concatenate

both feature spaces into one tensor f 3ðsÞ ¼ f 1ðsÞ � f 2ðsÞ, which is then
passed to a decoding block of deep neural networks η sð Þ providing a final
output as the probability of landslide occurrence p sð Þ. Therefore, the final
model M sð Þ looks like pðsÞ ¼ M sð Þ ¼ ηðτðXD s; tð ÞÞL δðXs sð Þ ¼
xsÞÞjXs sð Þ ¼ xs;XD s; tð Þ ¼ xD s; tð Þ: The parameters in all functions τðs; tÞ;
δðsÞ; ηðsÞ (therefore, MðsÞ) is then estimated through backpropagation
using a binary cross entropy loss function62 ι ¼ � L sð Þ log p sð Þ� �þ�

1� L sð Þð Þ log 1� p sð Þ� �Þ. Where, L(s) is the observed landslide over space
and p sð Þ is the predicted landslide probability over space.

The function τ s;tð Þ consists of three input waveform parameters
represented in east–west (E–W), north-south (N–S) and up–down (U–D)
directions and has a depth of two transformer blocks. Each transformer
block consists of a set of sequential layers where inputXD s; tð Þ goes through
layer normalization and multi-head attention followed by a dropout layer
creating vector v1 s;tð Þ. The vector v1 s;tð Þ is then added with XD s; tð Þ to
include the attention mechanism and is normalized through a normal-
ization layer creating the vector v2 s;tð Þ. Subsequently, v2 s;tð Þ flows through a
feed-forward block of convolution, rectified linear unit, dropout, convolu-
tion, and rectified linear unit. Finally adding the attention layer from the
previous part (v3 s;tð Þ ¼ v1 s;tð Þ þ v2 s;tð Þ) to create an output of transformer
encodermaking a new inputXD s; tð Þnþ1, for the next block. This is repeated
many times as the number of transformer blocks, and after that, the output
vector v3 s;tð Þ is passed through the global average pooling layer, creating
feature space f 1s. The global average pooling layer therefore squeezes the
temporal information into spatial only information allowing us to combine
the dynamic variables with static variables.

The part of δ sð Þ Xs sð Þ ¼ xs
� �

processes the input static data Xs sð Þ
sequentially through dense blocks consisting of a series of fully connected,
batch normalization, dropout, and rectified linear activation units. In this
model, we have eight blocks to process the input Xs sð Þ to obtain f 2s. With
both f1s; f 2s available, we further process through a series of blocks con-
sisting of a fully connected network, rectified linear units, and dropout
layers. Finally passing it through the sigmoid activation function to generate
pseudo-probabilities in terms of pðsÞ.

We trained the model with Adam optimizer63 and the binary cross
entropy loss function.Theoptimizer startedwith a learning rate of 1e−3and
exponentially decayed every 10,000 steps by a factor of 0.95 until the model
converged (for further details, see parameters in the provided code). The
training data was generated by randomly selecting 70% of the receiver
locations, and the remaining 30% were kept as the test set. Moreover, the
training datawas further divided into the subset of 20% for the validation set
during the model training process to evaluate the model and stop the
training before overfitting. This data selection is kept constant for the
entirety of the research, making it consistent over benchmarks.

Since our developed model consisted of a deep neural network and
transformer components, we designed it in such a way that both τ s;tð Þ and
δ sð Þ components can be turned off. Multiple benchmark models were cre-
ated by turning each component off and on with different input variables,
while keeping the output variables and ground truth (pðsÞ and LðsÞ) the
same. Table 2 lists the models, their respective components, and used input
variables.

Evaluation framework
Weevaluated the classification capacity of themodel by computingmultiple
evaluation metrics common to statistics and machine learning39,64. To
evaluate themodel performance, we used the area under the curve (AUC) of
the receiver operating characteristics curve (ROC), which is a well-accepted
method to evaluate the model performance and fit65. The ROC curve is
generated by evaluating the fit between LðsÞ and pðsÞ by using a confusion
matrix for different probability threshold values in the range of [0,1]. ROC

Table 2 | Input model branches and data for the developed
waveform model and benchmark models

Model τ s;tð Þ δ xð Þ Input

Waveform only (Mod1) True False XD s; tð Þ
Peak Ground Velocity only (Mod2) False True MaxðXD s; tð ÞÞ
Terrain, Geology, and Waveform (Mod3) True True Xs sð Þ;XD s; tð Þ
Terrain, Geology and Peak Ground Velo-
city (Mod4)

False True Xs sð Þ;MaxðXD s; tð ÞÞ

Bold represents the waveform model, and the others are the benchmark counterparts.
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represents the relation between false positive rate (FPR) and true positive
rate (TPR), which are calculated as the ratio of false positive with negative
instances and true positive with true instances, respectively. Once the ROC
curve is identified, the AUC is calculated as AUC ¼ R 1

0TPR � d FPRð Þ.
To evaluate the model performance on the validation set, we used

different scoring methods designed for the classification problem:
Accuracy score (ACC), F1 score, and intersection over union (IOU)
score. The accuracy score is a ratio between the total number of correct
predictions and the total number of samples. The F1 score is more
robust than the accuracy score and is sensitive to false positives as well
as false negatives. It is calculated as twice the ratio of the product of
precision and recall over the summation of precision and recall
(F1 ¼ 2 � precision�recall

precisionþrecall). Precision and recall are the ratios of correctly
predicted positive observations to the total predicted positives and the
ratio of correctly predicted positive observations to the total actual
positives, respectively. IOU score, on the other hand, represents the
overlap between the observed and predicted landslides and A higher
IOU indicates better alignment between the predicted and ground
truth. It is calculated as a ratio of true positives over the union of all
instances predicted as positive (both true and false positives) and all
instances that are actually positive (both true positives and false
negatives).

Explainability
To understand how the waveform component in our input data XD s; tð Þ
influences the model output p sð Þ, we implemented an explainable
approach. The explainable artificial intelligence based evaluation in
landslide hazard modeling is recent yet meaningful approach to under-
stand the influence of input covariates on model output66. The method is
based on the work of Cisneros et al.67 and Shrikumar et al.53, where we
calculate the influence scores S based on the gradient of p(s) with respect
to input vector XD s; tð Þ where it is set to zeros (XD0 s; tð Þ) for baseline
gradient ∇b ¼

∂Ms XD0 s;tð Þ;XS sð Þð Þ
∂XD0 s;tð Þ ; and actual values for instance gradient

∇i ¼
∂Ms XDi s;tð Þ;XS sð Þð Þ

∂XDi s;tð Þ . This gradient can be assumed as the regression

coefficient (m) in the case of linear regression problem y ¼ mx þ c. Since
our model is highly non-linear, a direct comparison of m cannot be
made; thus, we compare their relative change to understand how the
variable t influences the model output. For that, we take a relative ratio of
the gradients, also considering the actual change in values as below:

S ¼ XDi s; tð Þ � XD0 s; tð Þ� � � ∇i

∇i �∇0

Notably, the score (S) here is calculated only for the waveform com-
ponent and not for the constant variables because the influence of other
covariates on landslide occurrence is well-known, and our focus is on
understanding the role of ground motion waveform on landslide
occurrences.

Data availability
All the pre-processed and raw datasets required to reproduce the results
and the model output files are available via the open-access repository
(stored in separate folders for relevant input and output files), which can
be accessed via https://doi.org/10.5281/zenodo.10514311. The landslide
inventory used in the study is available through Roback et al.29,68. The
Geology data are available through Dahal et al.31. The ground motion
simulation data is available via Dahal et al.15. The epicenter and
shakemap-related ground motion parameters are available at United
States Geological Survey (USGS) portal: https://earthquake.usgs.gov/
earthquakes/eventpage/us20002926/shakemap/pga?source=us&code=
us20002926. The Himalayan fault lines are available via International
Center for Integrated Mountain Development (ICIMOD) data portal:
https://rds.icimod.org/home/datadetail?metadataid=3437.

Code availability
All the models and their relevant parameters are openly available via the
repository; https://github.com/ashokdahal/TransformerLandslide; a per-
manent releaseof the codes to reproduce the results and relevant plots in this
paper are openly available via the archiving repository; https://doi.org/10.
5281/zenodo.10514293. Python environment with Tensorflow library and
GPU support is required to run the codes; a relevant package requirement
file is available in the repository to prepare the necessary Python
environment.
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