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Hydrological records can be used to reconstruct
the resilience of watersheds to climatic extremes
Ray Huffaker 1✉, Miguel Ángel Campo-Bescós 2, Eduardo Luquin 2,3, Javier Casalí Sarasibar 2 &

Rafael Muñoz-Carpena1

Hydrologic resilience modeling is used in public watershed management to assess watershed

ability to supply life-supporting ecoservices under extreme climatic and environmental

conditions. Literature surveys criticize resilience models for failing to capture watershed

dynamics and undergo adequate testing. Both shortcomings compromise their ability to

provide management options reliably protecting water security under real-world conditions.

We formulate an empirical protocol to establish real-world correspondence. The protocol

applies empirical nonlinear dynamics to reconstruct hydrologic dynamics from watershed

records, and analyze the response of reconstructed dynamics to extreme regional climatic

conditions. We devise an AI-based early-warning system to forecast (out-of-sample)

reconstructed hydrologic resilience dynamics. Application to the La Tejería (Spain) experi-

mental watershed finds it to be a low dimensional nonlinear deterministic dynamic system

responding to internal stressors by irregularly oscillating along a watershed attractor.

Reconstructed and forecasted hydrologic resilience behavior faithfully captures monthly wet-

cold/dry-warm weather patterns characterizing the Mediterranean region.
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Resilience modeling is applied in hydrology to assess the per-
sistence of watershed systems in supplying life-supporting
ecoservices when stressed by extreme conditions. There is a

growing urgency to integrate resilience into watershed management
as catastrophic weather, hydrologic, and environmental events—
including extreme temperatures, floods, droughts, rising sea levels,
and wildfires—become commonplace1,2. The US Army Corps of
Engineers’ statement on “Climate Preparedness and Resilience”
views “[m]anaging hydrologic extremes due to climate variability
[to be] an essential mission of water management agencies3.”
International organizations aspire to formulate early-warning
hydrologic resilience systems in small agricultural watersheds
where drought and floods are notoriously ill-predicted4.

Holling (1973)—author of the seminal paper introducing resi-
lience into ecological research—called for resilience models to
represent “a meaningful reality5.” Oreskes et al. (1994) went a step
further in advocating that “the burden is on the modeler to
demonstrate the degree of correspondence between the model and
the material world it seeks to represent” when “public policy and
public safety are at stake6.” Models untethered to reality lead to
resource management that “leave[s] the real problem unaddressed,
waste[s] resources, and impede[s] learning7.” Literature surveys
indicate that past resilience work has not met this burden. The
editors of a special hydrologic resilience issue in the Journal of
Hydrology found that past studies “have not properly captured the
essence of socio-hydrological dynamics in the coupled human-
water context8.” Fraccascia et al. (2018) concluded more generally
that “…the number of theories developed on resilience in each
research field still lacks operationalization and testing9.”

A possible explanation is that past studies conventionally adopted
a model-first approach, presupposing particular resilience behavior
from a narrow range of alternatives without testing for real-world
correspondence10,11. A meta-study by Unger (2018) extracted a
broad definition of resilience as “the capacity of a dynamic system to
adapt successfully to disturbances that threaten system function,
viability, or development”10. The resilience literature recognizes
that dynamic systems can respond to outside disturbance in alter-
native ways, including resuming normal function (restoration
resilience)12–15 or abruptly shifting dynamic behavior into an
alternative state (transformation resilience)10,16,17. Some studies
straddle restoration resilience and transformation resilience11,18,
creating confusion about whether “a resilient system resists adverse
conditions, or…adapts to them”19. More recently, the literature has
recognized that resilient systems may be open complex dynamic
systems responding to adverse conditions that are self-generated by
recurrent internal forces (complexity resilience)9,10,20.

Holling (1973) called for “meaningful reality” because these
resilience alternatives “can yield very different approaches to the
management of resources5.” Managers overseeing restoration-
resilient systems cannot anticipate exogenous random shocks but
can expect that volatile system adjustments will dampen over
time. In this case, management has reason to not interfere with a
system’s natural recovery process. Alternatively, managers over-
seeing complexity-resilient systems might anticipate recurrent
behavior but cannot rely on these inherently unstable systems to
self-correct. Muller (2021) draws a similar distinction between
managing watersheds with easy and difficult hydrologies21. Easy
hydrologies are characterized by stable, reliable, and predictable
seasonal rainfall, river flows, and groundwater availability. This
renders “the management of water for different purposes rela-
tively easy, facilitating the conceptualization and operation
of infrastructure as well as the establishment of the rules
that govern the entitlements and obligations of water users.”
Alternatively, difficult hydrologies are characterized by unstable,
highly variable, and less predictable conditions. They require
“stronger institutions as well as higher levels of physical

investments in order to support basic activities such as agriculture
or even simply to meet domestic needs.” Misdiagnosis of real-
world hydrologic resilience behavior can lead to institutions and
investments ill-crafted to achieve water security.

In this paper, we test for “meaningful reality” with a data-
driven protocol that (1) reconstructs (reverse-engineers) real-
world hydrologic dynamics from watershed records and (2)
investigates how reconstructed hydrologic dynamics respond to
extreme and changing regional climatic conditions. We subse-
quently match reconstructed responses against conventional
resilience classes and a new classification that accounts more
broadly for potential real-world dynamics associated with difficult
hydrologies. Reconstructed hydrologic resilience dynamics pro-
vide the baseline for evaluating the performance of an AI-based
early-warning system to forecast hydrologic resilience out-of-
sample and alert watershed managers to extreme behavior. We
apply the protocol to analyze the hydrologic resilience of the La
Tejería watershed in Navarre Province, Spain.

Reconstructing hydrologic resilience dynamics from watershed
records is challenging because records typically exhibit substantial
variability22,23 that, in our case-study presented below, appear as
irregular fluctuating patterns of qualitative behavior concealing
underlying temporal dynamics (Fig. S1). The classical perspective is
that irregular fluctuations result from interactions of a large number
of degrees of freedom (d-o-f). High-dimensional irregularity is
conventionally modeled as linear-stochastic dynamic systems in
which steady oscillations shift in response to exogenous shocks24,25.
However, the advent of deterministic chaos raised an alternative
perspective: Irregular fluctuations may emerge from nonlinear-
deterministic interactions of relatively few (even as few as three) d-
o-f evolving along a nonlinear attractor—a geometric object
bounded within a low-dimensional subset of state space26. If
attractor dynamics of an n-dimensional nonlinear dynamic system
are bounded within m << n dimensions, the problem of modeling
long-term dynamics shrinks by the n–m inactive d-o-f27. This
dimension-reducing property allows for long-term system dynam-
ics to be captured with relatively few d-o-f regardless of overall
system dimensionality without sacrificing essential information.

A recent literature survey indicates that past hydrologic resi-
lience studies have not accounted for potential dimension-reduced
complex hydrologic dynamics and consequently have modeled
complexity-resilient behavior with high-dimensional ‘top-down’
dynamic systems or ‘bottom-up’ agent-based models8,28. However,
it is reasonable to test for low-dimensional nonlinear deterministic
dynamics in hydrologic resilience studies for three major reasons:
First, watersheds are a classic example of a complex system driven
by an intricate network of interacting nonlinear climatic, hydro-
logic, geologic, and soil processes. Complex systems have the
capacity for self-organization, from which emerges ordered col-
lective dynamic behavior not exhibited by individual components
on their own. Potential emergent behavior includes low-
dimensional nonlinear deterministic dynamics. Second, several
recent hydrologic studies have uncovered this type of emergent
dynamic behavior in watersheds29–31. Third, the inadvertent
application of linear methods to analyze potentially nonlinear
watershed records is statistically unreliable. In Fig. 1, we illustrate
this by fitting a linear regression line (red line) to a scatterplot of
precipitation in the La Tejería watershed against the Mediterranean
Oscillation Index (MOI) climate teleconnection (black dots). We
find that apparently randomly scattered regression residuals are
serially dependent by labeling scattered observations by month
(e.g., 1= January) and connecting them in time sequence (grey
lines). This produces a ‘boot-shaped’ geometric object composed of
a leftward upper branch that precipitation and MOI values revisit
in summer and fall months (i.e., months 5–10) and a rightward
lower branch revisited in winter and early spring months
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(i.e., months 11, 12, 1–4). This geometric object represents a
potential two-dimensional projection of a low-dimensional
nonlinear-deterministic attractor. If so, the basic assumption of a
linear relationship between these covariates is violated. Indis-
criminate application of linear regression methods creates mis-
specification bias: A distorted version of nonlinear variation in the
data passes through the linear model to structured residuals, which
renders coefficient estimates biased and inefficient. Misspecification
bias can be resolved only by moving to a nonlinear specification32.
We apply empirical nonlinear dynamics25,33 (END) to formally test
whether observed variability in watershed records is most likely due
to linear-stochastic or nonlinear-deterministic dynamics. END
reconstructs state-space dynamics from watershed records, diag-
noses whether linear-stochastic or nonlinear-deterministic
dynamics are the most likely source of irregular fluctuations char-
acterizing observed records, and estimates the d-o-f required to
portray reconstructed state-space dynamics. END—based on the
premise that each variable encodes its internal interactions with
covariates—can reconstruct the state-space dynamics of complex
systems from a relatively small ensemble of covariates or even a
single covariate without requiring data on every covariate.

Since noisy records obscure the detection of structured
dynamic behavior, we follow past empirical nonlinear dynamic
studies26,34 by isolating signal (structured variation) from noise
(unstructured variation) in each record with singular spectrum
analysis35 signal processing (Fig. 2a). We analyze unstructured
noise probabilistically with extreme value statistics. This generates
return-level plots used in hydrology to model the expected
occurrence of extreme random hydrologic conditions, potentially
including drought and flooding36. We test isolated signals for
structured dynamics with END (Fig. 2b). First, we test hypothesis
H1, that signals exhibit critical break points with singular spec-
trum transformation37. Acceptance of H1 indicates abrupt shifts
in dynamic structure compatible with transformation resilience.
Structural breaks violate nonlinear stationarity, requiring that the

“duration of the measurement is long compared to the time scales
of the systems”38. Nonstationary signals lack sufficient length to
adequately sample dominant low-frequency cycles isolated by
singular spectrum analysis and, consequently, are removed from
further analysis. Second, we apply surrogate data analysis39,40 to
statistically test hypothesis H2 concerning whether observed
irregular fluctuations in stationary signals are most likely due to
linear-stochastic rather than nonlinear-deterministic dynamics.
Acceptance of H2 indicates that irregular fluctuations in isolated
signals are most likely attributed to outside shocks disturbing
otherwise stable behavior compatible with restoration resilience.
Restoration resilience has often been studied empirically in
hydrology with Budyko frameworks using hydrologic indices to
assess whether watersheds resume normal hydrologic function in
response to warming shifts41. Rejection of H2 leaves the door
open to nonlinear-deterministic dynamics as an internal source of
irregular behavior. Detection of high-dimensional dynamics is
compatible with complexity resilience. Alternatively, the detection
of dimension-reduced (low-dimensional) dynamics is compatible
with a new classification that we introduce: low-dimensional
complexity. Third, we follow emerging hydrologic research29–31

to test hypothesis H3 that watershed variables are causally
interactive with conjectured hydrologic/climatic stressors with
convergent cross mapping42. In particular, we test the extent to
which global/regional climate teleconnections link large-scale
atmospheric circulation patterns to variability in local hydrologic
and meteorological covariates in the study area. Detection of low-
dimensional complexity-resilience behavior and acceptance of H3
allows for novel analysis of hydrologic resilience to recurring
climatic extremes along attractors constructed from interacting
covariates.

La Tejería watershed covers an area of 169 ha and has a humid
sub-Mediterranean climate with an average annual precipitation
of 725 mm occurring predominantly in the late winter and early
spring, and an average annual temperature of 13 °C (Fig. 3)43.
The watershed is located within a high-productivity winter grain
farming area, with cereal crops covering more than 90% of its
total area. La Tejería watershed is part of a network of experi-
mental small agricultural watersheds established by the Govern-
ment of Navarre (Spain) to assess the impact of soil erosion on
water resources and to identify environmentally sound manage-
ment practices. Instrumentation in each watershed collects time
series data on variables including stream discharges, soil sediment
concentrations, turbidity, precipitation, and temperatures. These
watershed data have been used in several investigations of
hydrologic behavior in the La Tejería watershed43–46.

Instrumentation in the La Tejería watershed provides data on
water level, turbidity, and meteorological variables measured every
10min. Sediment concentration is measured daily. The water level
is converted to flow rate with the discharge rating curve calculated
by the Government of Navarre. The water quality sampling pro-
cedure includes four samples collected each day that are mixed and
stored in the same bottle before analysis. These samples are taken
daily at 3, 9, 15, and 21 h, solar time (every 6 h). The daily water
quality samples are analyzed by the Government of Navarre using
standard methods44. We downloaded climate teleconnection
indices found in past studies to influence meteorological conditions
in the Iberian peninsula from web sources provided in Rodrigues
et al. (2021) (Table S1)47. These indices include the North Atlantic
Oscillation (NAO)48–51, the Atlantic Multidecadal Oscillation
(AMO)47, the El Niño 3.4 SST index (ENSO)47, the Mediterranean
Oscillation (MOI)48,49,51, the Pacific Decadal Oscillation (PDO)47,
and the Western Mediterranean Oscillation (WeMOi)48,49,51. We
resampled daily MOI and daily-averaged watershed data with
monthly averages compatible with the monthly time step of the
non-MOI teleconnections. We computed Fourier spectra before

Fig. 1 Visualization of potential low-dimensional nonlinear-deterministic
structure in La Tejería watershed and climatic records. To demonstrate
the statistical danger of not testing records for nonlinearity, a linear
regression line (red line) was fit to a scatterplot of precipitation in the La
Tejería watershed against the Mediterranean Oscillation Index (MOI)
climate teleconnection (black dots). Scattered observations were labeled by
month (e.g., 1= January) and connected in time sequence (grey lines). This
uncovered serial dependence taking the geometric form of a ‘boot-shaped’
object representing a potential two-dimensional projection of a low-
dimensional nonlinear-deterministic attractor. Precipitation and MOI values
revisit the leftward upper branch of the object in summer and fall months
(i.e., months 5–10) and the rightward lower branch in winter and early
spring months (i.e., months 11, 12, 1–4). Indiscriminate application of linear
regression methods to this nonlinear object creates a misspecification bias
that can be resolved only with a nonlinear specification.
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and after resampling of each variable to ensure that important daily
or weekly variation was not averaged out. We filled in sporadic data
gaps due to instrument error with the R(imputeTS) package.
Finally, we standardized each time series by subtracting the mean
from each observation and dividing by the standard deviation.
Positive (negative) standardized values represent standard devia-
tions above (below) the mean (the zero value). The period of record
is December 2002 through December 2021 (229 months).

Results
Signal processing. Signal processing isolates the structural varia-
tion in records composed of trend and oscillatory components.
Signal strength measures the percentage of total variation that a
signal or a signal component accounts for in the corresponding
record, with the residual percentage attributed to unstructured
noise. We summarize signal processing results in Table 1 and show
the graphical decompositions in Figs. S1 and S2. Of the watershed
covariates, the stream discharge and temperature signals had

moderate to strong signal strengths—accounting for the majority of
variation in their respective records—with dominant annual
oscillatory and weaker nonlinear-trend components. The sediment
concentration signal was also moderately strong but had dominant
nonlinear-trend and fainter annual-oscillatory components. The
turbidity and precipitation signals were weaker—accounting for a
third of the total variation in their respective records—and were
dominated by annual oscillatory and weaker nonlinear-trend
components. The majority of climate teleconnection signals
accounted for substantial percentages of total variation. The
strongest signals were associated with El Niño 3.4 (80%), AM0
(75%), WeMOI (51%), and MOI (48%); and the weakest signals
with NAO (36%) and PDO (29%). Teleconnection signals were
dominated by strong long-term trend cycles except for MOI, which
was dominated by an annual oscillation.

H1: Signals exhibit critical change points. We tested for critical
change points in hydrologic and climate teleconnection signals with

Fig. 2 Protocol for reconstructing hydrologic resilience from watershed records. a Initial application of signal processing isolates the structural variation
(signal) from the unstructured variation (noise) in each record. Unstructured noise is modeled probabilistically with extreme value statistics to generate
return-level plots used in hydrology to model the expected occurrence of extreme random hydrologic conditions, potentially including drought and flooding.
b Isolated signals are tested for dynamic structure with empirical nonlinear dynamics (END). A sequence of hypotheses is tested to reconstruct recurrent
hydrologic resilience behavior from watershed signals. Hypothesis H1 tests whether signals exhibit critical break points compatible with transformation
resilience. Abrupt shifts in dynamic structure suggest that a signal is non-stationary and prevent the application of END. Hypothesis H2 tests whether
stationary signals are governed by linear-stochastic dynamics. Acceptance of H2 indicates that irregular fluctuations in isolated signals are most likely
attributed to outside shocks disturbing otherwise stable behavior compatible with restoration resilience. Rejection of H2 leaves the door open to nonlinear-
deterministic dynamics as an internal source of irregular behavior. Detection of dimension-reduced (low-dimensional) dynamics is compatible with a new
classification that we introduce: low-dimensional complexity resilience. Hypothesis H3 tests whether watershed variables are causally interactive with
conjectured hydrologic/climatic stressors. Detection of low-dimensional complexity-resilience behavior and acceptance of H3 allows for novel analysis of
hydrologic resilience to recurring climatic extremes along attractors constructed from interacting covariates.
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singular spectrum transformation37. It is implemented with a slid-
ing change-point window partitioning a signal into past and future
series centered around a reference time. Singular spectrum analysis
is performed on the past and future series, and a change-point score
(0 ≤CP-score ≤ 1) is computed, indicating whether the singular
spectrum decomposition substantially changes. Sliding the change-
point window through the signal results in a curve of CP-scores
across time periods. The statistical significance of the CP-scores
along this curve is tested by bootstrapping upper 95% confidence
levels52. CP-scores falling below confidence levels are statistically
insignificant. The turbidity, El Niño 3.4, and NAO signals exhibited
numerous CP-scores at the upper limit of one, indicating abrupt
shifts in dynamic behavior violating required nonlinear stationarity
(Fig. 4). They were dropped from further analysis. The sediment
concentration, AMO, andWeMOI signals exhibited a few high CP-
scores that were statistically insignificant or occurred at either the
first or last few observations and, consequently, were deemed to be
nonlinear stationary. Finally, the stream discharge, precipitation,
temperature, and MOI signals exhibited extremely low CP-scores,
indicating nonlinear stationarity.

H2: Signals are generated by linear-stochastic dynamics. We
computed pseudo-phase-space (pps) surrogate data vectors that test
for noisy linear dynamics in cyclical records53. We reconstructed a

shadow attractor for each stationary watershed and teleconnection
signal and each surrogate data vector using time-delay
embedding54. According to Takens’ Theorem, time-delay embed-
ding provides a 1–1 mapping of system dynamics from the original
real-world state-space to a reconstructed shadow state space so long
as the latter has sufficient dimensions to contain the original
attractor54. Since we do not directly observe the dimension of the
real-world attractor, we followed convention in estimating the
embedding dimension with the false nearest neighbors test55, and
the embedding delay as the delay, giving the first minimum of the
mutual information function55. A ‘low’ estimated embedding
dimension is compatible with low-dimensional complexity resi-
lience, indicating that nonlinear dynamics can be adequately
modeled with relatively few d-o-f. Alternatively, a ‘high’ estimated
embedding dimension is compatible with high-dimensional com-
plexity resilience, indicating nonlinear dynamics requiring many d-
o-f. We selected two discriminating statistics conventionally used to
distinguish nonlinear-deterministic from linear-stochastic perfor-
mance: nonlinear prediction skill—measured by Nash–Sutcliffe
Efficiency (NSE)—and permutation entropy—measured by a
modification of the Shannon H statistic. Since NSE statistics
approaching one indicate higher skill, we specified an upper-tailed
test of the null hypothesis that attractors reconstructed from
watershed and teleconnection signals predict with no more skill
than surrogate attractors reconstructed from linear-stochastic

Fig. 3 La Tejería watershed in Navarre Province, Spain. The La Tejería watershed in north-central Spain is part of a network of experimental small
agricultural watersheds established by the Government of Navarre to examine environmentally sound watershed management practices. La Tejería covers
an area of 169 ha and has a humid sub-Mediterranean climate with an average annual precipitation of 725 mm occurring predominantly in the late winter
and early spring and an average annual temperature of 13 °C. Instrumentation in each watershed collects time series data on variables, including stream
discharges, soil sediment concentrations, turbidity, precipitation, and temperatures.

Table 1 Signal processing results.

Signal strengtha Oscillatory components (months)

Watershed covariates
Stream Discharge (Q) 56% 12 (34%), 6 (9%), 18 (5%), trend cycle (4%), 7 (4%)
Sediment Concentration (SS) 65% trend cycle (35%), 28 (13%), 22 (9%), 12 (5%), 18 (3%)
Turbidity (Turb) 33% 12 (25%), trend cycle (8%)
Precipitation (P) 36% 12 (20%), trend cycle (16%)
Temperature (T) 97% 12 (94%), 6 (1%), 7 (0.4%), trend cycle (0.3%), 16 (0.2%)
Climate teleconnections
El Niño 3.4 80% 12 (23%), trend cycle (57%)
Atlantic Multidecadal Oscillation (AMO) 75% trend cycle (28%), 12 (27%), 28 (12%), 23 (8%)
Mediterranean Oscillation Index (MOI) 48% 12 (31%), 6 (8%), 9 (4%), trend cycle (3%), 7 (2%)
Western Mediterranean Oscillation (WeMOI) 51% trend cycle (17%), 36 (10%), 16 (9%), 29 (15%)
North Atlantic Oscillation (NAO) 36% trend cycle (14%), 18 (14%), 10 (8%)
Pacific Decadal Oscillation (PDO) 29% trend cycle (17%), 12 (12%)

aThe percent of total variation in the record accounted for by the detrended signal.
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surrogate data. Since larger H statistics reflect more random beha-
vior, we specified a lower-tailed test for permutation entropy. We
applied rank-order statistics with a significance level α= 0.0540.

We summarize surrogate data results in Table 2. When
permutation entropy is the discriminating statistic, we reject the
null hypothesis for every watershed and climate teleconnection
signal since H computed for each is below the corresponding
lower-threshold value bounding from above the bottom-ranked
surrogate attractors. When nonlinear prediction skill is the
discriminating statistic, we reject H2 for every signal (except for
stream discharge) since the NSE achieved by each surpasses the
corresponding upper-threshold value exceeded by the top-ranked
surrogate attractors. The nonlinear prediction test was borderline
acceptance of H2 for stream discharge, but since the permutation
entropy test more soundly rejected H2, we made the judgment
call to reject H2 for stream discharge. Given the strength of
the overall results, we confidently reject the null hypothesis of
linear-stochastic dynamics for every tested signal. Nonlinear-
deterministic dynamics and complexity resilience remain likely.
We estimated low embedding dimensions of m= 4 for AMO and
WeMOI and m= 3 for the other signals, indicating low-
dimensional complexity resilience.

H3: Hydrologic variables are causally linked to climatic stres-
sors. We follow emerging hydrologic research empirically test-
ing for causality among watershed and climatic signals29–31. We
applied convergent cross mapping42 (CCM) since it is designed
to detect causality in low-dimensional nonlinear-deterministic
systems. The logic behind CCM is that interacting variables
belong to the same real-world dynamic system. Consequently,
attractors empirically reconstructed from interacting variables
map one-to-one with the same real-world attractor and thus
map one-one with each other by Euclid’s axiom that two things
equal to the same thing must equal each other. CCM tests for a
one-to-one mapping between reconstructed attractors by mea-
suring the skill with which one attractor can be used to cross-
predict values on the other. Following Sugihara et al., we
measure CCM prediction skill by the Pearson correlation
coefficient—a conventional statistical tool for measuring linear
correlation between two variables.

In Fig. 5, we summarize detected causal interactions in a
community interaction diagram whose nodes represent interacting
covariates and arrowed edges display directional interactions. The
strength of each interaction is given by the correlation coefficient
near each arrowed edge. The stream discharge variable was driven
strongly by the temperature signal (0.75), moderately by the
precipitation signal (0.53), and more weakly by the MOI (0.33) and
AMO (0.21) regional climate teleconnections. Precipitation
measured in the watershed was driven with moderate strength by
stream discharge (0.61) and more weakly by local temperature
(0.42), and MOI (0.42). These results provide empirical evidence
that recurring large-scale air pressure and circulation patterns
represented in the MOI and AMO climate teleconnection indices
play a detectable role in systematically influencing local hydrologic
and weather covariates in the La Tejería watershed. The detected
bi-causal relationship between stream discharge and precipitation
provides further empirical support for land-atmosphere interac-
tions in which surface moisture systematically influences weather
“through its impact on evaporation and other surface energy
fluxes56.”

Nonlinear recurrent resilience analysis. A generalized version of
Takens’ Theorem permits embeddings to include multiple covari-
ates and their delayed copies while guaranteeing invariant state-
space dynamics57. We can investigate detected low-dimensional
complexity resilience from multiple perspectives depending on the
interactive watershed and climate teleconnection signals used to
construct state-space attractors. Since the estimated embedding
dimension for each signal was predominantly m= 3 (Table 2), we
constructed attractors from combinations of at least three inter-
active signals. Moreover, since precipitation and stream discharge
interacted with several drivers (blue nodes in Fig. 5), we con-
structed attractors to focus on the resiliency of precipitation and
stream discharge to at least two of their respective drivers.

We constructed an attractor from interacting precipitation (P),
temperature (T), and MOI signals (grey line) to examine the
resiliency of precipitation to extremes in local temperature and
large-scale climatic patterns represented in the MOI (Fig. 6a).
The coordinate axes of the attractor are provided by these three
signals, and each multidimensional point on the attractor

Fig. 4 Testing signals for critical break points indicating transformation resilience. Singular spectrum transformation detects critical change points with
a sliding change-point window partitioning a signal into past and future series centered around a reference time. Singular spectrum analysis is performed
on the past and future series, and a change-point score (0≤ CP-score≤ 1) is computed, indicating whether the SSA decomposition substantially changes.
CP-scores below bootstrapped upper 95% confidence levels fail to indicate statistically significant breakpoints.
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scatterplots monthly values of each signal. Each point was labeled
by month (e.g., 1= January), and the points connected in time
sequence. As in Fig. 2, we observe a ‘boot-shaped’ attractor
composed of a rightward lower branch that signals revisited in
winter and early spring months (i.e., months 11, 12, 1–4) and a
leftward upper branch revisited in summer and fall months (i.e.,
months 5–10). The upper (lower) panel highlights points on the
attractor with extreme lows (highs) in precipitation (blue dots),
temperature (red dots), or MOI (green dots). Extreme lows
(highs) in each variable were taken as values occurring in the
lower (upper) 15th percentile. Along the attractor, precipitation
extremes evolved counter-cyclically to temperature and MOI
extremes: Precipitation lows (upper plot) and temperature highs
(lower plot) occurred predominantly in the warm summer and
fall months when the MOI was in an extreme high phase (lower
plot) in this watershed. Alternatively, precipitation highs (lower
plot) and temperature lows (upper plot) occurred predominantly
in the cold winter and early spring months when MOI was in its
extreme low phase (upper plot). This detected behavior accurately
reflects the ‘wet-cold’ and ‘dry-warm’ monthly weather patterns
known to characterize the Mediterranean49 and demonstrates
how the MOI climate teleconnection systematically influenced
local weather extremes.

In Fig. 6b, we focus on the resiliency of stream discharge (Q) to
extremes in (i) local precipitation (P) and MOI and (ii) local
temperature (T) and MOI. Similar to Fig. 6a, the attractors
constructed in these two cases are boot-shaped, with points on
the attractor alternating between wet months (rightward lower
branch) and dry months (leftward upper branch) annually.
In Fig. 6b(i), stream-discharge and precipitation extremes evolved
countercyclically to MOI extremes with extreme lows (highs)
occurring in the dry (wet) months when MOI was at an extremely
high (low) phase. In Fig. 6b(ii), stream-discharge extremes
evolved countercyclically to temperature and MOI extremes:
Stream-discharge lows (upper plot) occurred in the dry-warm

months when temperature and MOI were at extreme highs.
Stream discharge highs (lower plot) occurred in the wet-cold
months when temperatures and MOI were at extreme lows. In
Fig. 6c, we observe identical qualitative dynamics when AMO was
substituted for MOI.

AI-based early-warning hydrologic resilience system. We for-
mulated an explainable-AI-based early-warning system of
hydrologic resilience to climatic stress (EWS) to forecast hydro-
logic resilience out-of-sample and alert watershed managers to
extreme behavior. By explainable AI, we mean that echo-state
neural networks58 (ESNN) were used to reproduce and forecast
recurrent resilience behavior reconstructed with our protocol
from low-dimensional components and causal networks detected
in observed watershed records. In Fig. S3a–c, we show perfor-
mance plots for ESNN reproductions of the resilience attractors
constructed in Fig. 6. Each plot shows the portion of the signals
comprising the attractor allocated to the training set (black
curve to left of box), the portion remaining in the testing set
(boxed area), ESNN in-sample predictions (yellow curve in box),
and ESNN two-year out-of-sample forecasts (violet curve to right
of box). In each plot, ESNN predicted with almost-perfect skill
(NSE > 0.97). Forecasts largely preserved oscillatory behavior
observed in corresponding signals. In a demonstration of
dynamic correspondence, state-space trajectories reconstructed
from ESNN in-sample predictions (blue line) and out-of-sample
forecasts (red line) largely rested on attractors constructed from
in-sample signals (grey line) (Fig. S3d).

In Fig. 7, we display hydrologic resilience dynamics forecasted by
the EWS for the La Tejería watershed in a more management-
friendly format. The plots show individual signals (black line)
comprising the precipitation attractor (Fig. 7a) and stream
discharge/MOI attractor (Fig. 7b) analyzed in Fig. 6a, b. The plots
include corresponding observed records (blue line) and two-year

Table 2 Surrogate data results.

Embed Nonlinear prediction test Permutation entropy test

Signal ma db Signal
NSEc

PPS surrogatesd upper
thresholde

H0f Signal Hg PPS surrogates lower
thresholdh

H0

Watershed covariates
Water discharge (Q) 3 6 0.91 0.93 Linear 0.82 0.87 Nonlinear
Suspended sediment
concentration (SS)

3 6 0.97 0.87 Nonlinear 0.64 0.88 Nonlinear

Turbidity (Turb) 3 6 0.89 0.76 Nonlinear 0.72 0.94 Nonlinear
Precipitation (P) 3 6 0.96 0.89 Nonlinear 0.72 0.88 Nonlinear
Temperature (T) 2 6 1 −0.29 Nonlinear 0.69 0.94 Nonlinear
Climate teleconnection indices
El Niño 3.4 3 6 0.95 0.88 Nonlinear 0.7 0.88 Nonlinear
Atlantic Multidecadal Oscillation
(AMO)

4 6 0.94 0.82 Nonlinear 0.7 0.9 Nonlinear

Mediterranean Oscillation (MOI) 3 2 0.97 0. 94 Nonlinear 0.8 0.86 Nonlinear
Western Mediterranean
Oscillation (WeMOI)

4 6 0.94 0.78 Nonlinear 0.62 0.9 Nonlinear

North Atlantic Oscillation (NAO) 3 4 0.87 0.79 Nonlinear 0.69 0.91 Nonlinear
Pacific Decadal Oscillation (PDO) 3 6 0.96 0.82 Nonlinear 0.68 0.89 Nonlinear

aEmbedding dimension.
bEmbedding delay.
cNash–Sutcliffe Efficiency (NSE= 1 denotes perfect prediction skill).
dPPS surrogates test the null hypothesis that aperiodic cycling characterizing the empirically-reconstructed attractors is generated by randomly shifting periodic orbits characteristic of noisy linear
dynamics. The significance level is set at α= 0.05% with 399 surrogates generated.
eAn upper-tailed test rejects the null hypothesis if the NSE computed using the shadow attractor reconstructed from the signal rests above the floor of the upper extreme values computed from surrogate
attractors.
fRejection of the null hypothesis leaves the door open to nonlinear-deterministic dynamics.
gModified Shannon H measure.
hA lower-tailed test rejects the null hypothesis if H computed using the shadow attractor from the signal rests below the ceiling of the lower extreme values computed from surrogate attractors.
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ESNN signal forecasts (violet area). Extreme signal values that
occur outside of the upper/lower 15th percentile (dashed horizontal
lines) are marked with black dots. Extreme values of corresponding
observed records occurring outside of these percentiles are marked
with blue dots. The plots labeled ‘forecasts’ zoom in on forecasted
signals on these attractors along with forecasted extreme values. In
Fig. 7a, EWS-forecasted signals continue to exhibit the recurring
countervailing relationship that precipitation has with temperature
and MOI. Extreme forecasted lows (highs) in precipitation
occurring during the dry-warm (wet-cold) months visually
correspond with extreme forecasted highs (lows) in temperatures
and MOI. In Fig. 7b(1), EWS-forecasted stream-discharge and
precipitation signals faithfully reproduce a countervailing relation-
ship with MOI. In Fig. 7b(2), the EWS-forecasted stream-discharge
signal continues to interact countercyclically with the temperature
and MOI signals.

Probabilistic modeling of unstructured noise isolated in
watershed and climatic records. We completed the hydrologic
resilience analysis of the La Tejería watershed by applying extreme
value statistics36 to probabilistically model the response of water-
shed variables to extreme events captured in the unstructured noise
component isolated from observed records in signal processing.
Application of extreme value statistics requires that extreme events
be independent and identically distributed (iid) random variables
or that artificial ad hoc restrictions be imposed to control for serial
dependencies59,60. Since isolated noise is unstructured, we did not
need to impose such restrictions on observed watershed records.
We apply the peaks over the threshold version of EVS that com-
putes the likelihood of extreme discrepancies exceeding a selected
threshold value within a given time interval. In theory, exceedances
follow a generalized Pareto (GP) distribution59. Quantile–quantile

(Q–Q) plots are used to determine the fit of the GP distribution to
the data. Given a reasonable fit, the estimated GP distribution can
be inverted to solve for quantiles, providing a useful noise diag-
nostic: return-level plots.

In Figs. S1 and S2, we plot noise levels measured as the
vertical difference between standardized observed and signal
values in each month. Positive (negative) noise occurs when
observed values are greater (less) than corresponding signal
values. We defined positive noise extremes as those exceeding
the upper 15th percentile threshold and the absolute value of
negative noise extremes in the same manner. The return-level
plot estimates the expected time (return time) before extreme
noise of various magnitudes (return level) is expected. In Fig.
S4a, b, we show computed return-level plots in which return
levels increase at a decreasing rate with return time as generally
expected. In Fig. S4c, we highlight positive and negative noise
extremes expected over 1-year, 2-year, and 3-year return times.
Consider, for example, positive noise extremes in the stream-
discharge record. The upper 15th percentile threshold is 0.41
(standard deviations), with extreme randomly occurring stream
discharges of 0.77, 1.22, and 1.51 expected within 1-year, 2-year,
and 3-year intervals, respectively.

Discussion
Hydrologic resilience modeling has emerged as a popular tech-
nique to assess the ability of watershed systems to continue
supplying life-supporting ecoservices under extreme conditions.
Its increasing use is undeterred by literature surveys finding that
current models fail to capture essential hydrologic dynamics and
incorporate adequate testing. We addressed these shortcomings
by formulating an empirical protocol to reconstruct hydrologic
dynamics from observed watershed records and analyze the
response of reconstructed dynamics to extreme regional climatic
conditions. We devised an AI-based early-warning system pro-
viding skillful out-of-sample forecasts of reconstructed hydrologic
resilience dynamics, reliably alerting watershed managers to
future recurrent hydrologic and climatic extreme events. We
applied the protocol and early-warning system to reconstruct and
forecast hydrologic resilience to the extreme climate in the La
Tejería (Spain) experimental watershed.

Our results provide compelling empirical evidence that irregular
fluctuating patterns observed in La Tejería watershed records con-
ceal emergent low-dimensional nonlinear-deterministic hydrologic
dynamics and, consequently, that watershed dynamics are regulated
endogenously by internal nonlinear hydrologic, geologic, soil, and
climatic processes. Low-dimensional nonlinear dynamic systems do
not fit within conventional resilience classes in the literature.
Restoration-resilient systems resume normal function after outside
disturbance. Complexity-resilient systems are conventionally taken
to be high dimensional. In contrast, we reconstructed a low-
dimensional complexity resilient system that undergoes irregular
oscillations confined to a low-dimensional watershed attractor in
response to internal stressors. Thanks to the Generalized Takens’
Theorem57, we could construct watershed attractors from different
combinations of interacting watershed and climatic covariates and
consequently analyze resilience behavior from multiple perspec-
tives. We constructed low-dimensional nonlinear attractors to
investigate the resilience of stream discharge and local precipitation
to their respective detected internal stressors. In both cases,
empirically reconstructed watershed resilience behavior faithfully
captured monthly wet-cold and dry-warm weather patterns known
to characterize the Mediterranean region. Both stream-discharge
and local precipitation extremes evolved countercyclically to
extreme temperature and extreme phases of the MOI climate tele-
connection index. An AI-based early-warning system skillfully

Fig. 5 Causal interaction among climatic and hydrologic covariates.
We applied convergent cross mapping (CCM) to empirically test for causal
interactions among watershed and climatic signals29–31. The nodes of the
community interaction diagram represent interacting covariates, and
arrowed edges display directional interactions. The strength of each
interaction as computed by CCM, is given by the correlation coefficient
near each arrowed edge.
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learned these complex resilience dynamics, indicating that the
2-year out-of-sample forecasting period was not substantially
compromised by sensitivity to initial conditions.

We emphasize two final points: First, our objective was to
demonstrate how hydrologic resilience dynamics could be recon-
structed from records in a case-study watershed—not to

demonstrate that our particular finding of nonlinear dynamics in
the La Tejería watershed would hold for multiple watersheds. We
cite Muller (2021) in the paper to support the idea that watershed
dynamics may differ substantially depending on distinguishing
characteristics. Consequently, we do not expect that empirical
nonlinear dynamics would necessarily reconstruct low-dimensional

Fig. 6 Resilience along climatic-hydrologic system attractors. a To focus on the resilience of precipitation to extremes in other climatic variables, a
watershed attractor was constructed from the perspective of precipitation (P), temperature (T), and the Mediterranean Oscillation Index (MOI) climate
teleconnection. The coordinate axes of the attractor are provided by these three signals, and each multidimensional point on the attractor scatterplots the
monthly values of each signal. Each point is labeled by month (e.g., 1= January), and the points are connected in time sequence. Signals revisited the
rightward lower branch of the attractor in winter and early spring months (i.e., months 11, 12, 1–4) and the leftward upper branch in summer and fall months
(i.e., months 5–10). The upper (lower) panel highlights points on the attractor with extreme lows (highs) in precipitation (blue dots), temperature (red
dots), or MOI (green dots). Extreme lows (highs) in each variable were taken as values occurring in the lower (upper) 15th percentile. The plots show that
precipitation adjusted countercyclically to extremes in temperatures and MOI. Precipitation lows (upper plot) and temperature highs (lower plot) occurred
predominantly in the warm summer and fall months when the MOI was in an extremely high phase (lower plot). Alternatively, precipitation highs (lower
plot) and temperature lows (upper plot) occurred predominantly in the cold winter and early spring months when MOI was in its extreme low phase (upper
plot). This corresponds well to the ‘wet-cold’ and ‘dry-warm’ monthly weather patterns known to characterize the Mediterranean. b(i) Stream discharge
(Q) and precipitation (P) extremes evolved countercyclically to MOI extremes with extreme lows (highs) occurring in the dry (wet) months when MOI was
at an extremely high (low) phase. b(ii) Stream-discharge extremes evolved countercyclically to temperature (T) and MOI extremes: Stream discharge lows
(upper plot) occurred in the dry-warm months when temperature and MOI were at extreme highs. Stream discharge highs (lower plot) occurred in the
wet-cold months when temperatures and MOI were at extreme lows. c Substituting the Atlantic Multidecadal Oscillation (AMO) for MOI produces
qualitatively identical dynamics.
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attractors from all observed watershed records. Some watersheds
may not evolve along a low-dimensional attractor, or available
records may be too noisy or short to adequately sample irregular
oscillations on a real-world attractor. Second, we do not envision
empirical nonlinear dynamic modeling as a replacement for sub-
sequent conceptual modeling based on first principles. Rather, it
provides a rigorous empirical benchmark guiding model specifica-
tion tethered to real-world conditions. This benchmark includes a
geometric picture of resilience dynamics that conceptual
models should reproduce and an estimate of the minimum model
dimensionality required to do so.

Methods
Signal processing. Singular spectrum analysis is a data-adaptive
signal processing method accommodating highly anharmonic
oscillations in irregular records33,35. It separates structured
variation (signal) composed of trend and oscillatory compo-
nents from unstructured variation (noise). The strength of a
component is measured by its contribution to total variation in
the record. Singular spectrum analysis runs in three stages:
decomposition, grouping, and reconstruction. In the decom-
position stage, a time-series record is transformed into a tra-
jectory matrix whose columns are the observed record followed

Fig. 7 AI-based early warning system of hydrologic response to stress. The plots show individual signals (black line) comprising the precipitation
attractor (a) and stream discharge/MOI attractor (b). The plots include corresponding observed records (blue line), and two-year signal forecasts made
with echo state neural networks (violet area). Extreme signal values occur outside of the upper/lower 15th percentile (dashed horizontal lines) are marked
with black dots. Extreme values of corresponding observed records occurring outside of these percentiles are marked with blue dots. The plots labeled
‘forecasts’ zoom in on forecasted signals on these attractors along with forecasted extreme values. a Forecasted signals continue to exhibit the recurring
countervailing relationship that precipitation has with temperature and MOI. Extreme forecasted lows (highs) in precipitation occurring during the dry-
warm (wet-cold) months are driven by extreme forecasted highs (lows) in temperatures and MOI. b(1) Forecasted stream-discharge and precipitation
signals faithfully reproduce a countervailing relationship with MOI. b(2) The forecasted stream-discharge signal continues to interact countercyclically with
the temperature and MOI signals.
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by its forward-delayed copies. The dimension of the trajectory
matrix depends on the window length parameter (L), typically
estimated to be about half of the record length. Singular value
decomposition is used to decompose the trajectory matrix into
the sum of new matrices. Each matrix is the product of an
eigenvalue and corresponding right and left eigenvectors. In the
grouping stage, diagnostics provided by singular value decom-
position are used to split the new matrices into groups corre-
sponding to various signal and noise components of the
records. Finally, in the reconstruction stage, matrix groups are
reconverted to time series vectors with diagonal averaging.

Time-delay embedding. We applied time-delay embedding54 to
reconstruct a shadow attractor from a single time series record.
Initially, an embedded data matrix is constructed whose first
column contains the observed record, and the remaining columns
contain time-delayed copies of the observed signal serving as
surrogates for excluded system variables. The number of columns
is called the embedding dimension, and the delay length between
columns is the embedding delay. The columns are coordinate
axes in state space, and the rows are multidimensional points on a
shadow attractor. Takens (1980) formally proved that time-delay
embedding provides a 1–1 mapping of system dynamics from the
original real-world state-space to the reconstructed shadow state
space so long as the latter has sufficient dimensions to contain the
original attractor. Since the dimension of the real-world attractor
is unknown, the embedding dimension is conventionally esti-
mated with the false nearest neighbors test55, and the embedding
delay is estimated as the delay, giving the first minimum of the
mutual information function55.

Surrogate data testing. We generated surrogate data vectors to
test whether an apparent nonlinear structure reconstructed from
a record was more likely due to a mimicking linear-stochastic
dynamic process. Surrogate data vectors destroy the temporal
structure of a record while preserving statistical properties com-
patible with linear-stochastic dynamics. We computed PPS sur-
rogates to test for noisy linear dynamics in cyclic records53.
Shadow attractors are reconstructed from each surrogate data
vector and compared with the shadow attractor reconstructed
from a record based on discriminating statistics representing
hallmarks of nonlinear-deterministic behavior. We selected two
conventional discriminating statistics: nonlinear predictive skill61

and permutation entropy62. We specified an upper-tailed
hypothesis for the nonlinear prediction skill test since attractors
reconstructed from watershed and teleconnection signals are
expected to predict with more skill than surrogate attractors
reconstructed from linear-stochastic surrogate data. We measure
predictive skill with the Nash–Sutcliffe model efficiency (NSE)63,
which denotes perfect skill when NSE= 1. Permutation entropy
modifies the classic Shannon H measure of the information
in a time series for application to finite noisy data. Since
lower H statistics reflect more structured behavior, we specified a
lower-tailed test for permutation entropy. We applied rank-
order statistics to test for significant differences in nonlinear
performance40. An ensemble of S= (k/α)− 1 surrogate is gen-
erated, where α is the probability of false rejection, and k controls
the number of surrogates and the sensitivity of the test. We set
α ¼ 0:05 and k= 20 and accepted the null hypothesis of sto-
chastic cycling dynamics if the NSE (H) taken from the attractor
reconstructed from the rill signal did not fall in the upper
(lower) k corresponding values taken from the ensemble of
S= 399 surrogate attractors. If we reject the null hypothesis,
untested dynamic structures (including nonlinear-deterministic
dynamics) remain viable.

Convergent cross mapping. We applied convergent cross
mapping42 (CCM) to test whether shadow attractors reconstructed
from different observed signals reconstruct the same real-world
dynamic. If so, then the corresponding signals are deemed to
causally interact in the same real-world dynamic system. Shadow
attractors empirically reconstructed from interacting variables map
one-to-one with the same real-world attractor and thus map one-
to-one with each other. CCM tests for a one-to-one mapping by
measuring the skill with which an attractor (Mx) reconstructed
from a covariate X can be used to cross-predict values on another
attractor (My) reconstructed from a second covariate Y. Predictive
skill should converge as the number of points used to reconstruct
Mx increases. Prediction skill is measured by the Pearson corre-
lation coefficient. Sugihara et al. perform cross-mapping with a
simplex-projection algorithm.

Echo-state neural networks. Echo state neural networks (ESNN)
are an artificial recurrent neural network (RNN) method com-
prised of a randomly generated reservoir of neural states mapping
each point on an attractor sequentially into a high-dimensional
space, and a read-out providing reservoir predictions64,65.
Reservoir computing is fast learning with low-training cost since
the reservoir is fixed and only the readout is trained. ESNN
operation is outlined in Fig. S5. To start, the embedded data
matrix of a reconstructed attractor is split into training and
testing sets. In the training mode (Fig. S5a), rows of the training
set (i.e., points on the attractor) are progressively inputted
through an input coupler into a randomly generated reservoir
composed of N neurons, xi tð Þ; i ¼ 1; 2; ¼N , where t represents
an iteration. In each iteration, updated scalar activation values are
collected in a neuron activation matrix, X. The training set is
regressed against X to estimate the coefficient matrix, Wout, used
below to formulate the readout component. The figure gives the
formula for the conventionally applied linear ridge regression
method. In the testing mode (Fig. S5a, lower branch), rows of the
testing set are progressively inputted into the reservoir, and a
linear readout component generates predicted values,
y tð Þ ¼ Woutx tð Þ, where x tð Þ is the vector of activations at iteration
t. The neuron activations x(t) are updated at each iteration, and
the updated predictions y(t) are collected in prediction matrix Y.
The first column of Y is the ESNN prediction of a signal con-
tained in the first column of the embedded data matrix, and the
rows of Y are ESNN predicted points on the testing portion of the
reconstructed attractor (i.e., rows of the embedded data matrix in
the test set). To assess ESNN predictive skill, we measure the
goodness-of-fit between each column of Y and its counterpart in
the embedded data matrix with the Nash–Sutcliffe Efficiency
Index63 commonly applied in hydrology. To operationalize
ESNN, values must be selected for an array of architectural
hyperparameters, including the fraction of attractor points in the
training set (tau), the number of reservoir states (N), the spectral
radius of the reservoir (rho.scale), the leaking rate regulating
iterative updating of neural states, the Tikhonov regularization
coefficient required for ridge regression (reg), and scalar intervals
(a and b) setting boundaries for uniform random elements used
to generate an input-to-reservoir coupler matrix and an adjacency
matrix (i.e., the reservoir), respectively. These hyperparameters,
their roles in ESNN computation, and reasonable ranges of values
are detailed in 64. To set these hyperparameters, we automated a
large grid search employing high-performance computing. We
uniformly sampled the hyperparameter grid with Sobol GSA
sampling methods66. We identified the ensemble of sampled
ESNN architectures generating state-space attractors corre-
sponding to an attractor reconstructed from watershed records;
where our indicator of correspondence was whether embedded
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ESNN predictions rested on the reconstructed attractor (Fig.
S3d). In generation mode (Fig. S5b), skillful parameterizations
were used to forecast points on an attractor out-of-sample by
feeding back in forecasted values. Hyperparameter values sup-
porting the ESNN-reproduced attractors appearing in Fig. S3 are
reported in Table S1.

Data availability
The La Tejería watershed records and climate teleconnection records used in this study
are available in Figshare: Huffaker et al._Data_commsenv.csv (https://doi.org/10.6084/
m9.figshare.24645630).

Code availability
These R packages were used: imputeTS (fill in data gaps), RSSA (singular spectrum
analysis), spacetime (spacetime separation plots); and tseriesChaos (mutual information
function, false nearest neighbors test, time-delay embedding). These packages are
downloaded from https://cran.r-project.org/package= *, where * is a package. A wrap-
around R code facilitating the use of these packages is available in Huffaker et al. (2017).
We used Origin 202267 for 3-D plotting. We modified R Code developed by Lukosevicius
(2012) to run echo state neural networks whose results are reported in Fig. 7. Wrap-
around R code and data files are available in Figshare: ESNN_Q_P_T_MOI.csv (https://
doi.org/10.6084/m9.figshare.24645708),ESNN_Q_P_T_MOI.R https://doi.org/10.6084/
m9.figshare.24645726), ESNN_Q_P_T_AMO.csv (https://doi.org/10.6084/m9.figshare.
24645729), ESNN_Q_P_T_AMO.R (https://doi.org/10.6084/m9.figshare.24645735).
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