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Stochastic simulation of storm surge extremes
along the contiguous United States coastlines using
the max-stable process
Md Mamunur Rashid 1✉, Hamed Moftakhari 2,3 & Hamid Moradkhani 2,3

Extreme sea levels impact coastal society, property, and the environment. Various mitigation

measures are engineered to reduce these impacts, which require extreme event probabilities

typically estimated site-by-site. The site-by-site estimates usually have high uncertainty, are

conditionally independent, and do not provide estimates for ungauged locations. In contrast,

the max-stable process explicitly incorporates the spatial dependence structure and produces

more realistic event probabilities and spatial surfaces. We leverage the max-stable process to

compute extreme event probabilities at gridded locations (gauged and ungauged) and derive

their spatial surfaces along the contiguous United States coastlines by pooling annual max-

imum (AM) surges from selected long-record tide gauges. We also generate synthetic AM

surges at the grid locations using the predicted distribution parameters and reordering them

in the rank space to integrate the spatiotemporal variability. The results will support coastal

planners, engineers, and stakeholders to make the most precise and confident decisions for

coastal flood risk reduction.
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Extreme sea levels intensely impact infrastructure and socio-
environmental systems in the coastal regions, including
pronounced property and environmental damage and loss

of life. Although ordinary people are often focused on the chronic
effects of the mean sea level rise, the major devastating threats
(e.g., flooding and erosion) to the coastal regions originated from
episodes of extreme storm surges. In the United States, 40% of the
population lives in low-lying coastal areas, and ~48% of the
national Gross Domestic Product (GDP) is generated from
the coastal counties1. Therefore, extreme sea levels are critical for
the coastal regions because they can cause costly disaster events
in the U.S.2 and many other regions worldwide3. Hurricane
Katrina in New Orleans displaced more than a million people and
caused economic damage of about $100 billion. Likewise, Hur-
ricane Sandy struck the New York region in 2012 and caused $50
billion in economic losses. Besides, climate model projections
indicate notable increases in the frequency and magnitude of
extreme sea levels, along with future increases in income, may
cause more devastating situations and economic losses in the
future4–8. Coastal planners quantify the risks of extreme sea levels
by estimating the exceeding probability of a certain extreme event
(i.e., return period), to design and plan the coastal protection
measures. Extreme value analysis is employed for risk computa-
tion, which usually requires longer data records. An ongoing
challenge in coastal flood risk assessment and risk reduction
exercise is the limited sea level data in space and time. Long
records of sea level data from tide gauges (TGs) are sparse, and
many coastal areas lack in situ information.

In coastal flood risk assessment, extreme value theory provides
the most useful statistical framework for estimating the excee-
dance probability of extreme events9–11. The most used approach
in analyzing extreme sea levels is the site-by-site analysis, where
typically generalized extreme value (GEV) or Generalized Pareto
(GP) distribution is fitted to extreme sea levels defined by either
block-maxima (considered the maximum value within a time
window, i.e., year) or peak-over threshold (consider all values
above a certain threshold) method, respectively11. Numerous
studies investigated storm surge extremes at global and regional
scales employing the site-by-site approach by fitting extreme
value models to extreme sea levels identified by block maxima or
peak-over-threshold method7,12–21. The site-by-site analysis is
sensitive to record length and outliers, leading to higher uncer-
tainty bands, and estimates at ungauged locations are not
apparent. To eliminate the limitations, several studies proposed
pooling storm surge information from the nearby tide gauges
over a region with similar storm surge statistical characteristics
(i.e., Regional Frequency Analysis, RFA)22–24. The RFA method
identifies homogeneous areas and fits an extreme value dis-
tribution to extreme data pooled from the homogeneous area.
Though the approach may provide a more accurate estimation of
event probabilities, identifying homogeneous areas may be chal-
lenging and it can lead to discontinuous and unsmooth spatial
extreme fields having artificial boundaries without reasonable
physical explanations. Besides, RFA does not account for inter-
site dependence in the regional pooling, which may lead to
incorrect event probabilities and artificially reduce uncertainty
though a methodological modification has recently been pro-
posed to address this issue25. An alternative to the RFA is to
model extremes employing a spatial Bayesian hierarchical model
where latent Gaussian processes are specified on the distribu-
tional parameters to pool spatial information. However, this
approach assumes that the data at different sites are conditionally
independent, and the spatial dependence included in the model
only through the latent processes.

The max-stable process can overcome these limitations by
incorporating a max-stable dependence structure to produce a

more realistic spatial surface of extremes than the standard latent
variable framework. It allows sharing information across sites,
estimating GEV parameters at ungauged locations, and reducing
uncertainty26. The max-stable process can be regarded as the
spatial variant of univariate GEV distribution (i.e., spatial GEV);
however, the earlier one differs from the typical “spatial GEV”, in
which univariate GEV parameters are modeled as a function of
spatial locations and possibly other covariates. The spatial GEV
spatially interpolates GEV parameters, assuming spatial inde-
pendence between neighboring stations, which may lead to
unrealistic spatial inference and prediction27,28. Despite its fidelity
in modeling spatial extremes, the max-stable process (i.e.,
asymptotic model) may be limited to adequately capture the more
localized extreme events due to rigid dependence structures29.
The max-stable process is always asymptotically dependent unless
they are fully independent, which indicates that the strength of
spatial dependence does not vanish as events become more
extreme. Fitting the max-stable process to data requires a pairwise
likelihood function instead of the typical likelihood function.
While pairwise likelihood approach generally provides valid
inference, it might be less efficient than the likelihood approach
due to loss of information30.

The application of the max-stable process in analyzing storm
surge extremes has not been adequately explored, though it has
been widely applied for analyzing other hydrologic extremes (e.g.,
rainfall)31,32. Calafat and Marta33 employ max-stable process
models under a Bayesian hierarchical framework to develop a
probabilistic reanalysis of storm surge extremes for the European
coasts. In contrast to the statistical methods, hydrodynamic
models have been employed to generate global reanalysis of storm
surges and extreme sea levels34,35 and explicitly modified and
tested for the US east and Gulf of Mexico (GOM) coasts36.
Hydrodynamic models require extensive computation, while
statistical models can provide comparable performance in gen-
erating extreme surge probabilities and their spatial fields at a
significantly lower cost33,37.

Despite the limitations of accurate and reliable estimates of
storm surge extreme probabilities at a gauged or ungauged
location because of sparse records in space and time, very few
researchers have explicitly derive the spatial fields of the prob-
abilities of storm surge extremes. Besides, almost no studies
simulate storm surge extremes stochastically by exploiting
dependence and sharing the extreme surge information across
TGs for the US coasts. In this research, we develop models
employing the max-stable process to compute GEV distribution
parameters at grid locations along the contiguous United States
(CONUS) coastlines using the annual maximum (AM) surges
from 1950 to 2017 at 41 long-record TGs. We then stochastically
generate synthetic AM surge time series and incorporate the
spatial-temporal variability using rank ordering (i.e., reorder
them to match the observed ranks).

Results
Max-stable model is fitted to the AM surges to compute the GEV
distribution parameters at each TG following the leave-one-out
validation approach. We evaluate the model efficiency by esti-
mating the relative differences of the computed GEV parameters
(1) compared to those estimated by the max-stable model using
AM surges from all the 41 TGs instead of leave-one-out and (2)
compared to the GEV parameters estimated by fitting univariate
GEV distribution to AM surges at each TG, separately. The for-
mer one shows little/no difference, indicating that the max-stable
model is highly efficient. For the latter one (compared to the at-
site GEV parameters), the relative differences for the location and
scale parameters vary from 0.001 to 0.8 and 0.02 to 3.4,
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respectively (Fig. 1). The medians of RD (across all TGs) of the
location and scale parameters are 0.15 and 0.32, respectively,
suggesting the errors, on average, within ~15% and 32% of the
observations. The average errors in the computed GEV para-
meters are mainly influenced by the errors at the Key West TG,
which are significantly higher than the other TGs. The reason
behind this behavior is not apparent, however, being located at a
relatively long distance from the nearby TGs and having sig-
nificantly lower variability in the AM surges (variance at Key
West is 80% and 54% lower than the nearby selected TGs Fer-
nandina Beach and St. Petersburg, respectively) may limit the
max-stable model’s ability at this site33. There are TGs where
simulated AM surges are over/under-estimated (Fig. 2 and Sup-
plementary Fig. 2). The maximum, mean, and minimum errors
(root mean square errors, RMSE) between observed and median
simulated AM surges of 40 TGs (except Key west) are 0.03, 0.13,
and 0.25 m, respectively (Supplementary Figs. 2 and 3). The error

for the Key west is 0.52 m, significantly higher than the other
TGs. The model-simulated AM surges represent the observed
spatial dependence of AM surges expressed by the pairwise
madogram38 and extremal dependence coefficient39 (Supple-
mentary Fig. 4).

Assessing GEV parameters (i.e., return levels) prediction effi-
ciency of the max-stable model is only possible at the gauged
locations because ungauged locations do not have observation
data. However, a surge reanalysis allows us to assess model effi-
ciency at ungauged locations, though they are only an approx-
imation of the real world and may perform poorly compared to
the observations37. We sample the AM surges from the GTSR
reanalysis at the TG locations, then fit the max-stable model to
sample data and predict the GEV parameters at the ungauged
location where GTSR provides data. We compare the predicted
location and scale parameters with those computed by fitting
individual GEV distributions to the GTSR data at all locations.

Fig. 1 Performance of the max-stable model at the gauged locations. Relative differences (RD) of the max-stable model derived GEV location (a) and
scale (b) parameters under leave-one-out validation compared to that of the univariate GEV distribution separately fitted to the AM surges at each TG.

Fig. 2 Validation of the max-stable model. a–h Observed (black lines) and simulated (pink color) AM surges at the TGs not included in the model building
identified in (i). i Locations of TGs not included in the model building indicated by the red stars markers and numbers, and the locations of the TGs (blue
circles) used in max-stable model building.
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Results (presented in Supplementary Fig. 5) indicate that the
location and scale parameters are well reproduced at most loca-
tions, with median RDs of 0.27 and 0.48, respectively. Relatively
higher errors in predicting location and scale parameters occur at
locations where a sharp gradient exists in the GEV parameters of
the GTSR data. For example, sharp gradients in the location
parameter on the Atlantic coast of Florida and the North
Pacific coast are reflected in the higher values of RDs in those
regions. Similar regions with relatively higher RDs for the scale
parameter exist in the North Atlantic, Atlantic coast of Florida,
western GOM, and the North Pacific coast. For a more rigorous
validation of the max-stable model, we have arbitrarily selected
multiple TGs from different regions of the U.S. coastlines, which
are not included in the model development due to limited
records. We compare the observed AM surges at the selected TGs
to the simulated AM surges of the corresponding closest grid
locations (Fig. 2). The simulated time series of AM surges cap-
tures the overall temporal variability of the observed AM surges
but shows an underestimation tendency for some cases. Results
indicate the model’s ability to predict AM surges at ungauged
locations.

Estimated GEV parameters from the max-stable model are
used to compute the spatial surface of the return levels along the
CONUS coastlines. Figure 3 illustrates the spatial distribution of
50-year and 100-year return levels estimated by the max-stable
model along the CONUS coastlines and the return levels (c and d)
computed by the single-site univariate GEV distribution. In
accordance with the single-site return level estimates, the return
levels calculated by the max-stable model are relatively lower
along the west coast and the highest return levels occurred along
the east coast. Spatial variations of return level magnitudes along
the east coast, GOM, and west coast are apparent. The U.S.
Atlantic and Gulf coasts are characterized by shallow bathymetry
and wide continental shelf, provide favorable conditions for
higher surges when strike by tropical cyclones (TCs). The tracks
of TCs across the region often stretch along the entire southeast
Atlantic coast from Florida to New Jersey due to the alignment of

the coast, causing high storm surges40. In contrast, extra-tropical
cyclones (ETCs) dominate the northeast Atlantic coast, causing
relatively lower surges, while the high tidal ranges largely drives
total water levels16,36. The model provides reasonable clusters of
lower and higher storm surge return levels in the southwestern
and southeastern Gulf coasts, respectively. This is intuitive given
that the major hurricanes within the GOM mostly hit the
southeastern coastlines of the GOM. Also, the model captures
the north-south variation of the return level magnitudes along the
west coast, i.e., the magnitudes decrease from north Pacific to
south Pacific coast41.

The median standard errors of the scale and location para-
meters for the max-stable model are 8 cm and 6 cm, respectively,
indicating that the uncertainty associated with the estimated
return levels is low relative to the return levels. In contrast, they
are 19 cm and 15 cm for the single-site GEV model. We inves-
tigate the return level curves along with 95% confidence intervals
for each tide gauge (Supplementary Fig. 6), indicating that the
uncertainty bands of return level curves derived from the max-
stable model are significantly lower than those derived from the
single-site GEV model. Accurate estimation of distribution
parameters in the classical single-site extreme value analysis is
difficult because the short record length of sea level data mea-
sured at the tide gauges provides insufficient samples of extreme
surge events (i.e., AM surges). This may lead to high uncertainty
in distribution parameter estimates. In contrast, the max-stable
model allows sharing information across sites by pooling extreme
surge events from all selected tide gauges. Such data pooling
drastically reduces uncertainty in distribution parameter esti-
mates. The epistemic uncertainty associated with the classical
site-by-site analysis is reduced by the model that employed max-
stable process. The model reasonably captures the regional
variability (east coast, GOM, and west coast) in the return levels
as observed in the single-site GEV estimates while producing
smooth return level surfaces by filling the spatial gaps and
eliminating the limitations of data scarcity in coastal flood risk
assessment. The model allows us to investigate coastal flood

Fig. 3 Spatial distribution of the storm surge return levels. 50-year (a) and 100-year (b) return levels of storm surges (in meters) estimated from the
max-stable model. 50-year (c) and 100-year (d) return levels of storm surges (in meters) estimated from the at-site GEV model.
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hazards at any location along the coastlines even though no tide
gauge data is available.

Stochastic simulations provide 10,000 synthetic storm surge
time series at each grid location42, allowing us to investigate the
magnitudes and spatial extents of extreme events. Figure 4
illustrates the 2.5th, 50th, and 97.5th percentiles of simulated
surge magnitudes and spatial extents of Hurricane Matthew in
2005 (left column), Hurricane Sandy in 2012 (middle panel), and
Hurricane Katrina, Dennis, and Wilma in 2005 (right column).
Time series plots (Fig. 4) represent the observed and simulated
AM surges at the closest available TGs from the landfall locations
of the corresponding hurricanes.

Hurricane Matthew made landfall in October 2005 along the
central coast of South Carolina after its first landfall as a major
hurricane along the coasts of Haiti, Cuba, and the Bahamas. The
spatial pattern of simulated AM surges follows the storm track
extended from South Florida to South Carolina coasts. The cor-
responding time series plot at Charleston TG illustrates that the
simulations well capture the observed AM surge in 2016 (1.64 m).
The median simulated surge at the event is 1.41 m (2.5th and
97.5th percentiles are 1.11 m and 1.95 m, respectively). The
simulated AM times series also capture similar extreme events
with high efficiency and low uncertainty.

Hurricane Sandy struck New Jersey and New York coasts in
October 2012. Hurricane Sandy was a special one due to its tre-
mendously big size, which caused catastrophic storm surges in
New York. It was reported that the surges were spatially dis-
tributed from Virginia to Maine, while relatively higher surges are
evident from New Jersey to New York to Connecticut43. The
simulated surges exhibit the spatial extents of surges from Hur-
ricane Sandy. The highest surge observed at The Battery TG is
2.62 m. The 2.5th, 50th, and 97.5th surges in 2012 at The Battery
TG are 1.57 m, 2.1 m, and 3.3 m, respectively. While the simu-
lated AM surges capture extreme events, systematic under-
estimations are found for relatively lower surges.

In 2005, three hurricanes, i.e., Katrina, Dennis, and Wilma
(among others), hit the northern Gulf of Mexico (GOM) and the
South Florida region. Dennis (July 2005) landed on Santa Rosa
Island, Florida, near Navarre Beach. Hurricane Wilma (October
2005) was identified as a category 3 hurricane when it made
landfall in southwestern Florida near Cape Romano and crossed
the southern Florida peninsula in 4.5 hr. Katrina (August 2005)
was an extraordinary and one of the most devastating hurricanes
first caused damage in South Florida as a category 1 hurricane
and then made landfall on the northern Gulf coasts as a category
3 hurricane. The track of Katrina and favorable atmospheric and

Fig. 4 Spatial extents of simulated AM surges for selected Hurricane events. Spatial extents of simulated AM surges (2.5th, 50th, and 97.5th
percentiles) (in meters) for the selected extreme events: Hurricane Matthew (a–c), Hurricane Sandy (d–f), and Hurricane Katrina (g–i). Blue color lines
present hurricane tracks. j–l Time series plots of observed (black lines) and simulated bands (2.5th and 97.5th) of AM surges for available TGs (black
stars) at/near the hurricane landfall locations.
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bathymetric conditions made Katrina extremely intense and
exceptionally large resulted in longer extent of surges along the
GOM and South Florida Coasts. Northeasterly middle to upper-
level tropospheric flows forced Katrina to turn west-
southwestward and made its first landfall in South Florida
before it moved to southeastern GOM. Once in the water again
after the first landfall, Katrina regained its energy and emerged to
hurricane status. A huge upper-level anticyclone over the GOM
resulted in weak wind shear and well-formed upper-level outflow
favored Katrina’s rapid intensification. Katrina’s massive size of
hurricane-force winds (peak intensity of 150 kt) extended up to
about 90 nautical miles, caused widespread and devastating storm
surges. Additionally, numerical experiment suggest that
the unprecedented storm surge of Katrina was influenced by the
extremely shallow continental shelf and ancient deltaic lobe of
the Mississippi river, however, if would had taken a different
track (i.e., the track of Hurricane Frederic), it might resulted in a
much smaller surges than the observed in coastal Mississippi and
Luisiana44,45. The simulated AM surges generate reasonable
spatial patterns and extents for 2005 along the northern GOM
and southwestern Florida coasts. Among the selected TGs, Pen-
sacola is the closest to the landfall location of Katrina in the
northern GOM. Though Dennis made landfall around this area in
the same year, the Pensacola TG still experienced a higher surge
during Katrina than Dennis (Supplementary Fig. 7); hence it is
the best possible TG for analyzing Katrina’s surges. The time
series of observed and simulated surges at the Pensacola TG are
illustrated in Fig. 4, which depicts that the observed surge height
in 2005 at this TG is 1.43 m while the median (50th percentile)
simulated surge height is 1.79 m (2.5th and 97.5th percentiles are
1.36 m and 2.61 m, respectively).

Overall, the simulated surge magnitudes and their spatial
extents are comparable to the observations and are consistent
with the tracks and landfall locations of the hurricanes. As
expected, the surges are relatively higher near the landfall loca-
tions and gradually get lowered as they are away from the landfall
locations.

Conclusion
Quantifying coastal flood risks from extreme sea levels is critical
for the sustainable management of infrastructure and socio-
environmental systems in the coastal regions. Risk estimation
requires accurately computing extreme event probabilities, which
is often challenging due to the temporal and spatial sparseness of
sea-level records. Hence, typically used site-by-site analysis of
extreme event probabilities holds high uncertainty and does not
provide information for ungauged locations. Storm surge recon-
structions and regional frequency analysis may partially address
the limitations but introduce new weaknesses (e.g., discontinuous,
and unsmooth surfaces of extreme event probabilities). In con-
trast, we have used max-stable models, which leverage extreme
sea level records (AM surges) from all selected tide gauges,
leading to a more accurate and reliable estimation of distribution
parameters and continuous spatial field of extreme event prob-
abilities. Our modeling framework enables us to compute return
level magnitudes of extreme events and simulate synthetic AM
surge time series at any location along the CONUS coastlines.
The model substantially reduces the uncertainty (i.e., standard
errors) in distribution parameter estimates, thereby in return
levels.

Despite the promising results, the simulation of AM surges
computed in this study employing the max-stable model has
multiple limitations and challenges. First, there is no true data to
validate the model estimates at the ungauged locations; however,

the leave-one-out validation and investigating model perfor-
mance at ungauged locations using reanalysis surge data ensure
that the model performs reasonably well in predicting GEV
parameters. Besides, the model results at the ungauged locations
are validated against the observed of AM surges of the closest
TGs, which are not included in the model development due to
short records. We investigate the spatial extent and magnitude of
AM surges and return levels (50- and 100-year) at gauged loca-
tions obtained from the tide gauge observations, max-stable
model, and storm surge reanalysis data (i.e., GTSR and CoDEC
data). Results illustrate differences in storm surge results between
the max-stable model, GTSR, and CoDEC data, yet the max-
stable model performs better in capturing the observations (please
check the Supplementary Discussion and Supplementary Figs. 8
and 9 for details). However, our model did not capture wind-
localized variability of surges to some extent because the max-
stable process is designed to generate smooth spatial fields of
extremes, and the model is not equipped to explicitly analyze the
wind-driven part of the extreme surges. The max-stable model
shows a limited ability to predict the location and scale para-
meters of the GEV distribution for the TGs (e.g., Key West)
located at a longer distance from the nearby TGs and having
significantly different variances in the AM surges compared to
that of the nearby TGs. The spatial structure of GEV parameters
is driven by the climatological dependence, whereas the coher-
ence between AM surges of nearby TGs and their gradual
reduction from the landfall location of storms (e.g., tropical and
extra-tropical cyclones and atmospheric rivers) depends on the
spatial extent of individual events. Therefore, reordering the
stochastically simulated storm surges to the observed ranks at
gauged locations, and the weighted average ranks (of adjacent
TGs) at ungauged locations are valid approaches. The model can
generate synthetic AM surges at ungauged grid locations to help
investigate the temporal variability of AM surges and the spatial
extent of any event. The current form of the model cannot
forecast AM surges; however, it can be extended to a forecast
model by including a rank forecast model employing the
learning-to-rank techniques46. Instead, the study focuses on
simulating the synthetic series of AM surges.

The study provides spatial fields of return levels and synthetic
time series of AM surges at the gauged and ungauged locations
along the CONUS coastlines. Most notably, the study generates
more meaningful estimates for the areas with no or minimum sea
level data available. The results will help coastal planners, engi-
neers, and stakeholders to make the most precise and confident
decisions. Other scientists will also use the study outputs (return
levels and synthetic series of AM surges) to investigate the spa-
tiotemporal variability of extreme surges, quantify flood risks and
economic losses, and select suitable and appropriate flood
reduction measures.

Methods
Data. Hourly sea level data are collected from the Global Extreme
Sea Level Analysis—version 3 (GESLA-3; https://gesla787883612.
wordpress.com/) and the National Oceanic and Atmospheric
Administration (NOAA; https://tidesandcurrents.noaa.gov/)
database. The NOAA database provides the most rigorous spatial
and temporal coverage for the US coastlines, hence considered
the primary source of the data. We filter out the tide gauges with
no data beyond 1950 and more than 20% missing over the entire
record. This deduces 41 tide gauges along the contiguous US
coastlines, finally used in the analysis. The sea level data used in
this study are provided in meters relative to the station datum
(STND). First, we detrend the hourly sea level time series by
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removing the annual mean sea levels (MSL). Next, we remove
tides from the hourly time series by predicting the tide by per-
forming a classical harmonic analysis year-by-year with 67 tidal
constituents using the T-tide Matlab package47. From the non-
tidal residual (i.e., after removing annual MSL and tides), we
employ the block maxima approach to prepare the annual max-
imum storm surge time series at each selected tide gauge. Two
storm surge reanalysis datasets, produced by the physics-based
hydrodynamic models, namely the Global Tide and Storm Surges
(GTSR)34 and the Coastal Dataset for the Evaluation of Climate
Impact (CoDEC)35 are used to validate our model. The National
Hurricane Center’s Hurricane Database (HURDAT2)48 for the
Atlantic Basin is used to identify the tracks of the selected tropical
cyclones and investigate how the model simulate storm surges at
and around the landfall locations.

Modeling of extreme surges. This study develops a framework to
support estimating the exceeding probabilities of extreme surge
events at any location along the CONUS coastlines by filling the
spatial gaps between tide gauges with the stochastically generating
storm surge extremes. The max-stable model is used to derive the
spatial field of GEV distribution parameters, which are then used
to stochastically generate AM surges at gridded locations along
the CONUS coastlines. Finally, the synthetic AM surge series are
temporally reordered following the observed ranks to incorporate
the spatiotemporal variability. Our model allows us to estimate
both the GEV parameters and simulate the AM surges at any
arbitrary locations, either gauged or ungauged. The details of the
methods are discussed in the following sections.

Classical and max-stable process models for extremes. Uni-
variate extreme observations (e.g., AM surges) of
Yt ¼ maxfY1;Y2; ¼ ;Ytg, where Y1; ¼ ;Yt is a sequence of
independent observations having a common statistical distribu-
tion function can be defined by the GEV with the following
distribution function:

G Zð Þ ¼ exp � 1þ ξ
z � μ

σ

� ��1=ξ
� �� �

ð1Þ

Where μ and σ are the location and scale parameters of GEV
distribution, respectively. The shape parameter is represented by
ξ, which determines the tail of the distribution. Based on the
shape parameter values, the distribution can correspond to
Weibull ðξ < 0Þ, Gumbel ðξ ¼ 0Þ, and Fréchet ðξ > 0Þ sub-family of
distributions. The values corresponding to any probabilities can
be predicted via inversion of the distribution function. GEV
distribution is commonly used for extreme storm surge analysis,
while Generalized Pareto distribution has also been used in many
studies7,11,16.

In order to extend the classical univariate GEV to a
multivariate domain (i.e., spatial GEV), earlier research proposed
modeling spatial dependence employing hierarchical models49;
however, they generally do not account for data-level dependence.
In contrast, the max-stable process extends the univariate GEV
model to the multivariate spatial domain, which resolves the
limitations of the classical spatial GEV model. The max-stable
process holds a framework for modeling multivariate extremes
considering spatial and temporal dependence. Let
Yt Sð Þ; t ¼ 1; ¼ ::; t, be the independent realizations of a
continuous process (i.e., AM surges) for year t and at location
S, where S ¼ s1; s2; ¼ :sn represents the locations of the TGs
existing in a spatial domain is a max-stable process with GEV

marginals if the following limit exists jointly for all TGs:

Yt Sð Þ ¼ lim
t!þ1

maxtt¼1Yt sð Þ � bmðsÞ
amðsÞ

ð2Þ

Where am sð Þ> 0 and bmðsÞ are normalizing constants.
Observed pairwise extremal coefficients are used to calibrate the
max-stable process. The observed pairwise extremal coefficient is
computed using the modified madogram, the F-madogram50:

νF s1 � s2
� 	 ¼ 1

2t
∑
t

i¼1
F zi s1

� 	� 	� F zi s2
� 	� 	

 

 ð3Þ

Where zi s1
� 	

and zi s2
� 	

are the ith observations (the AM
surges in the ith year) of the random field at location s1 and s2
and t is the total number of observations (i.e., years). The
observed pairwise extremal coefficient θ̂ is then estimated by:

θ̂ s1 � s1
� 	 ¼ 1þ 2νF s1 � s2

� 	

1� 2νF s1 � s2
� 	 ð4Þ

Finally, the max-stable process is fitted by minimizing the sum
of squared errors between the theoretical and modeled pairwise
extremal coefficients. We fit a max-stable process to the 68 years
of AM surge time series of the selected 41 TGs from 1950 to 2017
along the CONUS coastlines. We tested different model settings
in fitting the max-stable process and identified the best model
using the Takeuchi Information Criterion (TIC) which is
analogous to Akaike Information Criteria (AIC) but employs
maximum pairwise likelihood estimators instead of maximum

likelihood estimators51. Let, Li;j xi;j; θ
� �

the likelihood for TG i

and j, where i ¼ 1; 2; ¼ ;N � 1; j ¼ iþ 1; iþ 2; ¼ ;N . N is the
number of TGs within the region and xi;j are the joint
observations for TG i and j. The pairwise likelihood PL θð Þ is
defined by.

LP ¼ logPL θð Þ ¼ ∑
N�1

i¼1
∑
N

j¼iþ1
log Li;j xi;j; θ

� �
ð5Þ

The pairwise likelihood is an approximation of the “full
likelihood”; hence the standard errors are estimated using a
sandwich estimates as:

θ̂ � N θ;H�1 JH�1
� 	 ð6Þ

Where H is the Fisher information matrix and J is the variance
of the score function30. The parameters (θ) included in model are
the GEV distribution parameters (i.e., location, scale, and shape)
and the spatial dependence parameters (e.g., sill, nugget, and
range). The model optimizes the parameters and provides
associated standard errors, which in turn are used to quantify
return levels and associated uncertainty. The location and scale
parameters are modeled spatially in different model settings as
linear/non-linear/semiparametric functions of longitude, latitude,
and bathymetry. This is based on the fact that the storm surge is a
spatially continuous process, which varies smoothly along the
coastlines depending on the scales of surge generating weather
regimes15,52. On the other hand, surges may be spatially discrete
due to local bathymetric features and shelf geometry53,54. The
shape parameter is assumed to be constant over the entire spatial
domain, an assumption often considered in extreme value
analysis because of its strong sensitivity to GEV fit13,16. The
best-fitted max-stable process model estimates GEV parameters
at the gauged and ungauged locations. The ungauged grid
locations for the CONUS coastlines are extracted from the high-
resolution grid locations provided by the Global Self-consistent,
Hierarchical, High-resolution Geography Database (GSHHG)55.
Spatial distances between subsequent GSHHG grid locations vary
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depending on the shape of the coastlines and Euclidean distances
vary from 0.05° to 0.75° (average is 0.31°) (Supplementary Fig. 1).

Simulation of annual maximum (AM) surges. We stochastically
simulate AM surges (10,000 synthetic time series) at each grid
location along the CONUS coastlines using the max-stable model
predicted GEV parameters. Spatiotemporal variability of the
observed AM surges is incorporated by temporal reordering of
the simulated AM surges to match the rank of the observed AM
surges (i.e., rank-ordering) at each TG. This resampling in rank
space has been successfully implemented in various hydrological
applications (e.g., time series generation, flood forecasts, ensemble
forecasts, and ensemble postprocessing) where spatiotemporal
variability is important56–62.

For the ungauged grid locations, we first apply the weighted
distance average of the observed AM surge ranks of the two
adjacent TGs to compute the ranks at the ungauged grid locations
and then use the computed ranks to reorder the simulated AM
surges at those locations. We assume that the statistical
characteristics (e.g., interannual variability) of AM storm surges
at an ungauged location are more likely to be that of the nearest
TG. The closer the grid location is to the TG, the more similar the
statistical characteristics. This assumption is supported by the fact
that an extreme surge event during a storm (tropical cyclone,
extra-tropical cyclone, or atmospheric river) covers a long stretch
of coastline and the surge magnitude reduces with the distance
away from the landfall location36,52,63.

Validation of the max-stable model and AM surge simulations.
To validate the model performance in quantifying the GEV
parameters at each tide gauge, we exclude one TG at a time (i.e.,
leave-one-out), calibrate the max-stable model using the AM
surges of the rest of the TGs, then predict the GEV parameters of
the omitted TG. We repeat this procedure and predict GEV
parameters for each of the selected 41 tide gauges. The max-stable
model predicted GEV parameters (location and scale) obtained
from the leave-one-out validation are compared with those
obtained from the max-stable models fitted to all TGs data.
Though the site-specific location and scale parameters estimated
by univariate GEV are not exactly the true values, comparing
model predictions at those locations provides an opportunity to
assess max-stable model efficiency in estimating marginal
behavior64,65. Hence, the predicted GEV parameters (from the
leave-one-out experiment) are also compared to the location and
scale parameters of each TG estimated by univariate GEV dis-
tribution. To evaluate the model performance in estimating GEV
parameters, a skill statistic called relative difference (RD) is

defined as RD ¼ Yactual�Ymodel
Yactual








; where Yactual and Ymodel are the

true and estimated values of the parameters, respectively. The
estimated GEV parameters are used to quantify the return levels
of extreme surges. Return levels are often used in the engineering
design of coastal flood protection infrastructure (e.g., sea walls,
dikes, and sand dunes). An N-year return level can be estimated
using the quantile function of GEV distribution as
F�1 ¼ 1� 1

N ; μ; σ; ξ
� 	

, where F−1 is the inverse cumulative dis-
tribution function for the fitted GEV distribution. We further
assess our proposed model’s performance against observational
data for select years with extreme tropical cyclone activity
(Katrina 2005, Sandy 2012, and Matthew 2016). For this purpose,
we compare the surge heights at (near) the landfall locations and
the spatial extents of surges around the landfall locations with the
model simulations. Furthermore, the model’s ability to reproduce
the temporal variability of AM surges at ungauged locations is
assessed. To do so, we consider the tide gauges that are not

included in the model calibration due to short record length and
compare the model simulated and observed AM surges at those
tide gauges over the (recent) years for which data are available. If
the selected tide gauge and the model grid location do not
coincide, we select the model grid location close to the corre-
sponding tide gauge location.

Data availability
Data generated in the study are publicly available in the figshare data repository and can
be downloaded from this website https://figshare.com/account/articles/23613651.

Code availability
Codes/scripts used in this study for data processing and analysis are developed in
MATLAB and R. Codes/scripts are stored in the figshare data repository and can be
downloaded from the link https://figshare.com/account/articles/23612697.
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