
ARTICLE

Dynamic urban land extensification is projected to
lead to imbalances in the global land-carbon
equilibrium
Ryan A. McManamay 1✉, Chris R. Vernon 2, Min Chen3, Isaac Thompson2, Zarrar Khan 2 &

Kanishka B. Narayan 2

Human-Earth System Models and Integrated Assessment Models used to explore the land-

atmosphere implications of future land-use transitions generally lack dynamic representation

of urban lands. Here, we conduct an experiment incorporating dynamic urbanization in a

multisector model framework. We integrate projected dynamic non-urban lands from a

multisector model with projected dynamic urban lands from 2015 to 2100 at 1-km resolution

to examine 1st-order implications to the land system, crop production, and net primary

production that can arise from the competition over land resources. By 2100, future urban

extensification could displace 0.1 to 1.4 million km2 of agriculture lands, leading to 22 to 310

Mt of compromised corn, rice, soybean, and wheat production. When considering increased

corn production required to meet demands by 2100, urban extensification could cut increases

in yields by half. Losses in net primary production from displaced forest, grassland, and

croplands ranged from 0.24 to 2.24 Gt C yr−1, potentially increasing land emissions by 1.19 to

6.59 Gt CO2 yr−1. Although these estimates do not consider adaptive responses, 1st-order

experiments can elucidate the individual role of sub-sectors that would otherwise be masked

by model complexity.
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Urban expansion and intensified demands for resources
have induced global environmental change sufficient to
affect the Earth-climate system1. Cities have dispropor-

tionate effects relative to their spatial footprint—they comprise
only 3% of the Earth’s terrestrial land surface, yet they house 60%
of the world’s population and drive 75% of global greenhouse gas
emissions2. Although localized environmental problems such as
heat stress and air pollution are well recognized through the
adaptation of global climate models to urban areas3, the reverse
effects of urbanization on regional-to-global land-atmosphere
dynamics are still uncertain4. Increasing evidence suggests that
urban areas can have significant impacts on regional-to-global
circulation patterns and carbon budgets through emissions5 and
land-use change via urban extensification6,7. By the end of the
21st century, these impacts are only expected to increase as the
global urban land total is estimated to grow 100–600%, depending
on population growth assumptions8. Unfortunately, these esti-
mates may be conservative. New observations suggest the rate of
urbanization over the past 30 years is four times higher than
previously thought, where urban lands increased 80% relative to a
52% increase in population during the same timeframe9.

Despite the acknowledged role of the urban built environment
on global carbon and climate cycles, the land components of
Human–Earth system models (ESMs) and global circulation
models (GCMs) lack representation of urban areas10 or, if
included, urban lands are either not dynamic or require hybri-
dization between non-urban land models and urban
counterparts11–16. The exclusion of urban areas in land models
has primarily been a matter of practicality, as they only represent
a small portion of the overall land budget, too refined for the
granularity of GCM and ESMs. Because most of Earth’s land is
comprised of natural lands and croplands, ESMs have primarily
focused on the land-atmosphere implications of land-use transi-
tions within these major non-urban groups15,16. Future projec-
tions of land-use and land cover change are typically achieved
through Integrated Assessment Models, which derive plausible
scenarios for land allocations by accounting for shifting socio-
economic conditions16,17.

One such example is the Global Change Analysis Model
(GCAM), which simulates current and future behaviors and
interactions between energy, water, land, climate, and economic
systems at regional and global scales18. These systems are mod-
eled collectively within a single integrative platform, which
operates on the principles of market equilibrium. The land sys-
tem, in particular, operates based on a profit structure depending
on the pursuit of different land uses19. Changes in energy and
water resources, as well as prices and demands for commodities,
will inherently induce changes in land allocations. However, in
the current GCAM configuration, urban lands are static, as there
is no structure to accommodate urban allocations17,20.

Multiple studies document the global extent of future impacts
of urban land extensification on other socioeconomic sectors and
ecosystem services, such as losses in global croplands21, elevated
land emissions due to loss in forest biomass6, and increased risk
to biodiversity hotspots and conservation lands22. However, these
assessments do not account for dynamic non-urbanized land
changes stemming from shifting socioeconomic demands across
competing sectors. Growing populations increase the competition
over finite land space through simultaneously intensifying
demands for urbanization supporting dense settlements, agri-
cultural expansion for sustaining food or biomass production,
and reforestation to mitigate carbon emissions. Multisectoral
modeling approaches, such as GCAM, balance land areas among
competing uses to meet projections in commodities, which are
dynamic in space and time (e.g., crop yields, biomass). Not
accounting for urban dynamism, however, can upset the land-

energy-carbon equilibrium, which has practical implications for
model budgeting. More importantly, these imbalances can lead to
unforeseen consequences on resources (e.g., crop production21),
nonlinear and interactive impacts on warming23, or feedback that
offsets potential climate mitigation measures24.

In recent years, a growing number of urban land modeling
efforts have emerged that incorporate socioeconomic drivers and
simulate dynamic urban land at high resolutions and at global
scales8,25,26. Because these models are compatible with other
integrated assessment approaches, there are opportunities to
reconcile non-urban and urban land modeling systems within
multisector and human–Earth system model environments. The
intersection of dynamic non-urban lands with dynamic urban
lands provides an opportunity to examine the interdependences,
interactive stress, and feedback to carbon cycles that can arise
from the competition over land resources.

Here, we conduct an analysis that examines how the lack of
consideration of one process, urban extensification, may lead to
1st-order imbalances and non-linearities in responses in a
human–Earth system model framework. Our work integrates two
dynamic, high-resolution, global-scale land modeling systems to
examine the intersection of urban and non-urban land extensi-
fication and consequences to the equilibrium of other land-
dependent commodities and carbon dynamics, depicted in an
IAM framework. Specifically, we evaluate the dynamic changes
(primarily losses) expected to forested and agricultural systems
from urban extensification, and the subsequent effects on global
crop yields and terrestrial net primary production, both of
which may be temporally dynamic to meet socioeconomic
demands (feeding growing populations) or climate mitigation
(decarbonization).

Results
In our analysis, urban land projections among Shared Socio-
economic Pathways (SSPs)27 are governed by the Country-Level
Urban Building Scenario (CLUBS) model8 and downscaled
locally by the Spatially Explicit, Long-term, Empirical City
development (SELECT) model28,29. Urban lands are represented
as fractional values (0 to 1) of impervious surface within 1-km
grid cells. These were aggregated to 0.05° cells to match the
resolution of dynamic non-urban lands. Regional agriculture and
forested land-use projections are produced by GCAM, rehar-
monized to land type definitions from the Community Land
Model15, and downscaled to 0.05° by Demeter, a spatial dis-
aggregation model30, to produce final non-urban dynamic land
products20. Non-urban projections vary not only by SSPs but also
by land allocations influenced by Representative Concentration
Pathways (RCPs), Global Circulation Models (GCMs), and
adjustments (harmonization) in the spatial representation of
various land classes (Supplementary Table 1).

We integrated dynamic urban lands from the SELECT model
with dynamic non-urban lands from GCAM-Demeter model to
examine the effects of urban extensification on land cover
alterations and subsequent implications to crop yields, net pri-
mary production, and carbon emissions. Urban lands are present
within the GCAM-Demeter model system but are held static over
time. To estimate implications of urban dynamism, urban land
change from SELECT, represented as an urban fraction, is com-
pared on a grid-by-grid basis to static urban fraction coverage
from GCAM-Demeter to calculate an urban fraction delta (ΔUf)
(Fig. 1). ΔUf serves as the basic unit which we estimate losses in
non-urban lands and subsequent land-process implications.

In accordance with the modeling results provided in ref. 8,
urban lands globally could reach anywhere from 1.2 million
under SSP1 to 3.7 million km2 under SSP5 by 2100 (Fig. 2). This
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represents a 52–380% increase in urban lands from 2015 esti-
mates. By 2100, urbanization appears greatest in the Eastern US
and Western US coast, Europe, East Asia, India, and Indonesia
(Fig. 1). ΔUf is predominately positive across the world, indicative
of increasing urbanization from base values represented in
GCAM-Demeter (Fig. 1); however, negative values of ΔUf were
apparent in the Northeast, Midwest, Intermountain West of the
US, as well as central Asia (Fig. 1). These patterns are indicative of
overallocation of urban areas in the Community Land Model
(CLM) base map used within the GCAM-Demeter modeling
system.

Generally, agricultural lands (crop and pastureland) are most
compromised by urban extensification, with up to 1.4 million
km2 lost by the end of the century, an area equivalent to over two
times the size of Texas (Table 1 and Fig. 2). Particularly, lands
supporting bioenergy crop production predominate these
impacted areas, followed by croplands supporting staple products,
such as corn, wheat, soybean, and rice (Table 1 and Fig. 2). Losses
in forests and grasslands are also substantial, although relative
differences in impacts depend on SSP. Grasslands sustained more
losses than agricultural lands in SSP1 and more losses than forests
in all SSPs, except SSP5 (Table 1). Of forest land classes, tem-
perate forests experience the most losses in total acreage, although
tropical forests are observed to decline up to 2% of current levels
by 2100 under SSP5 (Table 1 and Fig. 2). Total land budgets are
summarized in Supplementary Fig. 1.

Scenarios driving non-urban land areas (from GCAM-Deme-
ter) were numerous (n= 2700) and divergent (Supplementary
Table 1), which translated into highly variable land area changes
arising from urban extensification. Sources of variation explaining
global land area changes from urbanization among scenarios were
primarily driven by region, followed by year, and SSP (Fig. 3).
RCPs had a measurable influence on bioenergy and rainfed
cropland alteration, whereas the influence of Global Circulation
Models (GCMs) was negligible for all land classes. When con-
sidering only the US, the primary drivers of land changes inclu-
ded SSP, year, and source (harmonization between GCAM and
CLM base map) (Fig. 3).

Losses in crop yields ranged dramatically across crops, SSPs,
and regions (Table 2, Figs. 2 and 4). Losses in corn yield

dominated compromised crop production, followed by losses
in rice and wheat (Fig. 4). Highest losses in crop yields are
consistently observed in SSP5, followed by SSP2 (Fig. 4). Whereas
most losses in yield are globally widespread, compromised rice
production is most pronounced in Asia, Africa, and South
America (Fig. 4). By 2100, 22–310Mt (Megatonne or million
metric tons) of global annual staple crop production (corn, rice,
soybean, and wheat) could be compromised by urban extensifi-
cation (Table 2); this represents 1–12% of the total 2010 pro-
duction levels for those staple crops reported by GCAM. By 2050,
losses in corn production alone could range from 3 to 85Mt, and
by 2100, these losses could reach 10–219Mt, constituting any-
where from 2% to 26% of current global corn yields. By 2100,
GCAM projections suggest an additional 200–560Mt per year of
corn production is required by 2100 to accommodate increasing
populations; hence, urban extensification could counter required
increases in yield by 9–43% (Fig. 5). Across all SSPs, projections
in corn, rice, and wheat production increase until mid-century
and then stabilize or decline. Under SSP5, urban extensification
by 2100 could reduce the production of corn and rice below
current levels (Fig. 5).

Spatially explicit estimates of net primary production (NPP)
rates compromised by urban extensification were generated
according to each land cover type and summarized for forest,
agriculture, and grasslands (Table 3). Sources of NPP losses
generally follow patterns in land classes compromised by urban
extensification. Under SSPs 2–4, compromised agriculture lands
lead to the highest losses in NPP, followed by grasslands and then
forested lands (Fig. 6). Under SSP5, however, NPP losses are
noticeably higher in forested lands by 2100. By 2050, total NPP
losses range from being negligible up to 0.8 Gt yr−1, which con-
stitutes 1.7% of contemporary global NPP estimates (48–69 Gt)31.
By the end of the century, NPP losses under SSP5 could exceed
2.3 Gt C yr−1 or 3–4% of current NPP levels (Table 3). Losses in
NPP associated with compromised agricultural lands were pre-
dominately located in the upper midwestern US, east Asia, middle
and east Africa, and eastern Europe, whereas NPP lost due to
grassland conversion was found in the areas mentioned above in
addition to South America (Fig. 6). Forest-associated NPP losses
tended to show less regionality, although trends in NPP generally

Fig. 1 Urban land projections for 2100 under the Shared Socioeconomic Pathway 5. Urban land per each 0.05° pixel, modeled under CLUBS-SELECT8, is
shown on the left, and the urban land delta, or fractional difference in urban area under SSP5 in 2100 compared to the static urban area depicted by the
Global Change Analysis Model and Demeter, is depicted on the right.
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followed similar, but dampened, geographic patterns of agri-
culture and grasslands (Fig. 6). Based on losses in NPP from
urban extensification, annual global-scale land CO2 emission
estimates from GCAM were inflated to account for reduced
carbon sequestration (Table 4). Increases in land CO2 emissions
ranged among SSP and RCP combinations (Table 4 and Fig. 7).
Estimates ranged from an increase of 1.19 Gt CO2 yr−1, on
average, under SSP1 (from −3.97 to −2.79 Gt yr−1) to an increase
of 6.56 Gt CO2 under SSP5 (from −3.96 to 2.61 Gt yr−1) (Table 4
and Fig. 7).

Discussion
Our results suggest that the exclusion urban land projections
within integrated assessment models and by association,
Human–Earth System Models, can lead to systemic global
imbalances and disequilibria in commodities, such as crop yields,
and land-atmospheric interactions. Specifically, we provided
evidence that lack of incorporation of urban land dynamism can
lead to 1st-order cascading impacts on GCAM’s assumptions and
outputs for global and regional land and carbon budgets, which
ultimately can influence subsequent outcomes by modeling
communities and managers. We estimate that by 2100, urban
extensification could compromise anywhere from 1 to 12% of

current global production levels for all staple crops combined.
The yield loss from individual crops, such as corn, represents
almost 50% of the required production increase needed to
accommodate growing world populations. We also find that
forest and grassland areas comprised by urban expansion are
considerable, collectively losing up to 2.2 million km2 globally.
Likewise, NPP losses due to urban extensification could range
from 0.04% to 4.8% of current global annual estimates31

depending on scenario and uncertainty in NPP values; this could
undermine future climate mitigation efforts, leading to potential
increases of 1.19–6.56 Gt yr−1 in projected CO2 emissions from
the land surface for SSP1 and SSP5, respectively, by 2100. These
estimates should be considered conservative since they do not
account for secondary or tertiary human adaptations within the
Earth system. For instance, croplands displaced by urban exten-
sification would likely be compensated through conversion of
grassland and forested systems to agroecosystems32 or via
increased production intensity, which could lead to elevated
reductions in NPP and higher CO2 emissions.

Even without considering the secondary and tertiary responses,
these results are surprising since built-up lands, as a portion of
Earth’s terrestrial land surface, are numerically insignificant.
Global estimates of the spatial extent of urban lands by the end of

Fig. 2 Global land area adjustments from dynamic urbanization. Urban land changes from the CLUBS-SELECT model (from ref. 8) according to the Shared
Socioeconomic Pathways (SSPs) are displayed on the top left, and resulting land area changes are shown for each land category group. Ranges in values for
each SSP represent different scenarios based on Global Circulation Models (GCMs), Representative Concentration Pathways (RCPs), and the land
harmonization procedure.
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the century range from 1.5 to 3%, due primarily to inconsistent
definitions for “urban land”33, modeling approaches, or projec-
tion products. SELECT utilizes the Global Human Settlement
Layer (GHSL)34, a 38-m empirical Landsat-derived time series
dataset for model development and calibration. Urban lands from
the SELECT model are synonymous with GHSL as built-up land
or impervious surfaces, i.e., manmade materials such cement,
asphalt, steel, glass8. Projected urbanization via the SELECT
model suggests 1.8 to 6-fold increases from levels in 2000 to 2100,
ranging from 0.8% of Earth’s terrestrial land (1.1 million km2) in
SSP1 to 2.5% in SSP5 (3.6 million km2) at the end of the century.
Direct comparisons to other studies are made difficult for the
reasons stated above. For instance, Chen et al.26 estimated global
urban lands could range from 0.8 to 2 million km2 by 2100 under
the SSPs, where the upper bounds of urban land area estimates
are noticeably lower than those projected by SELECT. The
authors similarly utilize GHSL but rely on the Future Land-Use
Simulation (FLUS) model35 to project the probability of occur-
rence of urban land and, subsequently, binary classifications of
urban and non-urban land at 1 km, whereas SELECT produces an
urban fraction at the same resolution. In contrast, global pro-
jections by Li et al.25 suggest urban lands could range anywhere
from 1.9 to 3.1 million km2 under SSP4 and SSP5, respectively, a
similar range reported in our study. Multiple studies have sug-
gested tripling of global urban land in only a period of 30 years,
suggesting that 6-fold increases by the end of the century may be
conservative6,21. A 30-year retrospective analysis using high-
resolution Landsat satellite data suggested the rate of urbanization
is four times higher than previous estimates and becoming
increasingly decoupled from population growth9. Since the stu-
dies listed above all used empirical patterns in urban land changes
in relation to population to develop urbanization projection
models, this suggests future rates of urbanization are highly
uncertain and deserve increasing attention in research
development.

Numerous studies have estimated the direct implications of
urban extensification on other land sectors and natural resources,
particularly cropland loss and deforestation6,21,26. A significant
difference between our assessment and previous studies is that we
examined the intersection and competition between simultaneous
dynamic changes in urban land and non-urban lands, both driven
by non-stationary competing resource demands. Beyond non-sta-
tionarity, the non-urban lands simulated by GCAM were char-
acterized by 2700 different scenarios representing combinations of
time, SSPs, RCPs, Global Circulation Models (GCMs), and alter-
native land-class harmonization procedures (see “Methods”).
Hence, our analysis captures considerable uncertainty in the
potential outcomes of urbanization on other sectors. Nonetheless,
cropland and NPP losses reported in other studies are within the
ranges in this study. Urban expansion projections between 2000
and 2030 were estimated to compromise up to 2.4% of global
croplands (up to 10% in Asia)21 and lead to 1.38 Pg of carbon losses
in forests, equivalent to 5% of emissions from tropical deforestation
and land-use change6. Longer-term projections through the end of
the century have suggested similar trends. Chen et al.26 estimate
that at least 50% of urban land expansion is expected to compro-
mise croplands, leading to 1–4% declines in annual global crop
production. Congruent with other studies, our analysis suggests
that croplands are the most impacted based on the spatially explicit
nature of urban growth’s intersection with dynamic changes in
other land sectors. In our study, the location of changes in crop-
lands, accomplished via downscaling by Demeter, is based on land
suitability (e.g., low slope and arable soils), in addition to the
proximity to pre-existing croplands. Similarly, the location of
urban land growth, simulated by SELECT, is higher in areas
proximate to existing urbanization and in lands suitable for
expansion, primarily flat areas that also tend to be the most con-
ducible for crop production.

Beyond direct impacts on other land systems, urban extensi-
fication creates non-linearities in land system responses through
land-atmosphere feedbacks. In addition, the indirect or secondary
effects of urbanization, such as expansion of displaced croplands
or intensification of use on remaining natural lands, have been
shown to exceed the direct effects36. Hence, lack of accounting for
urban dynamics in IAM and ESM frameworks can lead to sys-
temic imbalances in Earth System budgets. Multiple studies
report non-linearities between urban-induced losses in forested or
cropland area and land-dependent processes. For instance, Chen
et al.26 report 1% losses in global croplands due to urbanization
projected through the end-of-century, which led to dispropor-
tionate losses (up to 4%) in crop yield. In a retrospective global
analysis from 2000 to 2010, newly urbanized areas comprised
only 0.04% of Earth’s land surface yet constituted 9% of global
carbon emissions from fossil fuels and cement24. Likewise, we
observed 1–12% losses in corn cropland area from 2010 estimates,
whereas losses in corn yield were disproportionately higher
(1–26%). This suggests that urban extensification is likely to
displace the most productive croplands, as also found by Bren
d’Amour et al.21. Furthermore, our study suggests urban exten-
sification could result in up to 4% losses in NPP yet lead to
increases in GCAM carbon emissions sufficient to alter the land-
atmosphere interface from that of net carbon sequestration to net
emissions before 2100. Apart from direct impacts from extensi-
fication, urbanization can also induce cascading and multi-
plicative indirect impacts on Earth’s land system through
teleconnections37. Indirect effects of urbanization, such as urban-
induced cropland displacement on losses in natural land, can be
greater than 10-fold larger than the direct effects of urban land
displacement32,36.

Climate-induced shifts in terrestrial carbon sequestration are
highly uncertain38–41; hence, the added role of land conversion

Table 1 Compromised land areas (losses in land coverage,
thousand km2) by 2100 stemming from urban
extensification averaged for all scenarios within Shared
Socioeconomic Pathways (SSPs).

Land sector SSP1 SSP2 SSP3 SSP4 SSP5 Min Max

Agriculture 181 795 434 591 1123 108 1423
Corn 21 88 53 66 130 14 171
Wheat 15 60 46 50 86 9 108
Soybean 11 54 27 43 84 5 111
Cotton 3 15 13 16 18 1 21
Rice 31 87 82 76 99 27 109
Sugar 0 0 0 0 0 0 0
Other crop 45 202 142 188 322 27 384
Bioenergy
crop

56 287 71 152 385 20 620

Rainfed crop 116 595 274 422 844 61 1109
Irrigated
crop

66 200 160 169 279 47 330

Forest 71 270 59 330 939 31 1049
Temperate
forest

84 222 67 292 663 34 756

Boreal forest −44 −6 −20 −5 45 −53 64
Tropical
forest

32 53 12 43 231 6 281

Grasslands 269 509 299 502 787 172 1244

Minima and maxima are also provided across all scenarios, including SSPs, Representative
Concentration Pathways (RCPs), Global Circulation Models (GCMs), and for harmonized and
non-harmonized land classifications. Negative values indicate increases in land areas.
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and shifts in land-atmospheric dynamics only adds more com-
plexity and uncertainty. For instance, rapid urbanization between
2000 and 2010 offset climate-driven increases in NPP during the
same timeframe (primarily from warming temperatures) by
30%24. Most urbanization is projected to occur in the northern
hemisphere, with notable losses to temperate forests. Rates of
NPP in the northern hemisphere could increase under warming
via extended growing seasons and elevated CO2 conditions42,
creating negative feedbacks on atmospheric carbon levels and
hence, dampening the potential impacts of urban extensification.
However, in cases where Earth’s terrestrial system is saturated by
atmospheric CO2 levels or experience seasonal temperature shifts,
these ecosystems could release more CO2 or even become net
sources39,43. In addition, urban areas dissipate sufficient heat to
alter continental scale warming pattern, an additional positive
forcing5. In these cases, urban extensification could expedite the
timeline for hitting these thresholds through increasing the rate of
removal of terrestrial carbon sinks. Another important con-
sideration is the response from not only forested ecosystems, but

also agroecosystems. Our results reveal that NPP losses from
urban extensification are substantial due to deforestation in
addition to cropland loss. Although agriculture extensification
and deforestation has led to declines in global NPP, agricultural
NPP rates (1.8 kg Cm−2 yr−1) are only slightly lower than forest
values (2.0 kg C m−2 yr−1)44.

Our analysis has several limitations that could be addressed in
future work. Urban land projections in our study are derived
from only one model (CLUBS-SELECT), although several new
studies report global high-resolution projections through end-of-
century25,26,45. When placed within the context of Earth’s ter-
restrial land surface, differences in global urban land projections
are relatively small. By 2100, the upper boundary of urban land
expansion from SELECT comprises only 2.43% of Earth’s ter-
restrial land, relative to a maximum of 1.35% reported in Chen
et al.26. Even so, these small differences could result in nonlinear
responses to other sectors, as our results suggest. We elected to
use SELECT because of its ability to capture mechanistic urba-
nization processes—future urban land projections are, in part, an

Fig. 3 Sources of variation in land area losses to urbanization. Linear models of land area (km2) lost to urbanization were constructed for the entire globe
and only the United States (US) using variables responsible for divergent scenarios and included the Global Circulation Model (GCM), Representative
Concentration Pathway (RCP), global regions (global model only), source (land harmonization), Shared Socioeconomic Pathways (SSPs), and year. The
percent variation explained was calculated using an Analysis of Variance.
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outcome of past urban trajectories and urban maturity where
urbanization rates are temporally dynamic and locally dependent,
with parameters that can be adjusted in tune with SSPs—a major
difference from other urban land model approaches8,28. We
perceive SELECT as providing more realism, but also an
important capability to accommodate more flexibility and the-
matic consistency with the assumptions underlying the SSPs.
However, CLUBS-SELECT does not consider competition
between urbanization and other land types. Indeed, our analysis
assumes urbanization will expand into suitable areas, as needed,
to accommodate population growth, since urban land is prior-
itized over other land uses. Aside from localized cases, we

presume urbanization at global scales will inevitably outcompete
other land uses because the price or value of urban land far
exceeds other land types46. Only until the global land value sys-
tem changes, or non-urban lands become scarce, will societies
value non-urban uses sufficiently to dampen urbanization.

As another limitation, our experiment only examines 1st-order
implications of urban dynamism and does not account for sec-
ondary or tertiary human adaptations, such as compensatory
cropland expansion and increasing pressure on existing natural
resource areas (e.g., wood harvest), both of which could be
directly incorporated into GCAM’s equilibrium modeling fra-
mework. Crop production losses are estimated based on localized,
yet static yield estimates that are not responsive to climate. In
addition, GCAM does not accommodate endogenous climate
influences on crop yields and by association, cropland require-
ments, as could be captured in a crop model. Even so, crop
production responses to climate change are highly uncertain,
where long-term precipitation and temperature shifts could
induce modest global yield increases47, yet extreme climate events
could lead to dramatic reductions in yield48. Finally, we only
consider CO2 emissions related to loss of above-ground carbon
sequestration potential and not CO2 emitted from mechanical
disturbances, such as clearing forest and grassland, or disruption
to soil ecosystems. Ultimately, this would suggest our altered NPP
and CO2 emissions are conservative estimates.

Ultimately, urban land extensification is expected to increase
stress on finite resources required for socioeconomic transitions.
Among the largest impacts to the agricultural sectors were losses in
bioenergy croplands (50,000–400,000 km2) to support energy
transitions in the transportation (biofuels) and electricity (biomass
combustion) sectors. Under GCAM’s projections for both SSP1
and SSP5, biomass crops increase from being virtually non-existent
in 2015 to a global estimate of 3 million km2 to 7 million km2 by
2100, depending on the emission scenario. This suggests urban
extensification could compromise 1% to 13% of global lands

Table 2 Losses in crop yields (million metric tons) stemming
from urban extensification averaged for scenarios within
Shared Socioeconomic Pathways (SSPs) for 2050 and 2100.

Crop SSP1 SSP2 SSP3 SSP4 SSP5 Min Max

2050
Cotton 0.21 0.55 0.38 0.63 0.76 0.04 1.01
Corn 11.4 35.7 18.1 35.5 63.4 2.94 85.0
Rice 10.6 17.5 15.5 17.3 21.0 9.19 24.3
Soybean 1.02 2.97 1.52 2.73 4.62 0.25 6.03
Sugar 0.07 0.09 0.07 0.11 0.09 0.03 0.16
Wheat 3.53 8.53 6.44 7.71 10.4 2.01 13.1
2100
Cotton 0.26 1.64 1.52 1.58 1.83 0.12 2.24
Corn 17.1 93.0 43.6 67.6 165 9.96 219
Rice 11.4 31.4 31.3 27.0 36.5 9.20 41.1
Soybean 1.43 7.11 3.54 5.47 11.11 0.71 14.9
Sugar 0.02 0.08 0.03 0.10 0.03 0.00 0.16
Wheat 3.88 16.6 12.8 13.3 23.6 2.44 30.8

Minima and maxima are also provided across all scenarios, including SSPs, Representative
Concentration Pathways (RCPs), Global Circulation Models (GCMs), and harmonized and non-
harmonized land classifications.

Fig. 4 Losses in crop yields due to land conversion from urban extensification. Global maps display crop yield losses (metric tons yr−1) for the scenario,
including harmonized land cover for Shared Socioeconomic Pathway (SSP) 5, Representative Concentration Pathway (RCP 6.0), and the Geophysical Fluid
Dynamics Laboratory’s Global Circulation Model (GCM) for year 2100. Circular bar plots display losses in crop yields across all SSP-RCP combinations as
averages across harmonized and unharmonized land cover and GCMs. Staked area plots represent losses in crop yields, averaged for GCMs and
harmonization, for all SSPs for RCP 6.0.

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-024-01231-y ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |            (2024) 5:70 | https://doi.org/10.1038/s43247-024-01231-y | www.nature.com/commsenv 7

www.nature.com/commsenv
www.nature.com/commsenv


dedicated to bioenergy production. By doing so, urban land
extensification could counteract climate mitigation and adaptation
strategies. For instance, under RCP 2.6 emission scenarios under
SSP1 and SSP5, reforestation efforts lead to net carbon sequestra-
tion (Fig. 7); however, elevated CO2 emissions from urban exten-
sification could switch land-atmospheric budgets from net
sequestration to net emissions. In other cases, urban extensification
can exacerbate shifting land cover, such as decreasing forested
lands due to growing croplands in SSP3 RCP 6.0, and growing
bioenergy lands under RCP 4.5 in SSP2 and SSP3.

Without even considering competing land-use demands for
urban-induced losses, rates of global crop harvests for direct food
consumption are unlikely to meet growing food security
demands, even by 203049. Addressing these land disequilibria
within multisector IAM frameworks, such as GCAM, can be
relatively straightforward by reoptimizing balances among com-
peting demands. Within GCAM, loss in croplands and yields will
result in increased price19; however, staple crops are price
inelastic and hence, GCAM will allocate demand through
increased production efficiency or increasing cropland area else-
where (as staple crops are a requirement for global food sub-
sidies), leading to increased natural land displacement, perhaps
less suitable for crop production. Increased production effi-
ciencies or fostering crop production in less-productive lands are

both likely to require increased irrigation and fertilizer inputs,
placing additional strain on finite resources.

The real-world implication of land budget imbalances is that
difficult decisions will continue regarding land service tradeoffs,
many of which are mutually exclusive50. Direct and indirect urban-
induced pressures on agricultural, forest, and grassland ecosystems
will continue, leading to increased stress on an overcommitted
system. Wise and highly efficient use of land systems, such as
consolidation of agricultural lands and increased production
efficiency51, are required to meet these challenges. Adaptations are
also needed for the governance of urban land development to
preserve productive croplands26 and natural land integrity36.
Heterogeneity in global lateral expansion of built-up lands and per-
capita urban land area has been shown to be largely dependent on
economic structure more so than population growth52, suggesting
that containment strategies (i.e., growth boundaries) that mitigate
against market-led development are required to facilitate vertical
growth53. Unfortunately, urban growth boundaries, without
enforcement and regional coordination, have shown to be inef-
fective at enhancing densification or infilling and preventing sub-
urban sprawl54,55. Blending market-based, containment, and
zoning policies, as well as regional coordination to preserve sur-
rounding crop and natural lands, has been suggested as an effective
approach to govern urban growth55.

Fig. 5 Reductions in projected staple crop yields due to urban-induced losses in croplands. GCAM crop yield projections (blue areas) were adjusted to
account for losses in yield from urban extensification (red areas). Ranges in yields represent variations according to Representative Concentration
Pathways (RCPs), Global Circulation Models (GCMs), and for harmonized and non-harmonized land classifications.
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Methods
Future land projection datasets. Global land-use simulations at
0.05° resolution for 2015–2100 under 15 plausible combinations
of Shared Socioeconomic Pathways (SSPs) and Representative
Concentration Pathways (RCPs) were obtained from ref. 20.
Future societal and environmental conditions were simulated
within the Global Change Analysis Model (GCAM v5.0) to
produce land-use allocations for 231 countries (termed regions)
and 235 basins for the world under different SSP, RCP, and
Global Circulation Model (GCM) combinations. Chen et al.20

then used a spatial disaggregation model, Demeter30,56, to
downscale coarse land-use projections from GCAM to a local
0.05° × 0.05° grid at 5-yr timesteps. Demeter requires a base map
as ‘seed’ locations to allocate projected land-use area to target grid
cells56. Although Demeter is flexible in that it can use any base
map, one issue is that the selected base map land classes may vary
from those characterized in GCAM. In particular, Chen et al.20

used the base map from the Community Land Model 5 (CLM5)
in the Community Earth System Model 2 (CESM), which
includes 79 plant functional types (PFTs). These 79 PFTs are
analogous yet vary from GCAM’s 39 land classes. Chen et al.
defined 32 land classes as a final hybrid land classification that
preserved the maximum fidelity of class types while reconciling
differences among land models. Even so, there are inconsistent
differences between land type classifications between the base
map and GCAM (e.g., grassland and barren lands) that require
reconciliation. To accomplish this, Chen et al. devised a harmo-
nization procedure to adjust the area of GCAM land classes to
match the base map classes while maintaining the fractional land-
use changes as projected by GCAM in future timesteps. Down-
scaled results were developed using both the harmonization
procedure and unadjusted GCAM land allocations. In total, 2700
LULCC simulations were produced as a combination of 15 SSP-

RCP combinations, 5 GCMs, 18 timesteps (2015–2100), and for
both the harmonized and unharmonized land classes (Supple-
mentary Table 1).

Although non-urban land types are dynamic and influenced by
shifting socioeconomic pressures within the GCAM environment,
urban lands within GCAM are static and held constant from the
base year (2005) to 2100. To intersect dynamic urban landscapes
with GCAM-Demeter-derived land cover, we used simulated
urban fraction lands from the Spatially Explicit, Long-term,
Empirical City development (SELECT) model8,28,29. SELECT is a
spatial model that provides decadal changes in urban land
fraction at a 1/8° resolution but is constrained by the Country-
Level Urban Building Scenario (CLUBS) model, which captures
macroscale socioeconomic patterns and varies according to a
country’s current urbanization trajectory and maturity8. The
rationale employed within CLUBS is very analogous to the
GCAM equilibrium environment, and hence was a thematically
consistent product to use for integrating dynamic urban land with
dynamic non-urban land changes. Gao and O’Neill8 developed 1/
8° simulations for all five SSPs from 2000 to 2100, and
subsequently, these products were downscaled to a 1-km
resolution29. We used the 1-km downscaled projections to
intersect with the Demeter-produced land products.

Integrating GCAM-Demeter with SELECT. Our entire work-
flow is provided in Supplementary Fig. 2. Because of the differ-
ence in spatial resolution, we aggregated the 1-km SELECT
product to a 0.05° resolution and projected the rasters to match
the coordinate system of Chen et al.20. We then interpolated 5-yr
timesteps between decadal timesteps of SELECT to match the
temporal resolution of Demeter simulations. Both the SELECT
and Demeter products represent land cover as fractions, s and d,
respectively. However, d is represented as a whole number

Table 3 Losses in net primary production (NPP, gigatons Carbon yr-1) stemming from urban extensification averaged for
scenarios within Shared Socioeconomic Pathways (SSPs) for 2050 and 2100.

SSP1 SSP2 SSP3 SSP4 SSP5 Min Max

2050
Agriculture low 0.049 0.108 0.064 0.111 0.163 0.031 0.229
Agriculture medium 0.064 0.139 0.083 0.142 0.208 −0.009 0.290
Agriculture high 0.079 0.170 0.102 0.174 0.253 0.082 0.352
Forest low 0.004 0.051 −0.003 0.046 0.138 0.110 0.151
Forest medium 0.004 0.065 −0.005 0.059 0.179 0.140 0.194
Forest high 0.004 0.080 −0.007 0.071 0.220 -0.012 0.238
Grassland low 0.099 0.145 0.101 0.134 0.176 -0.015 0.214
Grassland medium 0.135 0.199 0.138 0.184 0.242 0.042 0.299
Grassland high 0.171 0.253 0.175 0.234 0.308 0.193 0.384
Total low 0.151 0.304 0.162 0.291 0.477 0.245 0.489
Total medium 0.203 0.403 0.216 0.385 0.628 0.137 0.637
Total high 0.254 0.502 0.270 0.479 0.780 0.054 0.787
2100
Agriculture low 0.076 0.329 0.170 0.251 0.488 0.045 0.625
Agriculture medium 0.099 0.431 0.222 0.325 0.621 0.025 0.795
Agriculture high 0.123 0.534 0.275 0.400 0.754 0.076 0.965
Forest low 0.048 0.165 0.038 0.200 0.578 0.102 0.650
Forest medium 0.062 0.214 0.048 0.256 0.752 0.224 0.845
Forest high 0.077 0.264 0.058 0.312 0.927 0.032 1.040
Grassland low 0.112 0.210 0.126 0.206 0.310 0.039 0.484
Grassland medium 0.155 0.291 0.176 0.285 0.435 0.061 0.682
Grassland high 0.197 0.372 0.225 0.364 0.560 0.306 0.880
Total low 0.236 0.704 0.333 0.657 1.376 0.388 1.401
Total medium 0.316 0.937 0.445 0.866 1.808 0.128 1.855
Total high 0.397 1.170 0.558 1.077 2.241 0.077 2.310

Minima and maxima are also provided across all scenarios, including SSPs, Representative Concentration Pathways (RCPs), Global Circulation Models (GCMs), and harmonized and non-harmonized land
classifications. Low, medium, and high refer to variable per-unit-area coefficients of NPP according to land classes within regions and basins. Negative values indicate increases in NPP.
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percentage (integer). The change in urban fraction, or urban
fraction delta (ΔUf), for each grid cell, i, for each of the
2700 scenarios was calculated as:

ΔUf i ¼ si �
di
100

ð1Þ

Note that ΔUf i can be negative in cases where the either
SELECT or the CLM5 base map has either over-allocated urban
lands or has inaccuracies in the spatial depiction of urban lands.
The remaining cumulative fraction of all non-urban lands for the
ith grid cell is denoted by R where:

Ti ¼ 100� di ð2Þ

One universally consistent assumption is that urban land
expansion compromises all other non-urban lands. Hence,
fractions for the kth non-urban Demeter land type (LF) can be
adjusted, denoted as LF; to accommodate urban land expansion
or contraction as follows:

LFki ¼
LFki

100
� LFki

Ti
´ΔUf i

� �
ð3Þ

The non-urban land area (LA) compromised or expanded for
each land type through urban land expansion or contraction,

respectively, can then be calculated for each grid cell as:

ΔLAki ¼
LFki

Ti
´ΔUf i ´Ai ´ � 1 ð4Þ

Where A is the total area (km2) of the ith grid cell. Values are
multiplied by −1 to indicate losses and gains in non-urban land
areas as negative and positive values, respectively. We grouped
ΔLAki into 13 functional land types within three major categories:
forest, grassland, and agriculture (including bioenergy). For each
of the 2700 scenarios, ΔLAki and grouped ΔLAki values were
summarized across the regions and basins, and their unique
combinations, depicted by the Moirai land system used within
GCAM57.

To understand the sources of variability driving differences in
ΔLAki across scenarios, we constructed linear models for global
results where ΔLAki within basins were a function of region, SSP,
RCP, GCM, year, and source, an indicator of harmonized or
unharmonized land allocation (n= 517,007 observations). To
examine within-region variability, we constructed linear models
only for the US to explore the importance of all other variables
besides region. Analysis of Variance (ANOVA) was used to
explore sources of variation explained by each variable.

Effects of dynamic urbanization on crop yields. Following our
calculation of land areas compromised by urban extensification,

Table 4 Land CO2 emissions (Gt CO2 yr−1) for 2050 and 2100 according to various combinations of Shared Socioeconomic
Pathways (SSPs) and Representative Concentration Pathways (RCPs) and based on static versus dynamic urban land changes.

Static urban Dynamic urban

SSP RCP Mean Range Mean Range Difference

2050
ssp1 rcp26 −11.1 (−11.2, −10.8) −10.3 (−10.6, −9.90) 0.79

rcp45 −3.47 (−3.53, −3.37) −2.70 (−2.95, −2.41) 0.77
rcp60 −0.71 (−0.99, −0.48) 0.05 (−0.41, 0.463) 0.77

ssp2 rcp26 6.83 (6.33, 7.23) 8.32 (7.466, 9.065) 1.49
rcp45 1.93 (1.58, 2.36) 3.42 (2.721, 4.198) 1.49
rcp60 1.16 (0.82, 1.42) 2.65 (1.955, 3.258) 1.49

ssp3 rcp45 5.48 (5.01, 5.93) 6.29 (5.635, 6.940) 0.81
rcp60 3.16 (2.82, 3.48) 3.98 (3.439, 4.489) 0.82

ssp4 rcp26 4.66 (4.12, 5.02) 6.09 (5.214, 6.785) 1.43
rcp45 −0.92 (−1.26, −0.56) 0.50 (−0.17, 1.191) 1.42
rcp60 1.15 (0.88, 1.34) 2.58 (1.964, 3.095) 1.42

ssp5 rcp26 −11.1 (−11.3, −10.9) −8.8 (−9.51, −8.04) 2.33
rcp45 −10.2 (−10.2, −9.98) −7.8 (−8.49, −7.13) 2.32
rcp60 −5.16 (−5.42, −4.95) −2.85 (−3.65, −2.11) 2.31
rcp85 −0.33 (−0.56, −0.04) 1.96 (1.183, 2.779) 2.29

2100
ssp1 26 −4.28 (−4.34, −4.13) −3.07 (−3.42, −2.63) 1.21

45 −6.31 (−6.51, −5.70) −5.12 (−5.61, −4.23) 1.19
60 −1.33 (−1.46, −1.22) −0.17 (−0.58, 0.238) 1.16

ssp2 26 −4.96 (−5.13, −4.75) −1.58 (−2.58, −0.54) 3.38
45 26.0 (21.3, 27.5) 29.3 (23.8, 31.7) 3.38
60 −0.37 (−0.50, −0.27) 3.07 (2.11, 3.99) 3.43

ssp3 45 2.68 (2.55, 2.90) 4.31 (3.79, 4.93) 1.63
60 3.51 (3.16, 4.04) 5.14 (4.40, 6.08) 1.64

ssp4 26 −5.89 (−6.08, −0.63) −2.69 (-3.62, −1.68) 3.20
45 0.68 (0.23, 1.05) 3.80 (2.62, 4.90) 3.12
60 −0.28 (−0.54, −0.06) 2.86 (1.85, 3.82) 3.14

ssp5 26 −8.05 (−8.12, −7.96) −1.39 (−3.01, 0.237) 6.67
45 −1.92 (−2.22, −1.75) 4.63 (2.80, 6.32) 6.56
60 −4.72 (−4.94, −4.43) 1.88 (0.12, 3.70) 6.59
85 −1.13 (−1.31, −0.90) 5.31 (3.61, 7.05) 6.44

Static urban refers to naïve or default estimates from the Global Change Analysis Model, whereas dynamic urban accounts for projected changes in urban land from SELECT and subsequent losses in net
primary production (NPP). Difference refers to dynamic urban mean – static urban mean. Ranges represent variation in non-urban lands due to Global Circulation Models (GCMs), and for harmonized
and non-harmonized land classifications, as well as variable estimates of NPP.
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we then explored the implications of these changes on global crop
yields and net primary production. Global crop yields (tons per
hectare) at a 5-min (~10-km) resolution were obtained from
ref. 58 and were summarized within the GCAM Moirai region-
basin combinations to produce region- and basin-specific avera-
ges of crop yields (�y) for corn, cotton, wheat, rice, soybean, sugar
crops, and wheat, as these crops align with the cropland types in
the final 32-land-class GCAM-Demeter simulations. ΔLA values
for each scenario were grouped by compatible functional types (k)
and summed for region (r) and basin (b) combinations. Total lost
or gained yield (ΔY) for the kth land class was calculated for the
rth region and bth basin combination, as:

ΔYkrb ¼ ΔLAkrb ´�ykrb ð5Þ

Where �y is the average crop yield rate from ref. 58 for the
specific crop type (k), region (r), and basin (b) combination.

Effects of dynamic urbanization on net primary productivity.
Annual MODIS net primary productivity (NPP), measured in
g Cm−2 y−1 in 500-m gridded datasets, were obtained from 2010
to 201559. Annual values were averaged into 5-yr values and then
aggregated to 0.05° grid cells to match the GCAM-Demeter
resolution. NPP is expected to be non-stationary in the future yet
highly uncertain38,39. Climate projections suggest increases in
NPP in boreal forests of the Northern Hemisphere through the
end-of-century42; however, the role of climate in NPP trends in
the Southern Hemisphere even for recent years (2000–2020) is
largely unresolved24,40,41,60. Due to this uncertainty, we use a
range of estimates to estimate NPP losses. Because LFki values
were fractionated for each 0.05° grid cell and because NPP values
were per-unit-area averages, we could not arbitrarily assign NPP

values to individual land classes, even on a proportional basis,
within a grid cell. Instead, we created a data frame of unique LFki
values and NPP values for each grid cell observation. For each of
the k land types, the data frame was filtered to only consider LFki
grid values >=10%, and then those subsets of NPP values were
summarized as minima, maxima, and averages within each
region-basin as indicative of the range of primary production for
a given land class in that area. This can otherwise be stated as:

8i; k; r; bj LFkirb ≥ 0:1 ! NPPkirb ð6Þ
and

min NPPkrb

� � ¼ min

i
NPPi

� �n
i¼1 ð7Þ

max NPPkrb

� � ¼ max

i
NPPi

� �n
i¼1 ð8Þ

NPPkrb ¼
∑n

i¼1NPPi

n
; ð9Þ

where n is the number of grid cells corresponding to the kth land-
class type in each region (r) and basin (b) combination. NPP
values were converted from g Cm−2 y−1 to Gt C km−2 y−r. Total
NPP losses or gains ðΔNPPÞ associated with urban land changes
were calculated as:

minðΔNPPkrbÞ ¼ ΔLAkrb ´ min NPPkrb

� � ð10Þ

maxðΔNPPkrbÞ ¼ ΔLAkrb ´ max NPPkrb

� � ð11Þ

ΔNPPkrb ¼ ΔLAkrb ´NPPkrb ð12Þ

Fig. 6 Losses in net primary production (NPP) from urban extensification. Global maps display average NPP losses (gigatons (GT) Carbon yr−1) for the
corresponding displaced land categories from urban extensification for the scenario, including harmonized land cover for Shared Socioeconomic Pathway
(SSP) 5, Representative Concentration Pathway (RCP 6.0), and the Geophysical Fluid Dynamics Laboratory’s Global Circulation Model for the year 2100.
Radial stacked bar plots display losses in NPP (for variable NPP rates), averaged over harmonized and unharmonized land cover and GCMs, for each SSP
and RCP combination. Staked area plots represent variable NPP rates for each land category, averaged for GCMs and harmonization, for RCP 6.0 for all
SSPs.
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First-order implications of urban dynamism on GCAM land-
carbon equilibria. Because GCAM is an equilibrium model,
shifting socioeconomic demands, such as increasing population
growth, and natural resources, such as crops and land, as well as
emissions and atmospheric concentrations of greenhouse gases, are
interrelated and balanced. We evaluated the implications of com-
promised land cover, reduced crop yields, and losses in NPP due to
urban extensification on GCAM’s budgetary allocations for agri-
cultural commodities and carbon emissions from land-use change.
All outputs in our study utilize GCAM v5.0. Relevant simulated
outputs from GCAM include annual crop yields (Mt yr−1) and
annual carbon dioxide (CO2) emissions (Mt Carbon yr−1) for
various sectors, including those from land-use change provided at
5-yr increments (1975–2100) under SSPs, RCPs, and GCM com-
binations. Hence, our estimates of changes in crop yields and NPP
from urban extensification can be placed into the context of Earth
system components simulated from GCAM. In GCAM, land-use
change CO2 emissions are calculated using a simple accounting
approach61, where emissions from above-ground vegetation and
soils are due to changes in carbon stock (ΔC) from land use and
dependent upon regionally explicit carbon densities62. Emissions
calculated from ΔC reflect the immediate year for vegetation,
whereas soil emissions have a prolonged lag effect specified for each
region62. Here, we assume that ΔNPP is strictly associated with
compromised above-ground forest, grassland, or cropland vegeta-
tion, and that ΔNPP < 0 directly increases CO2 emissions from the
land surface. We also assume that NPP estimates for urban
land are 0.

Changes in crop yield (ΔYkrb) stemming from urban
extensification were added or negated from GCAM simulated
estimates of crop yield for all scenarios and years. Cumulative
land-use-related CO2 emissions from GCAM were adjusted to

account for reduced sequestration of CO2 based on changes
in NPP (ΔNPP) arising from urban extensification. We
accomplished this by first converting GCAM land CO2 from
Mt C to Gt C. CO2 emissions and ΔNPP estimates were them
converted from C to CO2 equivalent by multiplying by 3.664
(CO2= 44.01 g mol−1; C= 12.011 g mol−1). CO2 equivalent
values from ΔNPP were then added to GCAM’s estimates of
CO2 emissions stemming from land-use change.

Data availability
The raw data to support this study are provided for urban land extensification63 https://
doi.org/10.7910/DVN/0EGDOK and dynamic GCAM-Demeter land products64 https://
doi.org/10.25584/data.2020-07.1357/1644253. Derived data for this study are available on
MSD Live Repository—https://doi.org/10.57931/2228907.

Code availability
The code generated during this study is available from the corresponding author upon
reasonable request.

Received: 12 July 2023; Accepted: 22 January 2024;

References
1. Seto, K. C. & Satterthwaite, D. Interactions between urbanization and global

environmental change. Curr. Opin. Environ. Sustain. 2, 127–128 (2010).
2. Grimm, N. B. et al. Global change and the ecology of cities. Science 319,

756–760 (2008).
3. Zheng, Z., Zhao, L. & Oleson, K. W. Large model structural uncertainty in

global projections of urban heat waves. Nat. Commun. 12, 3736 (2021).

Fig. 7 Implications of urban-induced land alterations on global CO2 emissions. Urbanization-induced losses in net primary production and impacts to
global CO2 emission projections were summarized across Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathways (RCP).
Projections in CO2 from the Global Change Analysis Model (GCAM) (blue lines) were adjusted to account for losses in carbon sequestration due to land
conversion from urban extensification (red areas). Ranges in values represent variations according to Global Circulation Models (GCMs) and for
harmonized and non-harmonized land classifications.
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