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Role of Large Igneous Provinces in continental
break-up varying from “Shirker” to “Producer”
Alexander Koptev 1✉ & Sierd Cloetingh 2

Traditionally, the emplacement of the Large Igneous Provinces (LIPs) is considered to have

caused continental break-up. However, this does not always seem to be the case, as illu-

strated by, for example, the Siberian Traps, one of the most voluminous flood basalt events in

Earth history, which was not followed by lithospheric rupture. Moreover, the classical model

of purely active (plume-induced) rifting and continental break-up often fails to do justice to

widely varying tectonic impacts of Phanerozoic LIPs. Here, we show that the role of the LIPs

in rupture of the lithosphere ranges from initial dominance (e.g., Deccan LIP) to activation

(e.g., Central Atlantic Magmatic Province, CAMP) or alignment (e.g., Afar LIP). A special

case is the North Atlantic Igneous Province (NAIP), formed due to the “re-awakening” of the

Iceland plume by the lateral propagation of the spreading ridge and the simultaneous

approach of the plume conduit to adjacent segments of the thinner overlying lithosphere. The

proposed new classification of LIPs may provide useful guidance for future research, parti-

cularly with respect to some inherent limitations of the common paradigm of purely passive

continental break-up and the assumption of a direct link between internal mantle dynamics

and the timing of near-surface magmatism.

Large Igneous Provinces (LIPs) are defined as large volumes of predominantly mafic rocks
characterized by a high rate of magma accumulation and unrelated to plate-tectonic pro-
cesses, i.e., formed far away from plate boundaries within intraplate tectonic

environments1–3. Within continents, such a sudden occurrence of continental flood volcanism is
usually preceded by a rapid uplift of the surface topography of 0.5–2 km within a few Myr4,5.
Most commonly, both the transient dome-shaped surface uplift6 and the subsequent intraplate
magmatic activity7 are attributed to mantle plumes8, seismically detected thermal9,10 or
thermal–chemical11,12 anomalies in the Earth’s mantle13,14. Importantly, these upwelling
structures are not limited to the classic (“primary”) Morgan-type plumes15 that rise from the
mantle–core boundary (~2900 km) throughout the entire mantle but also include so-called
“secondary” plumes16 rooted in the upper-lower mantle transition zone (MTZ: ~410–660 km)17.
Such small-scale anomalies in the upper mantle (also called “baby” plumes)18 could originate
from “primary” (super)plumes ponding at the 660 km phase change boundary19 or be the result
of deep dehydration of oceanic slabs stagnating in the lower part of the MTZ20–22.

Although the formation of LIPs is by definition not causally linked to plate-tectonic processes,
Precambrian records in southern Africa show that LIPs may occur during supercontinental
assembly23 through thermal blanketing beneath the growing continent24 and without support
from mantle plumes25. In contrast, most Phanerozoic plume-related LIPs are known to be
associated with the break-up of continents and the subsequent opening of large oceanic basins.
This is evidenced by the spatial and temporal correlation between the major continental flood
basalts formed in the last 300Myr and the different phases of fragmentation of Pangea, the
youngest supercontinent in Earth’s history26 (see also Table 1). In addition, recent compilations
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of continental and oceanic LIPs (including those found not only
on the present-day seafloor but also in ophiolites) have shown a
statistical correlation between the number of mantle plume events
and supercontinental cycles since >1000Myr27.

However, the concept of plume-induced continental rupture can
be challenged by the following observations: (1) long-lasting (up to
∼200Myr) phases of near-amagmatic rifting preceding emplace-
ment of LIPs28 and (2) the coincidence of the location and orien-
tation of break-up axes with pre-existing suture zones29. In
conjunction with arguments in favor of low (50–100 K) potential
temperature anomalies beneath commonly accepted mantle
plumes, such as the Iceland plume30, not only has the active role of
LIPs in Pangea break-up31 been questioned, but even the existence
of mantle plumes themselves32,33. It should be noted that all of these
“anti-plume” views are generally at odds with deep mantle geo-
chemical signatures of the LIPs34 and other volcanic hotspot lavas35.

To reconcile these apparent contradictions between active (dri-
ven by mantle plumes) and passive (driven by far-field tectonic
forces) mechanisms of continental rifting and subsequent break-
up, attempts have been made to develop transitional36 or
combined37–39 passive-active scenarios. More recently, inter-
mediate types of rifting-to-break-up systems (such as the so-called
“semi-active” and “semi-passive”) have also been identified18. With
this in mind, we examine major continental LIPs emplaced since
the Late Paleozoic and propose a new classification consistent with
their relationship to the disintegration of Pangea.

LIPs without break-up (LIP-Shirker). We begin our overview of
Phanerozoic LIPs with two examples that, contrary to common
expectations, are completely ineffective in terms of continental

break-up and subsequent onset of oceanic spreading. Therefore,
we refer to this type of LIP as LIP-Shirker.

The Permo-Triassic Siberian Traps (~250Ma40) is an arche-
typal example of a continental LIP (Fig. 1a), best known for its
proven impact on the largest known mass extinction event11,41.
Despite the concurrent development of a rift system beneath the
West Siberian Basin42,43, one of the largest hydrocarbon
provinces in the world44,45, the Siberian Traps did not result in
plate rupture and subsequent formation of an ocean basin.

Coincidence or not, another LIP-Shirker developed around the
same time: the Late Permian (~260Ma) Emeishan LIP was
emplaced on the western margin of the Yangtze Cratonic block of
South-West China46,47. Similar to the Siberian Traps, the
Emeishan LIP was accompanied by plume-induced continental
rifting6,48, which took place in the Panxi region above the plume
head49, possibly also in the presence of far- and near-field
tectonic stresses50.

These two examples document that without appropriate
geodynamic conditions (e.g., the presence of a pre-existing weak
zone at the site of LIP emplacement and/or high-level and long-
lasting far-field extensional stresses), even the most voluminous
extrusions of flood basalts are insufficient to cause continental
break-up with their impact limited to aborted rift systems.

Although the criteria for defining LIPs are not quite met, the
Tertiary volcanic provinces of western and central Europe are
probably another example of a “Shirker”. In this case, the
European Cenozoic Rift System (ECRIS) was likely activated
during the Paleogene51 by a mantle plume or a system of small
(“secondary”) plumes that have been magmatically active since
the Paleocene52 and can still be detected through seismic
tomography53,54. The change in geodynamic regime at ~35Ma

Table 1 Break-up-based classification of Large Igneous Provinces (LIPs).

LIP type Examples

LIP and timing of
emplacement

Separated continents and timing of
break-up

Timing of pre-, syn-, and post-LIP continental rifting (or of
attracted oceanic spreading)

LIP-Shirker Siberian Traps [~250Ma]40 – West Siberian rift systema

[~250–240Ma]42

Emeishan LIP [~260Ma]47 Panxi rifta

[~260–250Ma]48

LIP-Producer Madagascar LIP
[~93–90Ma]56

India–Madagascar [~84Ma]66 Amirante pull-apart basinb

[~95–85Ma]74

Deccan LIP [~66–64Ma]57 India–Seychelles [~63Ma]67 Cambay Basin, Kutch Basin,
Narmada-Zone Riftb

[~98.9–75Ma]75–77

LIP-Trigger Central Atlantic
Magmatic Province (CAMP)
[~201Ma]98

Africa–North America
[~190Ma]107

Central Atlantic rift systemc

[since ~225Ma]104

Karoo LIP [~184–182Ma]99 Africa–Antarctica/Madagascar
[~168–164Ma]108

Karoo rift systemc

[since ~190Ma]106

LIP-Attractor Afar LIP [~30Ma]121 Africa–Arabia [~19–17Ma]119 Carlsberg Ridged

[since ~63Ma]67

Paraná-Etendeka LIP
[~134–132Ma]126

Africa–South America
[~133–125Ma]125

South Atlantic Ridged

[since ~133Ma]125

LIP-Dornröschen North-Atlantic
Igneous Province (NAIP)e

[~62–58Ma]142

North America–Greenland
[~64–56Ma]143,144

Labrador Sea Ridged

[since ~64Ma]143

Greenland–Europe
[~54–53Ma]145

Norwegian–Greenland Sea riftc

[since >300Ma]166

LIP-Sleeper Manus Basin (Western
Pacific)172

– –

aLIP-induced aborted rift(s).
bPre-LIP extensional basin/rift oblique to future syn-LIP magmatic break-up trend.
cPre-LIP rift system evolving into break-up after LIP emplacement.
dRemote center of oceanic spreading propagating toward LIP-induced lithospheric soft point.
eLIP emplacement delayed by several tens Myr in relation to plume arrival time.
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(transition from progressive closure of the Neo-Tethys Ocean to
development of back-arc basins over retreating slabs)55 has
aborted the ECRIS and made the European volcanic province an
equivalent counterpart to the more voluminous LIP-Shirkers
discussed above.

LIPs with break-up. In contrast to the LIP-Shirker end-member,
most cases of LIP emplacement result not only in rifting but also
in rupture of the continental lithosphere26. Considering the
relative role of mantle plumes associated with LIPs in the break-
up process, we introduce the following types: LIP-Producer, LIP-
Trigger, and LIP-Attractor. Their characteristic features are
described below along with the natural examples and the criteria
for distinguishing them.

LIP-Producer. The LIP-Producer corresponds to a scenario in
which plume emplacement determines the location and timing of
continental rupture. Prominent examples are the Madagascar and
Deccan LIPs (Fig. 1b), where the rapid eruption of intraplate
flood basalts occurred at ~93–9056 and ~66–64Ma57, respec-
tively. The continental lithosphere overlying the corresponding
mantle plumes was therefore effectively weakened by basal
thermo-mechanical erosion58–60 and the reduction in the long-

term brittle strength of rocks exposed to melt percolation61–63. In
addition, this weakened lithosphere was subjected to slab pull
forces by the continuous subduction of the Neo-Tethys Ocean
floor64, sometimes enhanced by a double subduction with two
nearly parallel, north-dipping subduction zones between the
Indian and Eurasian plates65. Under such favorable conditions,
corresponding to the active-passive scenario when the mantle
plume is combined with far-field tectonic extension37–39, the
continents were broken-up in only a few Myr after the formation
of the Madagascar and Deccan LIPs, resulting in the successful
separation of Madagascar and India at ~84Ma66 and India and
the Seychelles at ~63Ma67. Consistent with the classic concept
that flood basalts represent the “head” of the plume and that
continued magmatism along hotspot tracks is associated with the
remaining plume “tail”68, the Madagascar and Deccan LIPs mark
the spatial and temporal beginning of well-known oceanic hot-
spot tracks that terminate at the current position of the Marion69

and Réunion70–72 plumes, respectively. It is also important that
the Mesozoic extensional basins that preceded the emplacement
of both the Madagascar73,74 and Deccan LIP75–77 are character-
ized by a strong obliquity with respect to the future break-up
axis78.

As evident from these examples, on the one hand, the role of
the LIP-Producer is dominant because plate-tectonic forces alone
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(e.g., slab pull by long-lived subduction since the Paleozoic)64 were
not sufficient to localize rifting at the site and with the same
orientation as the axis of eventual break-up. On the other hand, as
shown by contrary LIP-Shirker end-member cases (Siberian Traps
and Emeishan LIP), complete rupture of the lithosphere would not
be possible without appropriate (extensional) far-field stresses
determining the orientation of the break-up axis79,80. Paradoxi-
cally, the East African Rift System (EARS) could be an example of
both end-members. The ongoing purely active rifting in its Eastern
Branch, established in the Miocene81 after the emplacement of the
Kenya plume82–85 at ~40–45Ma86, did not yet evolve into the
rupture of the African Plate. Obviously, this is due to an
unfavorable tectonic setting with regional far-field compression
bymid-ocean ridges surrounding the African continent87–89. In the
absence of a plate-tectonic reorganization, the EARS will be
aborted, similar to the fate of the ECRIS and other rift systems
associated with LIP-Shirkers. In an opposite scenario where a
switch in the tectonic regime can make break-up possible, the East
African volcanic province will be an equivalent of LIP-Producer.

Importantly, mantle plume impingement can produce not only
(super)continent rupture, but also the separation of relatively
small continental ribbons or microcontinents90,91. In particular,
several continental fragments are known to have drifted away
from northern Gondwana during the Paleozoic (the Avalonia
terranes and the Cimmerian blocks)92 and Mesozoic (the Apulian
microcontinent)93, possibly due to the combined effect of slab
pull by continuous subduction of paleo-oceans (from Proto-
Tethys to Neo-Tethys)94 beneath the active margin of opposing
continents (from Laurentia to Laurasia)95 and mantle plumes
periodically arriving at the base of the African lithosphere96.

LIP-Trigger. In contrast to the LIP-Producer scenario, where
thermal and magmatic weakening caused by a mantle plume leads
to initial localization of pre-break-up deformation in the litho-
sphere, the magmatic activity associated with an LIP-Trigger is
preceded by continental rifting, situated in the area of future
lithospheric rupture and, crucially, of the same orientation as the
final break-up axis78. Prominent examples are the Central Atlantic
Magmatic Province (CAMP) and the Karoo LIP, emplaced at
~20197,98 and ~184–182Ma99–102, respectively. In these cases, the
role of the corresponding plumes was limited, only enhancing the
ongoing localized extension related to pre-magmatic rifting which
in both regions was already operating for several tens103,104 to
several105,106 Myr. Therefore, the CAMP and the Karoo LIP acti-
vated (but did not cause!) lithospheric rupture that occurred rela-
tively soon (~10–15Myr) after their emplacement, opening the
Central Atlantic at ~190Ma107 and separating South Africa from
Antarctica and Madagascar at ~168–164Ma108.

We dub this type of LIP as LIP-Trigger because in this case pre-
LIP localized deformation (rifting) could ultimately be terminated
by a break-up of the continent, even without the involvement of a
plume that merely accelerates (or triggers) this process without
playing a dominant role. Coincidence or not, both LIP-Triggers
(the CAMP and the Karoo LIP) lack hotspot tracks, unlike the
LIP-Producers (the Deccan and Madagascar LIPs), which, as
described above, have a clear expression in the form of tracks
imprinted by deep-seated Réunion and Morion plumes. There-
fore, LIP-Triggers seem to be preferably associated with bundles
of “secondary” plumes rather than with individual “primary”
plumes (Fig. 2a). This assumption is indirectly supported by (1)
the presence of numerous small plumes in the central Atlantic
Ocean (Azores, Canary, and Cape Verde)109, which are obviously
much younger (Cenozoic) in age110,111, but could indicate a
“secondary” plume fabric, that established in the region during
the Late Triassic–Early Jurassic and is still in operation; (2) a
larger area of scattered magmatism associated with LIP-Triggers

(e.g., ~3 × 106 km2 for the Karoo LIP) than in the case of a
spatially more concentrated magmatic area typical of LIP-
Producers (e.g., ~1.5 × 106 km2 for the Deccan LIP); and (3)
strong multivariance in proposed positions for the center of the
Karoo plume112. We should note, however, that despite our
hypothesis of numerous “secondary” plumes below the CAMP
and the Karoo LIP this is not a general requirement for the LIP-
Trigger, which in principle can also develop with a single
“primary” plume, as exemplified by the Kerguelen oceanic plateau
formed in the Early Cretaceous as a LIP over the Kerguelen
hotspot113. The first magmatism associated with the Kerguelen
plume has been dated to ~130Ma in southwestern Australia114

and ~132Ma in southeastern Tibet115, roughly contemporaneous
with the initial break-up of India–Antarctica116 and
India–Australia117, which in turn was preceded in both cases by
continental rifting since ~160Ma118, consistent with the LIP-
Trigger scenario.

LIP-Attractor. For both LIP-Producer and LIP-Trigger, con-
tinental break-up always occurs first above the plume emplacement
area, forming volcanic passive margins (VPMs), and then propa-
gates laterally, developing non-volcanic passive margins (NVPMs),
which are usually abruptly separated from volcanic counterparts by
transform faults78. On the contrary, in the case of the Afar LIP
(Fig. 2b), the NVPMs at the eastern tip of the Gulf of Aden began to
develop much earlier (~19–17Ma119) than the VPM formation
within the Afar triple junction (~1Ma120). This spatial and tem-
poral evolution of the break-up of the Gulf of Aden could be
explained as follows: a domain of the continental lithosphere, that
was rheologically weakened by the massive melting event of the
Afar plume at ~30Ma121,122, directed the westward lateral pro-
pagation of seafloor spreading from the mid-oceanic Carlsberg
Ridge, which had already been active since ~63Ma67 and then
approached this thermal sublithospheric anomaly acting as a soft
point123. We, therefore, dub this type of LIP as LIP-Attractor.

In the South Atlantic124, break-up at 133–125Ma125 also
propagated (in this case from south to north) toward the Paraná-
Etedeka LIP, which erupted almost simultaneously at
~134–132Ma126. This sequence has been hypothesized as
evidence for a non-plume mechanism of South Atlantic
opening127 and Pangea fragmentation in general31. However, it
is more likely that we are dealing here with another LIP-Attractor,
where the influence of the plume is restricted to directing the
propagation of oceanic spreading that is already operating.

It should be mentioned that from the perspective of the opening
of the Red Sea, the Afar LIP can also be considered as LIP-Producer.
In this case, initial continental rifting occurred almost simulta-
neously with plume emplacement119, while the break-up was
considerably delayed until ~4Ma at the southern tip, without yet
reaching the northern segments of the Red Sea128. This delay
between the LIP formation and the resulting plate rupture (not
typical of the classic LIP-Producers, where break-up usually
develops much more rapidly) may be due to a much reduced
Neo-Tethys slab pull since the onset of the progressive collision
between the Arabian and Eurasian Plates in the Bitlis suture zone at
~40–30Ma129. Consequently, it appears that in the classic
active–passive scenarios corresponding to the LIP-Producers, the
time interval between LIP emplacement and final break-up is
controlled primarily by a combination of the efficiency of
lithosphere weakening by magmatism (volume, temperature, and
water content of plume material) and the level of external
extensional forces.

“Re-awakened” and “dormant” LIPs (LIP-Dornröschen and
LIP-Sleeper). Despite decades of extensive study and the
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accumulation of a vast amount of geologic and geophysical
data130, the North Atlantic Igneous Province (NAIP) and the
associated evolution of lithospheric rupture and oceanic spread-
ing are still the subject of vigorous debate about the mechanisms
that favor either plume-induced131,132 or purely passive rifting
and break-up133.

To reconcile ongoing controversies about the actual causes of
the emplacement of voluminous magmatism in the NAIP, the
following key elements of the evolution and structure of the
North Atlantic realm should be taken into account as constraints:
(1) the spatial variation in the thickness of the continental
lithosphere134–136; (2) the relative motion trajectory of the
Iceland plume since the Cretaceous137–139; (3) the timing and
spatial distribution of the magmatism related to the NAIP140–142;
and (4) the timing of the opening of the Labrador Sea/Baffin
Bay143,144 and the North Atlantic145,146. According to these data,
the lithosphere is thinned beneath the central part of Greenland,
as evidenced by low seismic velocities in the mantle134–136. This
seismically detected zone of relatively thin lithosphere crossing
Greenland from west to east is also reflected in high measured147

and predicted148 heat flow, intense basal ice melt149, and
increased crustal thickness due to magmatic underplating150

and intrusions in the middle and lower crust151. Given the
spatial correspondence with the reconstructed paths of the
Iceland hotspot137–139, most recent studies interpret these
features as relict signatures of the passage of the Iceland mantle
plume beneath Greenland from at least 90 to ~60Ma148–151. In
contrast, according to more traditional views, the Iceland plume

was emplaced on the eastern edge of Greenland, as supported by
observations of radiating and circumferential dyke swarms152,
whereas part of its large, flattened head rapidly extended into
western Greenland153, causing the quasi-simultaneous magmatic
activity (the NAIP) on both sides of Greenland around
60Ma140–142. However, the relatively close location of the
reconstructed position (~130–120Ma) of the so-called High
Arctic Large Igneous Province, which includes the exposed
components on Ellesmere Island, Spitsbergen, and perhaps
northern Greenland154, and the corresponding segment of the
hotspot track132 is indicative of the Iceland plume, which is more
than twice as old as the NAIP137. Furthermore, the Iceland
hotspot can even be traced back to West Siberia in the Late
Permian–Early Triassic155, so that the Siberian Traps
(~250Ma40) could hypothetically be the very first magmatic
manifestation of the Iceland plume.

In view of the above, magmatic activity in Baffin Island and
Western Greenland during the Paleocene was probably triggered
by spreading axis propagation from the Labrador Sea toward the
Baffin Bay, where continental break-up was progressively initiated
from ~64Ma143 to ~56Ma144, respectively. The overlap of the
propagating spreading ridge with the ~100–80Ma-dated segment
of the Iceland hotspot track near the West Greenland passive
margin139 (Fig. 3a) enlivened the hot material that had resided
there already for ~20–40Myr without signs of excessive
volcanism. The simultaneous approach of the actual “tail” of
the Iceland plume to the eastern edge of thick Greenland
lithosphere139 allowed horizontal flow of the plume material
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along the adjacent thin-lithosphere corridors135 connecting the
eastern edge of Greenland with the Southern Scandinavia and
Scotland/Ireland156,157. A similar mechanism of propagation of
hot plume material toward areas distant from its original
emplacement along the elevated lithosphere–asthenosphere
boundary158–160 has been proposed for Late Mesoproterozoic
mafic magmatism in the southwestern USA (the Keweenawan
LIP and the Southwest Laurentia LIP)161 and Cenozoic alkaline
volcanism in Africa162 and Arabia163,164. The arrival of Iceland
plume hot material beneath thin European lithospheric segments
has led to intense plume-related magmatism in the British Isles
area165, quickly followed by the break-up in the North Atlantic
sensus stricto (i.e., between Greenland and Europe) along the
Reykjanes–Aegir–Mohns Ridge at ~54–53Ma145, preceded by the
most long-lasting rifting since the Late Paleozoic166,167. The
contemporaneous (~62–58Ma) magmatism over a vast area from
Baffin Island to the British Isles142 is thus driven by these two
independent processes—spreading axis propagation and plume
conduit motion—which happen to coincide in time (Fig. 3b).

The evolution of the North Atlantic region shows that a
thermal anomaly hidden for a while beneath thick lithosphere can
be “re-awakened” (or “re-initialized”) by the lateral propagation
of spreading ridges or by tapping its source under thinner
segments of overlying lithosphere due to horizontal plate
movements. We dub this type of LIPs as LIP-Dornröschen (“re-
awakened” LIP). We expect that the term LIP-Dornröschen (LIP-
Sleeping Beauty) may be applicable to a broad family of LIPs,
including those from the Precambrian. For example, several LIP
pulses in the period 1800–1600Ma, which formed on the
supercontinent Columbia during ancient plate motion over a
single stationary Xiong’er plume in the North China Craton168,
can be regarded as the earliest known manifestation of a LIP-
Dornröschen-like scenario in Earth history. On the contrary, the
youngest case of delayed LIP outpouring might be the Columbia
River Basalt LIP (~17–16Ma169) associated with the Yellowstone
mantle plume170, with a history appearing to extend to at least
~56Ma, as indicated by offshore volcanism on the Siletzia oceanic
plateau171.

Interestingly, the western (Baffin Island and Western Green-
land) and eastern (British Isles) components of the North Atlantic
“Sleeping Beauty” show some similarities to the LIP-Attractor and
the LIP-Trigger, respectively (see Fig. 3 and Table 1), so a
multilevel classification for these and/or other LIPs (and/or LIPs
components) could probably be developed in the future.

The mantle plume underlying the Manus back-arc basin
(Western Pacific Ocean), which was discovered by seismic
tomography without showing up as an evident hotspot172, is
likely a good example of a possible future LIP-Dornröschen that is
currently still “dormant” (LIP-Sleeper). Future high-resolution
seismic tomographic studies in continental and oceanic litho-
spheric environments will be of particular importance in
discovering new “dormant” plumes or hidden hotspots173, which
may provide additional constraints on plate motion history174

and will likely help uncover new aspects in the geodynamics of
mantle-lithosphere interactions.

Conclusions and future outlooks. For more than 25 years, the
prevailing view of the scientific community on the causal links
between mantle plumes and the break-up of (super)continents has
changed considerably. Traditionally, it was postulated that the
emplacement of LIPs played a key role in Pangea fragmentation26.
However, recognition of certain limitations of this concept28,29 has
gradually led to a fundamental reassessment of the causes of con-
tinental break-up31, which ultimately rules out the necessity175 and
even the existence of a mantle plume component32,33. As a

consequence, purely passive continental rifting models are now
even being applied to regions such as East Africa176–179, where both
geophysical83,85 and geochemical82,84 observations unequivocally
indicate the presence of mantle plumes, rooted in a common large-
scale source corresponding to a first-order mantle structure such as
the African superplume180,181.

To prevent further counterproductive discussions advocating
end-member views of classic “passive versus active“ rifting
debate182, a parallel of the more general “plates versus plumes“
controversy32,33, we propose here a new classification of LIPs that
illustrates the variability in the possible role of mantle plumes in
the process of continental break-up (in addition to the well-
known diversity in geochemically based classifications)23,183. In
particular, we demonstrate that, on the one hand, LIPs indeed
cannot always be causally linked to lithospheric rupture. As the
geologic records of the Siberian Traps and the Emeishan LIP
(LIP-Shirkers) show, even very voluminous magmatism asso-
ciated with active rifting does not always by itself lead to
continental break-up in the absence of favorable tectonic
conditions. On the other hand, regional far-field extension alone
also does not act as an efficient break-up mechanism, as most
non-volcanic passive margins (e.g., Newfoundland–Iberia, Equa-
torial Atlantic) are the result of horizontal propagation from
adjacent areas of plume-activated spreading78. This highlights the
key role of combined active–passive mechanisms38,184, where the
site of localized deformation is determined by the plume, while
the orientation of the rift and spreading axis is controlled by the
direction of external extension. This active-passive scenario
corresponds to the LIP-Producer exemplified by the Deccan and
Madagascar LIPs.

In addition, plumes can play a limited, yet important and
sometimes even definitive role in the dynamics of plate rupture.
These include (1) initiating break-up when rifting is already
underway, thereby determining the timing of lithospheric rupture
(LIP-Trigger, e.g., the CAMP and the Karoo LIP), and (2) creating
mechanically soft zones in the lithosphere that spatially control
the direction of propagation of oceanic spreading (LIP-Attractor,
e.g., the Afar and Paraná-Etedeka LIPs).

Two remaining types of LIPs are LIP-Dornröschen (Iceland
plume) and LIP-Sleeper (Manus basin). This implies that
interpretation of the timing of LIP emplacement made from a
mantle dynamics perspective27 should be handled with caution
because of possible delays between the timing of upwelling in the
mantle and its detectable magmatic manifestation at or near the
Earth’s surface.

Although our classification is currently based on the best-
known examples of continental Phanerozoic LIPs (Table 1), it
should also be relevant to the future study of other LIPs
(including Precambrian and oceanic), providing a generic guide
for further studies of intraplate magmatism in terms of its
relationship to plate rupture.
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