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Winter snow cover influences growing-season
vegetation productivity non-uniformly in the
Northern Hemisphere
Hao Liu 1, Pengfeng Xiao 1,2,3✉, Xueliang Zhang1,2, Siyong Chen1, Yunhan Wang1 & Wenye Wang1

Ongoing changes in snow cover significantly affect vegetation productivity, but the actual

effect of snow cover remains unclear due to a poor understanding of its lagged effect. Here,

we used multisource datasets to investigate the lagged effect of snow cover on vegetation

productivity in Northern Hemisphere ( > 40°N) ecosystems from 2000 to 2018. We found a

widespread lagged effect of snow cover ( > 40%, P < 0.05) on growing season vegetation

productivity (mean ~73-day lag). The effect of snow cover on vegetation productivity was

underestimated by over 10% of the areas without considering regional lagged time differ-

ences. A longer lagged effect generally occurred in warm and humid areas, and areas with

increased lagged time (66%) were greater than those with decreased trends. Moreover,

changes in lagged effect were strongly driven by climate factors, followed by soil and

topography factors. These findings emphasize the need to consider lagged time differences of

snow cover when investigating snow-vegetation productivity interactions.
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Snow covers nearly half of the land surface in the Northern
Hemisphere (NH) during winter1, and it plays a funda-
mental role in hydrological and biogeochemical

processes2–4. As one of the most sensitive indicators of climate,
snow cover has experienced substantial changes in NH ecosys-
tems over the past several decades5–7, and the Intergovernmental
Panel on Climate Change warns that spatiotemporal changes in
snow cover significantly affect vegetation dynamics, thereby
altering vegetation productivity8. Specifically, snow cover affects
vegetation productivity through various physiological and phe-
nological processes. For example, a high snow water equivalent
(SWE) not only improves soil moisture and nitrogen status, but
the deep snow layer also protects vegetation from frost damage
and reduces root mortality in winter, promoting vegetation
productivity9,10. Furthermore, delayed snowmelt typically leads to
a later spring vegetation phenology and a shorter growing season,
which can limit vegetation productivity11. Understanding the
interaction between snow cover and vegetation productivity is
critical for gaining insight into climate feedback mechanisms and
thus has recently attracted widespread attention12–16.

Numerous efforts have been made to investigate the effect of
snow cover on the growing season vegetation productivity (here-
after called vegetation productivity)17–19, but findings regarding
the magnitude and direction of vegetation productivity responses
to snow cover changes are not always consistent. For example, in
the European Alps and the Tibetan Plateau, snow cover changes
were significantly correlated with vegetation productivity when
seasonal scales were used11,20, but no significant effect of snow
cover was found at annual scales21,22. Such a biased result was also
obtained for different vegetation types at vegetation development
stage scales, e.g., snow cover significantly affects the early vege-
tation productivity for grasslands in temperate China but not for
forests and shrublands23. The above studies chose to use fixed
temporal scales to capture the sensitive period of snow cover
affecting vegetation productivity, lacking a comprehensive
understanding of the lagged effect of snow cover (hereafter called
lagged effect), which may lead to inconsistent results.

In fact, vegetation productivity does not respond directly to the
changes in snow cover but instead responds to actual soil
hydrothermal conditions (e.g., soil temperature and moisture),
and the effect of snow cover on soil hydrothermal conditions may
take several weeks or months to dissipate after snowmelt24,25.
This leads to a time lag between changes in snow cover and their
effect on vegetation productivity (i.e., the lagged effect of snow
cover). Meanwhile, the direction of the lagged effect can be
positive (increased snow cover increases vegetation productivity)
or negative, depending on different geographical conditions26.
More importantly, the lagged time of snow cover (no direction)
on vegetation productivity varies considerably regionally.

Although the lagged effect is a common climatic
phenomenon27,28, it is still unclear how long the lagged response
of vegetation productivity to snow cover changes is, especially
over large areas. This severely limits the understanding of snow
cover-vegetation interactions and is a major knowledge gap
recognized by the Arctic Monitoring and Assessment Program29.
Moreover, due to an insufficient understanding of the lagged
effect, snow cover information is rarely used correctly in climate
change impact models4, which increases the uncertainty in
quantifying the dynamics of the vegetation carbon budget. Efforts
to develop climate adaptation policies are also hampered by the
difficulty of identifying the areas of NH ecosystems that may be
most vulnerable to future changes in snow cover.

Here, we investigated the lagged effect on vegetation pro-
ductivity in NH ecosystems (>40° N) based on multisource
datasets from 2000 to 2018 and found that the main reason for
underestimation of the effect of snow cover on vegetation

productivity was the neglect of regional differences in the lagged
time of snow cover, which has received little attention to date.
Furthermore, we identified the spatiotemporal pattern of the
lagged time of snow cover on vegetation productivity and used
the random forest model to determine a series of biotic and
abiotic factors driving changes in the lagged time of snow cover.
Our study is expected to contribute to a deeper understanding of
how vegetation productivity responds to snow cover changes and
to provide crucial insight for improving the assessment of
snow–vegetation interactions.

Results
Underestimated impact of snow cover on vegetation pro-
ductivity without considering lagged time differences. We first
compared the lagged effect on vegetation productivity with and
without considering regional differences in the lagged time of
snow cover (WITH_LTSC and WITHOUT_LTSC). The scenario
WITHOUT_LTSC was conducted at four commonly used fixed
temporal scales separately, including monthly, seasonal, vegeta-
tion development stage, and whole growing season scales
(Fig. 1b–m, “Methods”). The results showed that the proportion
of pixels with significant correlations between snow cover and
vegetation productivity was small, and the affected regions varied
in different periods, which led to a large inconsistency and
uncertainty in the results. For instance, the highest proportion of
significant correlations was only 11.6% (at the spring scale) across
different fixed temporal scales, giving the illusion that snow cover
had no significant effect on vegetation productivity in most
regions (Fig. 1h). In contrast, the area proportion of the lagged
effect on vegetation productivity was apparently larger (45.7%,
Fig. 1a) under the scenario WITH_LTSC, indicating that the
sensitive period of snow cover affecting vegetation productivity
cannot be captured at a fixed temporal scale.

We further merged significant correlation pixels for each fixed
temporal scale (Fig. 1n–p) to quantify the difference between the
two scenarios mentioned above. The results showed that the
proportion of both positive and negative significant correlations
between snow cover and vegetation productivity under the
scenario WITH_LTSC was 12.5–38.9% (~3.3–10.1 × 106 km2)
greater than that of the scenario WITHOUT_LTSC. Spatially, the
area proportion was the least underestimated (e.g., mean of ~0.3%
at monthly scale) in Europe compared to North America (~5.0%),
Central Asia (~3.2%), and East Asia (~3.9%) (Fig. 1q). Among the
different vegetation types, the underestimated areas of forests and
shrublands were greater than those of grasslands (Supplementary
Fig. 1). In addition to significantly affected areas, the magnitude
of lagged effect on productivity was underestimated under the
scenario WITHOUT_LTSC (Fig. 1r–u). The positive differences
in absolute partial correlation coefficients between scenarios
WITH_LTSC and WITHOUT_LTSC occurred in most ecosys-
tems, especially at the vegetation development stage and whole
growing season scales (over 35%). The above results were
generated from the Global Orbiting Carbon Observatory-2-
based solar-induced fluorescence (SIF) gross primary productivity
(GPP) dataset (GOFGPP). Similarly, these underestimated
phenomena were observed in three other independent produc-
tivity datasets: Moderate Resolution Imaging Spectroradiometer
MOD17A2H GPP (MODGPP), Boreal Ecosystem Productivity
Simulator model GPP (BEPSGPP), and clear-sky contiguous SIF
(CSIF) (Supplementary Fig. 2).

Spatial patterns of the lagged time of snow cover on vegetation
productivity. The time scale of lagged effect was further deter-
mined and showed high heterogeneity in NH ecosystems. There
was a widespread significant lagged effect (concentrated below the
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105-day lag, mean ~73-day lag) on vegetation productivity (45.7%
of the study area, P < 0.05), with a clear latitudinal pattern with a
decreasing trend of 1.05-day lag from south to north (Fig. 2a).
The positive lagged effect mainly occurred at relatively long lags
(over a month) and peaked at ~3-month, while the negative
lagged effect mainly occurred at shorter lags, and its area pro-
portion decreased with increasing lagged time scales (Fig. 2b).
Meanwhile, the absolute significant positive correlations between
SWE and vegetation productivity was greater than negative cor-
relations, which decreased with increasing lagged time scales.
From the perspective of vegetation types, the mean positive lag-
ged effect on vegetation productivity in forests (76-day lag) and
shrublands (73-day lag) was longer than that in grasslands (69-
day lag) (Fig. 2c). However, the mean negative lagged effect on
grasslands (74-day lag) was longer than that on forests and
shrublands. Additionally, the above-mentioned spatial patterns
were generally similar to the results of the MODGPP, BEPSGPP,
and CSIF datasets (Supplementary Fig. 3).

Temporal dynamics of the lagged time of snow cover on
vegetation productivity. In general, the temporal trends in the
time scale of positive and negative lagged effects from 2000 to
2018 were opposite in NH ecosystems. Specifically, four vegeta-
tion productivity proxies (GOFGPP, MODGPP, BEPSGPP, and
CSIF) generally showed significant increasing (mean of
0.39 d yr−1 lag) and decreasing (mean of −0.45 d yr−1 lag) trends
for positive and negative lagged effects, respectively (Fig. 3a, b).
Among the different vegetation types, a consistent and significant
increasing trend in the time scale of positive lagged effect was
observed in forests, and a significant decreasing trend in the time
scale of negative lagged effect was observed in grasslands (Fig. 3c).
In comparison, there was no significant increasing or decreasing
trend for shrublands based on most of the observational datasets.
Spatially, most of Europe and Eastern North America showed
decreasing trends in the lagged time of snow cover over the last
two decades, while Central and East Asia mainly showed
increasing trends in the lagged time (Fig. 3d). In addition, we

Fig. 1 Comparisons of the lagged effect on vegetation productivity (based on the GOFGPP dataset) under scenarios WITH_LTSC and WITHOUT_LTSC
in Northern Hemisphere ecosystems from 2000 to 2018. a–m Spatial distribution of the partial correlation coefficient between SWE and vegetation
productivity under scenarios WITH_LTSC (O) (a) and WITHOUT_LTSC (b–m) at monthly (May–October), seasonal (spring–autumn), vegetation
development stage (growth and senescence), and whole growing season (W) scales. Non-grey pixels show significant partial correlations at P < 0.05.
n–p Spatial distribution of merged partial correlation coefficients between SWE and vegetation productivity at monthly (M), seasonal (S), and vegetation
development stage (D) scales. q Proportion of the significant positive (Sig P) and negative (Sig N) partial correlation coefficients in East Asia (90°E–180°,
40°N–90°N), Central Asia (60°E–90°E, 40°N–90°N), Europe (25°W–60°E, 40°N–90°N), and North America (180°–25°W, 40°N–90°N). r–u Spatial
distribution of differences in the absolute partial correlation coefficient between O and M, O and S, O and D, and O and W.
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tested the robustness of temporal results by applying different
moving windows (11-year and 12-year) and consistent results
were obtained (Supplementary Fig. 4).

Drivers of the lagged time of snow cover on vegetation pro-
ductivity. Evaluating which environmental factors contribute to
the lagged time of snow cover was vital to understanding the effect
and underlying mechanisms of snow cover on vegetation pro-
ductivity. We thus constructed random forest models to predict
the time scales of positive and negative lagged effects using 12
biotic and abiotic variables closely related to snow cover status and
vegetation carbon uptake (“Methods”). The models performed
with moderate to high accuracy in predicting the time scales of the
positive lagged effect (R= 0.65, P < 0.05) and negative lagged
effect (R= 0.76, P < 0.05) (Supplementary Fig. 5), which success-
fully identified the most important drivers explaining positive and
negative lagged effects on vegetation productivity (Fig. 4).

Based on the built random forest models, the ranked
importance of the variable and the partial dependence of each

variable were acquired. The results showed that climate factors
played a vital role in regulating variations in the time scales of
positive (43%) and negative (39%) lagged effects (Fig. 4). The
time scales of the lagged effect increased with increasing mean air
temperature and precipitation and decreasing wind. This was
followed by topography and soil factors, but their importance for
positive and negative lagged effects differed. For example, the
topography factors accounted for a larger proportion of variations
in the time scale of the positive lagged effect, while soil factors did
the opposite. Furthermore, some considerably important vari-
ables, such as biodiversity and soil organic carbon, had opposite
effects on variations in the time scales of positive and negative
lagged effects. In addition, other related factors, including land
cover and human activity, showed relatively low contributions.

Discussion
Importance of considering lagged time differences when
assessing the effect of snow cover on vegetation productivity.
Vegetation dynamics are affected not only by concurrent climatic

Fig. 2 Spatial patterns of the lagged time of snow cover on vegetation productivity (based on the GOFGPP dataset) in Northern Hemisphere
ecosystems from 2000 to 2018. a Geographical and latitudinal distribution of the lagged time of snow cover. The inset histogram indicates the proportion
of lagged time, and the dashed vertical line indicates the mean lagged time. The blue shaded area indicates ±0.5 standard deviation. b Proportion of the
significant partial correlation coefficient between SWE and vegetation productivity (P < 0.05) at different lagged time scales. c Distribution of the lagged
time of the positive and negative effects of snow cover in different vegetation types. The mean value in c is marked by triangles (with digits), centerlines
indicate the median values, whiskers indicate the 1/99th values, and the right part of the boxplots shows the distribution of lagged time.
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factors but also by previous climatic factors30,31. In this study, we
found that the actual effect of snow cover cannot be fully revealed
without considering lagged time differences (i.e., directly using a
fixed temporal scale, Fig. 1). The results showed that significant
variations in vegetation productivity in nearly one-half of the NH
(45.7%) were related to snow cover changes (Fig. 1a). In contrast,
the area proportion of the effect of snow cover on vegetation
productivity was lower in the scenario WITHOUT_LTSC, where
the significant areas at monthly, seasonal, vegetation development
stage, and whole growing season scales were 33.2%, 22.1%, 16.1%,
and 8.8%, respectively. This could explain why the document
using the development stage scale reported that areas with sig-
nificant snow–vegetation productivity correlations were relatively
small and the magnitude of significant correlations was spatially
scattered32.

In addition to finding the underestimation of the lagged effect
on vegetation productivity under the scenario WITHOUT_LTSC,
we improved the understanding of the lagged effect and revealed
the reasons for the inconsistent findings of previous studies. Since
the response time of vegetation productivity to snow cover varied
in different ecosystems, the use of fixed temporal scales in
previous studies proved inadequate in capturing the sensitive
period of snow cover affecting vegetation productivity, even
within the same region. For example, a previous study based on a
vegetation development stage scale reported that snow depth has

a significant impact on early productivity for grasslands in
temperate China but not for forests and shrublands23. Con-
versely, another study found a significant effect of snow depth on
productivity for these vegetation types using a seasonal scale20.
Although the lagged effect on vegetation productivity has been
widely acknowledged12,16,19, most observational and model
simulation studies, have only used fixed response time scales to
characterize the effect of snow cover. In light of these findings, we
emphasize that lagged time differences should be considered to
improve assessments of snow-vegetation productivity
interactions.

Differences in spatiotemporal patterns of the lagged time of
snow cover on vegetation productivity and underlying
mechanisms. Based on multiple observational datasets, we found
that the time scales of the lagged effect on vegetation productivity
mainly occurred below the ~4-month time scale (mean of 73-day
lag) across NH ecosystems (>40°N, Fig. 2a). The lagged effect was
similar to the temporal effect of other climatic factors, such as air
temperature, precipitation, and drought, which were generally
shorter than a quarter of the year27,28,33. The significant positive
lagged effect (31% of the NH) predominated at a 2–3-month lag
and was mainly distributed in Western North America, Central
Siberia, and Eastern Asia, while the significant negative lagged

Fig. 3 Temporal dynamics of the lagged time of snow cover on vegetation productivity in Northern Hemisphere ecosystems from 2000 to 2018.
a, b Changes in the mean lagged time of snow cover based on the 10-year moving window for positive (a) and negative (b) lagged effects, respectively.
Solid and dotted lines present the mean lagged time and linear regression, respectively. c Trends (d yr−1) of the lagged time of positive (P) and negative
(N) effects of snow cover in different vegetation types, and black numbers denote the significant trend (P < 0.05). d Spatial pattern of lagged time trends
averaged by GOFGPP, MODGPP, BEPSGPP, and CSIF datasets.
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effect (14.7%) predominated at a short-term time scale (below 2
months) and was mainly distributed in Northern Europe and
Northern Canada. This difference in geographical distribution
could be attributed to different major ecological processes of
snow cover affecting vegetation productivity7,34,35. For example,
previous studies found that the “moisture effect” of snow cover
predominated in Northeast China20, Eastern Asia, and Western
North America32, with positive snow-productivity relations.
However, the negative “growth period” effect predominated in
Central Europe15 and Northern Canada32, i.e., more snow cover
delayed spring phenology and inhibited early vegetation
productivity.

Furthermore, there was a significant increasing trend of
positive lagged effect over the past two decades (Fig. 3a),
especially for forests and shrublands. In comparison, a significant
decreasing trend in the negative lagged effect was observed only
in grasslands (Fig. 3c). These phenomena may be related to root
functional traits of different vegetation. Woody vegetation with
deep roots can benefit from deeper water from snowmelt
infiltration, enabling them to grow in the later growing

season36,37, while low herbaceous vegetation with shallow roots
mainly absorbs water from snowmelt in upper soil layers and may
be covered by snow more completely, resulting in the early light
and heat deficits and impeding vegetation recovery in spring26,38.
Thus, under the same environmental change conditions, the
trend of positive lagged effect trend was greater in forests and
shrublands than in grasslands, while the negative lagged effect
trend was greater in grasslands. Notably, the decreasing trend in
the time scale of both negative and positive lagged effects mainly
occurred in most parts of Northern Europe and Northern Canada
(Fig. 3d). This implies that these regions would likely be subject to
greater water stress in the later growing season, and therefore,
more attention should be given to maintaining their ecological
stability.

Attribution analysis of which environmental factors influence the
lagged effect was performed to better clarify the differences in
spatiotemporal patterns of the lagged time of snow cover on
vegetation productivity. The factors associated with climate condi-
tions (e.g., annual mean air temperature and precipitation) were the
most important drivers of changes in the lagged time of snow cover

Fig. 4 Drivers accounting for the lagged time of snow cover on vegetation productivity in Northern Hemisphere ecosystems from 2000 to 2018.
a, b Ranked relative importance of four categories of factors for time scales of positive (a) and negative (b) effects of snow cover, and right line plots show
the partial contribution of the six most important variables. The partial contribution plot presents the effect of an independent variable (x-axis) on the
lagged time (y-axis) while controlling for the impacts of all other variables, and the shaded area indicates the 95% confidence interval. The markers “+”

and “–” in the bar plots indicate positive and negative correlations between the variable and lagged time of snow cover based on the partial contribution
analysis, respectively. The inset circles in the bar plots indicate the cumulative contribution of the variables from the same category.
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(Fig. 4), which agreed with previous documents that the lagged effect
on vegetation growth was strongly related to heat-water
conditions12,26,39. Specifically, the longer-lagged effect tended to
occur in high-temperature and precipitation regions. The was
probably there is no permafrost in warm and humid regions40,
where snowmelt water would not immediately be lost to water
runoff. This could result in more snowmelt water being retained,
promoting or limiting vegetation growth32 and consequently longer
positive and negative lagged effects in these regions.

It is noteworthy that some variables (biodiversity and soil
organic carbon) had the opposite impact on changes in positive
and negative lagged effects timescales. Ecosystems with high
biodiversity generally have a greater demand for water41, and
thus, the positive lagged effect tends to have a shorter time.
Similarly, high biodiversity could lead to more intense competi-
tion for resources, which may exacerbate the negative lagged
effect, particularly in some species struggling to obtain sufficient
resources for environmental adaptation. In comparison, an
increase in soil organic carbon increased soil nutrient and water
infiltration42,43, which in turn improved the adaptability of
vegetation to snow cover and mitigated its negative duration
effect. Meanwhile, high water retention (reducing water runoff)
was beneficial to prolong the moisture effect of snow cover in
regions with a positive lagged effect. In addition, although the
human factor was identified as an important driver of vegetation
productivity variations44,45, it showed relatively small contribu-
tions, which was largely due to the exclusion of agricultural land
and the relatively low level of human activity at mid-to-high
latitudes. The deeper significance of understanding these control
factors was to enable accurate predictions of the future responses
of vegetation productivity to lagged effect.

Uncertainties and prospects. It is necessary to consider the
uncertainties of our data and analyses. However, most of the
datasets used in this study showed good agreement with station
observations and were regarded as state-of-the-art datasets cur-
rently available. It inevitably causes errors when interpolated to
the same spatiotemporal scale. Meanwhile, the applicability of our
findings at other scales may need to be further explored due to
different scale effects. The lagged effect is also expected to be
related to other factors such as soil freeze–thaw cycles46, fire
disturbances47, and extreme climate events48. It is not feasible,
however, to analyze these impacts completely at hemisphere
scales in this study, and they therefore warrant further study.
Moreover, a combination of long-term in situ observations,
higher quality remote sensing data, and improved model simu-
lations are needed to better understand the changes in the lagged
effect on vegetation productivity in the future.

Conclusion
This study provided the first estimation of the lagged time of
snow cover on vegetation productivity and its drivers in NH
ecosystems from 2000 to 2018. The results showed that snow
cover had a significant lagged effect on vegetation productivity in
over 40% of NH ecosystems and that the lagged effect on vege-
tation productivity was underestimated when regional differences
in the lagged time of snow cover were neglected. The positive and
negative lagged effect on vegetation productivity mainly pre-
dominated at lags of ~2–3 months and 1–2 months, respectively.
Furthermore, the mean time scale of the positive lagged effect
increased significantly, mainly due to climate factors changes. If
this trend continues, it could potentially alleviate water stress and
promote vegetation productivity during the later growing season,
especially in arid regions. These findings have important impli-
cations for improving the modeling of the terrestrial carbon cycle,

including the lagged effect and developing effective climate
adaptation strategies in NH ecosystems.

Materials and methods
Datasets. We used two vegetation indicators to enhance the
robustness of our results, namely, GPP and SIF, as proxies for
vegetation productivity. Specifically, three types of GPP datasets
were used, including the 8-day GOFGPP at a 0.05° spatial
resolution49, the 8-day MODGPP product at a 500 m spatial
resolution50, and the daily BEPSGPP product at a ~0.07° spatial
resolution51. These GPP products demonstrated good reliability
through comparisons with ground observations in different eco-
systems and exhibited high agreement with one another (Sup-
plementary Fig. 7 and Fig. 8). SIF data with a 0.05° spatial
resolution were derived from the state-of-the-art 4-day CSIF
product52, which was widely used in ecological analysis.

SWE was used to characterize snow cover status. This
comprehensive parameter includes not only information on
snow depth and snow density but also allows calculations related
to snow cover phenology. It refers to the amount of water (mm)
contained in snow cover when it is completely melted and directly
affects hydrological and ecological processes53. SWE data were
derived from the GlobSnow daily product with a 0.25° spatial
resolution, which combined SWE retrieved from multi-satellite
passive microwave and ground snow depth data for non-
mountainous regions. It demonstrated high stability and
reliability compared to ground observations and other SWE
products54,55 and was regarded as the best SWE product currently
available for climate analysis56.

In addition to vegetation productivity and snow cover data,
several types of datasets were collected to explore drivers of the
lagged effect of snow cover, including climate, soil, elevation, and
human activity data. The daily air temperature, precipitation,
wind, downward shortwave radiation, and soil temperature data
were obtained from the ERA5-Land daily product at a 0.1° grid57.
The soil property data (soil organic carbon58, soil bulk density59,
and soil pH60) were extracted from the Open Land Map dataset at
a 250-m grid. Elevation data were obtained from the Shuttle
Radar Topography Mission (STRM) digital elevation dataset at a
90-m grid61. Human activity and biodiversity data were obtained
from the LandScan Global62 and the plant species63 datasets.

Data preprocessing. All datasets were aggregated to the same
spatial resolution of 0.25°. Vegetation productivity datasets with
high temporal resolution were aggregated to 8-day temporal
resolution using the mean value to reduce interpolation uncer-
tainty. We focused on the seasonal snow-dominated regions
>40° N with snow cover duration >60 days (Supplementary
Methods S1) and masked the non-vegetation, sparse vegetation,
and cultivated areas using the ESA CCI land cover map64.
Moreover, pixels with a constant vegetation type (total study area
of ~26 × 106 km2) were retained for analysis to minimize the
influence of land cover changes.

Estimation of the lagged effect of snow cover. Considering
differences in the lagged time of snow cover on vegetation pro-
ductivity in different regions, we applied an adaptive time scale
based on per-pixel partial correlation analysis to identify the
lagged effect on vegetation productivity. Firstly, the maximum
SWE (SWEmax) within snow cover duration was extracted to
indicate SWE status since it can reflect the amount of snowmelt
for the whole snow cover season compared to the mean SWE.
Secondly, the partial correlation coefficient (PCC) between
SWEmax and vegetation productivity of each period (istep) was
computed (Eq. 1) during the growing season, removing the effects
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of the preseason and current mean air temperature, precipitation,
solar radiation, and wind. Additionally, all variable data were
detrended before correlation analysis. Then, the optimal lagged
effect on vegetation productivity was determined when the
absolute significant maximum PCC (|Rmax-lag| at P < 0.05)
occurred (Eq. 2), and the Rmax-lag was regarded as the magnitude
of lagged effect (the direction of Rmax-lag could be either positive
or negative). Finally, the corresponding time (DOY) of Rmax-lag

subtracted by snow cover end date (SCED, Supplementary
Methods S1) was identified as the time scale of the lagged effect
(Eq. 3). Namely, the lagged time of snow cover was the difference
between SCED and the date when the response of vegetation
productivity to snow cover was the strongest.

ristep ¼ PCCðSWEmax;VPistepÞ; i ¼ ð1; 2; 3; � � � ; nÞ; SOS≤ istep≤EOS ð1Þ

Rmax�lag ¼ maxðr1step; r2step; r3step; � � � ; rnstepÞ; �1≤Rmax�lag ≤ 1 ð2Þ

Lagged time ¼ DOYRmax�lag
� SCED ð3Þ

where ristep is the PCC with a lagged period of istep; EOS is the
end of the growing season (Supplementary Methods S2); VPistep is
the vegetation productivity with a lagged time interval of istep
(i-step lag); and step is the temporal resolution of vegetation
productivity datasets (8-day). Only pixels with SCED below the
start of the growing season (SOS) were retained for analysis.

Analysis of spatiotemporal dynamics of the lagged time of
snow cover on vegetation productivity. We first calculated the
partial correlation coefficient between snow cover and vegetation
productivity at four fixed temporal scales to investigate the lagged
effect on vegetation productivity under scenarios WITH_LTSC
and WITHOUT_LTSC. The fixed temporal scales included
monthly (six periods: May–October), seasonal (three periods:
spring (May–June), summer (July–August), and autumn
(September–October)), vegetation development stages (two peri-
ods: growth and senescence), and the whole growing season.
Growth and senescence were defined as the increasing and
decreasing vegetation productivity phases, respectively65. Due to
the regional differences in the lagged effect on vegetation pro-
ductivity at different fixed temporal scales, we then merged the
lagged effect on vegetation productivity at monthly, seasonal, and
vegetation development stage scales, respectively, based on the
significant partial correlation coefficient between snow cover and
vegetation productivity, and quantified the difference between the
scenarios WITH_LTSC and WITHOUT_LTSC.

Next, we analyzed the time scale of the lagged effect at different
biome scales. Three typical vegetation types were analyzed,
including forests, shrublands, and grasslands. The classes of
broadleaf, coniferous, and mixed forests were grouped into forest
class based on the ESA CCI land cover map. Finally, temporal
variations in the lagged time of snow cover on vegetation
productivity were examined using a 10-year moving window. We
calculated the lagged effect over the NH with each moving
window from 2000 to 2018 using four vegetation productivity
datasets. The mean value of all pixels in each moving window was
used to evaluate the overall temporal dynamics of the lagged time
of snow cover. Meanwhile, 11-year and 12-year moving windows
were also used to enhance the temporal results (Supplementary
Fig. 4). Furthermore, we used the Theil–Sen method66 for slope
calculation and the modified Mann–Kendall test method67 for
trend detection in time series of the lagged effect.

Identification of drivers of the lagged time of snow cover on
vegetation productivity. The random forest method was used to
quantify the relative contributions of drivers to the time scale of

the lagged effect on vegetation productivity in NH ecosystems. It
is a data-driven machine learning algorithm based on a bootstrap
aggregating strategy, which not only has a strong predictive
ability but also evaluates the importance of features68. Four
categories of environmental factors were considered in the con-
tribution analysis (Supplementary Table 1), including climate,
soil, topography, and other related factors.

Among these, we calculated the annual mean air temperature,
mean total precipitation, mean wind, and mean solar radiation as
climate factors that were important limiting factors. For soil
factors, we took soil properties such as soil organic carbon, soil
pH, and soil bulk density into account since they were strongly
related to vegetation photosynthetic rates and dynamics of soil
resource distribution. Topography factors include elevation,
slope, and aspect. Meanwhile, other factors closely related to
snow cover changes and vegetation growth were extracted,
including the human activity impact, land cover types, and
biodiversity (number of plant species). All variables were first
standardized using the Z-score method to eliminate the effect of
numerical differences in different variables.

For the time scales of positive and negative lagged effects, we
separately developed two random forest regression models. The
lagged time of snow cover and four types of factors were regarded
as response variables and explanatory variables, respectively. For
each model, we randomly stratified to use 80%/20% of the data to
train/test the model and used the correlation coefficient and mean
absolute error to evaluate the performance of models. Although
collinearity between variables would not influence the accuracy of
the random forest model, it did affect the ranking of variable
importance69. We further used the variance inflation factor (VIF)
method to exclude the strong collinearity variable (i.e., solar
radiation (VIF > 3), Supplementary Fig. 6). The optimal para-
meters (numbers of estimators, maximum features, and maximum
depth) for each model were then determined based on the training
data (Supplementary Table 2). Finally, according to the out-of-bag
score of the model, we ranked the importance of each explanatory
variable to characterize the contribution of drivers to lagged time
and evaluated how variables regulated its changes. Note that we
repeated the run ten times for each model to avoid random errors
and averaged the results of 10 runs as the final result.

Data availability
All datasets used in the study are openly available. The MODGPP, GOFGPP, BEPSGPP,
and CSIF data are available at https://lpdaac.usgs.gov/products/mod17a2hv006, https://
cstr.cn/15732.11.nesdc.ecodb.2016YFA0600200.02.001, https://data.globalecology.unh.
edu/data/GOSIF-GPP_v2/, and https://osf.io/8xqy6/, respectively. Snow cover data from
the GlobSnow v3.0 product are available at https://www.globsnow.info/swe/. Air
temperature, precipitation, wind, solar radiation, and soil temperature data from the
ERA5-Land product are available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-land?tab=form. The plant species datasets are available at https://
databasin.org/datasets/43478f840ac84173979b22631c2ed672/. The data for plotting the
figures in the study are available at https://zenodo.org/records/10252501.

Code availability
The processing codes for analysis are available from the corresponding author on request.
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