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Tremor clustering reveals pre-eruptive signals and
evolution of the 2021 Geldingadalir eruption of the
Fagradalsfjall Fires, Iceland
Zahra Zali 1,2✉, S. Mostafa Mousavi 3, Matthias Ohrnberger 2, Eva P. S. Eibl2 & Fabrice Cotton 1,2

Analyzing seismic data in a timely manner is essential for potential eruption forecasting and

early warning in volcanology. Here, we demonstrate that unsupervised machine learning

methods can automatically uncover hidden details from the continuous seismic signals

recorded during Iceland’s 2021 Geldingadalir eruption. By pinpointing the eruption’s primary

phases, including periods of unrest, ongoing lava extrusion, and varying lava fountaining

intensities, we can effectively chart its temporal progress. We detect a volcanic tremor

sequence three days before the eruption, which may signify impending eruptive activities.

Moreover, the discerned seismicity patterns and their temporal changes offer insights into

the shift from vigorous outflows to lava fountaining. Based on the extracted patterns of

seismicity and their temporal variations we propose an explanation for this transition. We

hypothesize that the emergence of episodic tremors in the seismic data in early May could be

related to an increase in the discharge rate in late April.
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Forecasting eruptions, a central aim in many volcanological
studies, is complex due to the diverse and complex nature of
pre-eruptive behaviors1–4. Seismic signals stand as a pivotal

source of data for assessing eruptive activities, examining pre-
eruptive stages, and exploring eruption precursors5. Several
research efforts have analyzed seismic precursors such as seismic
swarms, repeating earthquakes, and volcanic tremors3,4,6–11.
Volcanic tremors, continuous seismic signals often accompanying
eruptions12,13, are seen as potential geophysical markers to aid
eruption prediction2,14.

Ardid et al.4 articulate that eruption precursors should meet
three benchmarks: recurrency (a common pattern occurring
before multiple events), transferability (occurring before erup-
tions in different volcanoes), and differentiability (less frequent in
non-eruptive unrest). Einarsson15 underscores that recent Ice-
landic eruptions all exhibited short-term seismic indicators such
as earthquakes and/or continuous tremors. While earthquake
swarms frequently herald eruptions16, they can also arise from
non-eruptive activities17–20. Volcanic tremor21, an important
seismic precursor5,22, might not always serve direct forecasting
purposes, given it might be overshadowed by earthquake swarms’
energy23,24, and can manifest right before and during eruptions5.
Just like earthquake swarms, tremors can also happen during
non-eruptive intervals25. Even though neither earthquake swarms
nor volcanic tremors guarantee imminent eruptions, their
observation can heighten alertness. Their concurrent presence
might indicate a higher likelihood of an eruption. Additionally,
volcanic tremors offer valuable insights into the internal volcanic
processes23. Thus, their detection and analysis are of particular
value for both eruption predictions and understanding the
underlying dynamics of volcanic eruptions26,27.

Following 781 years of dormancy on the Reykjanes Peninsula,
Iceland, a fissure opened near Fagradalsfjall on 19 March
202128–30. The eruption was preceded by a sequence of seismic
swarms and intrusion events on the Reykjanes Peninsula16,31,32

commencing with a notable week-long earthquake swarm in
December 201929. A 5.7 magnitude earthquake on 24 February
202129,33 marked the onset of the final seismic sequence. Three
weeks later, the intrusion reached the surface, and the eruption
began. While intense seismic activity was observed leading up to
the Geldingadalir 2021 eruption, no precursory volcanic tremor
was reported for this event30.

In volcano seismology, discerning temporal changes in the
volcanic activities preceding eruptions necessitates the identifi-
cation of seismic signal clusters within the continuous flow of
data, as well as tracking these clusters’ relative frequencies over
time. The burgeoning volume of seismological data underscores
the need for swift, automated algorithms to process continuous
seismic data streams. With advancements in monitoring tech-
nologies and machine learning, seismologists now have the tools
to detect the early stages of volcanic eruptions and chart sub-
sequent eruption phases with enhanced speed and precision. This
study exemplifies such advancements.

By employing machine learning techniques, we analyzed the
continuous seismic data from the Geldingadalir 2021 eruption in
the Fagradalsfjall rifting event, uncovering patterns that tradi-
tional methods missed. These patterns not only foretold the
eruption but also detailed its progression. More specifically, by
using a deep learning technique, i.e., deep embedded clustering
(DEC)34–36 which identifies hidden patterns and clusters data
points without requiring labeled data (unsupervised learning), we
have pinpointed distinct clusters of seismic signals corresponding
to various stages of the volcanic activity. This approach can also
discover key features from seismic signals, potentially detecting
subtle precursors like volcanic tremors leading up to the eruption.

Our findings demonstrate the effectiveness of the DEC tech-
nique in volcano seismology for unsupervised analyzing of con-
tinuous seismic data, especially in light of the limited availability
of labeled volcanic data37. Prior to this, most studies on classi-
fying volcano-related signals using neural networks used discrete
seismic events extracted from continuous seismic streams based
on specific start and end times in supervised38,39 or unsupervised
learning40–43.

Results
Identifying seismic signature of different eruption phases. The
2021 Geldingadalir eruption features different volcanic phases
such as pre-eruptive activities, continuous lava extrusion, and
episodic lava fountaining. Our approach directly explores the
seismic signatures related to major changes of the system. It
determines dates of changes in the seismic pattern and introduces
a chronology of distinguished volcanic activities, including the
short-term pre-eruptive phase, lava outflow, and lava fountaining.
We use seismic data from the east component of station NUPH
(9 F seismic network)44 located 5.5 km southeast of the eruption
site in Geldingadalir, Iceland (Fig. 1a). The signal-to-noise ratio of
the tremor episodes is higher on the horizontal components
compared to the vertical component45. Therefore, for our algo-
rithm, which relies on data from a single station and a single
component, we selected the east component.

We compute the Short Time Fourier Transform (STFT) of
one-hour windows of the continuous seismic data filtered from 1
to 4 Hz. The salient features of the spectrograms are automatically
extracted by the convolutional layers in an autoencoder. An
autoencoder is a type of artificial neural network that first
transforms and compresses data into a low-dimensional repre-
sentation, known as latent or feature space, and then uses these
feature representations to reconstruct the original data. We apply
a DEC technique in which the latent representation of the
spectrograms is used for clustering. This approach ensures the
extraction of the most useful features of the data for the clustering
task by simultaneous optimization of feature extraction and
clustering.

Using this processing approach, four clusters (EQ, CT1, ET,
CT2), each corresponding with major phases of the volcanic
activities (Figs. 1b and 2a), are identified. The EQ (earthquakes)
cluster marks the intense seismic activity prior to the eruption.
Samples in this cluster represent time windows of seismic signal
when transient earthquakes are the most dominant signal
(Fig. 2b, c). Most samples in this cluster start at the beginning
of our data on 12 March and end before the start of the eruption
(Supplementary Fig. 1a). Between the start of the eruption and 14
June we also see some windows of this cluster that contain
earthquake signals (Supplementary Fig. 1b). Cluster CT1
(continuous tremors 1) initiates three days before the eruption
and ends on 27 April (Fig. 2d, e). This cluster represents the
continuous tremors related to processes that are active during
continuous lava outflow. The seismic waveform at this time
features a narrow-banded tremor with the strongest frequency at
2.5 Hz. Cluster ET (episodic tremors)—from 27 April to 13 June
—contains episodic tremors related to lava fountaining (Fig. 2f,
g). From 13 to 24 June, cluster CT2 (continuous tremors 2)
mainly contains continuous tremors with two dominant
frequencies: a narrowband frequency of 1.2 Hz, and a broader
and weaker frequency between 2 to 3 Hz (Fig. 2h, i). The
amplitude is higher compared to the continuous tremor in
cluster CT1. Detailed information related to clusters and the
volcanic processes linked with them are provided in the
following.
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Observation of precursory volcanic tremors. Volcanic tremors
play an important role in volcano seismology since their pattern
reflects the evolution of eruptive activities46–48. Although volcanic
tremors are well-established short-term (days to minutes) pre-
cursors to volcanic eruptions49–52, some eruptions have occurred
without such apparent precursors53–56. The 2021 Geldingadalir
eruption initially has been reported to erupt without any pre-
cursory tremor30.

Using a more advanced technique, we were able to detect
precursory volcanic tremors before the 2021 Geldingadalir
eruption that were initially overlooked. This finding raises an
important question of whether missing the detection of the
precursory tremors in some eruptions was related to the data
recording (insufficiently close stations to record tremors) and
data processing or an underlying physical mechanism. The result
of DEC shows that tremors in cluster CT1 starts three days before
the eruption (Fig. 2a and Supplementary Fig. 2). An important
finding here is that despite the precursory tremor signals being
weak and hidden by more prominent earthquake signals, the
DEC technique, known for its heightened sensitivity to subtle
patterns, can effectively discern and identify them.

To investigate this finding more closely we used a signal
decomposition method, i.e., harmonic-percussive separation
algorithm24,57,58, and extracted the underlying volcanic tremor
signal (Supplementary Note 1). Figure 3a shows seismic signals
and their spectrograms between 13 and 25 March where the
volcanic tremors are visible after the start of the eruption on the
evening of 19 March. However, we can clearly see the tremor
signal starting on 16 March in the extracted tremor plot (black
rectangle in Fig. 3b). This visually confirms the observation of

precursory tremors as revealed by the DEC algorithm. The
spectrograms of the seismic waveform and the extracted tremors
show that the precursory volcanic tremors started at noon of 16
March (Fig. 3c). Sigmundsson et al.29 show that the high rates of
seismicity and deformation, which started on 24 February due to
magmatic intrusion, declined from mid-March to the start of the
eruption. This decrease was interpreted as resulting from tectonic
stress release, reduced lateral magma migration, and the
emplacement of magma in the shallow weak crust by Sigmunds-
son et al.29. Our observation of the precursory volcanic tremor on
16 March could also suggest that magma reached the shallow
crust near the surface and indicated an upcoming eruption. Pre-
eruptive tremors are mainly linked to magma movement and its
interactions with gas and adjacent rocks. Considering the
positioning of magma within the shallow crust from mid-
March onwards29, it is possible that the detected pre-eruptive
tremors are associated with this activity.

To evaluate the ability of our algorithm to detect precursory
tremors before the eruption, we conducted another test using
only the available pre-eruptive data, spanning eight days from
12 to 19 March. In this test, we observed that even with a
limited input size and using solely pre-eruptive data, the
algorithm successfully identified a new cluster representing pre-
eruptive tremors (Supplementary Fig. 3a, b). However, when we
compare this result with the outcome of clustering using the
entire dataset (Supplementary Fig. 3c), we see that there are
additional samples in cluster CT1. A visual examination of the
spectrograms revealed some misclustered samples in CT1 when
we used only eight days of pre-eruptive data (Supplementary
Fig. 4). These misclustered samples can be due to the small

Fig. 1 Overview of the eruptive site and different eruptive phases. a Location of the eruptive site on the Reykjanes peninsula, Iceland and the
seismometer. b T-sne (t-distributed stochastic neighbor embedding is an unsupervised machine learning algorithm for visualizing high-dimensional data in
a two or three-dimensional map) visualizations of seismic signal clusters in feature domain resulting from deep embedded clustering. Seismic events in
each cluster correspond to a specific phase of the eruptive activity. A sample 1-hour waveform (filtered 1-4 Hz) and a photo of the eruptive site during each
cluster are shown with their corresponding cluster names. Photo credits for eruptive site pictures are mentioned underneath them.
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input size, which reduces the precision of the clustering task.
For the pre-eruptive data, we also tested the algorithm with
numbers of clusters k= 3 and k= 4. Data in cluster CT1 are
almost the same for k= 2, 3, and 4, with most data occurring
after 16 March. Using a number of clusters greater than 2 does
not significantly change the result in cluster CT1, but it divides
the EQ cluster into multiple sub-clusters, mostly based on the
occurrence rate and amplitude of earthquakes in each window
(Supplementary Fig. 5).

The eruption style changes. From 19 March until 27 April the
eruption is characterized by low and stable effusion rate59. After
27 April the eruption style changed60 with an increased effusion
rate59. Geochemical analyses of basalts and associated gas emis-
sions indicate a rapid change in erupted composition around
mid-April, shifting from lava melts initially sourced at the shal-
lowest mantle to increasing dominance of magmas generated at
greater depths60. From 2 May until 14 June, the eruptive activity
is characterized by a sequence of lava fountaining45,59,61 reflected

Fig. 2 Chronology of the eruptive activity. a Four identified clusters resulted from deep embedded clustering of the continuous seismic waveform in the
study time period. b, c Samples of data in the cluster EQ (earthquake). An example of a three-hour seismogram and the power spectrogram (window
length of 16384 samples and overlap of 4096 samples) of data are shown in b. c presents three one-hour STFTs of seismograms as the inputs of the
autoencoder (the first row) and the reconstructed outputs of the autoencoder (the second row) in this cluster. d, e Same as b, c for the cluster CT1
(continuous tremor 1). f, g, Same as b, c for the cluster ET (episodic tremor). h, i, Same as b, c for the cluster CT2 (continuous tremor 2).
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as episodic tremors on seismic data (Fig. 4b–e). Although the
patterns of episodic tremors are clearly visible on raw seismic data
from the beginning of the lava fountaining on 2 May, our clus-
tering result indicates that ET tremors started earlier on 27 April
at 5:00 (Fig. 2a). This is due to the higher sensitivity of our
processing approach confirmed by visual examination of the
spectrograms that indicates the presence of a subtle episodic
pattern starting on 27 April (Supplementary Fig. 6).

The observation of a cluster change (CT1 to ET) and subtle
episodic pattern from 27 April could indicate that the lava
fountaining is triggered on 27 April by an increase in the magma
flow rate. This suggests that the change in the depth of the melts

generation source after mid-April and the increase in discharge
rate on 27 April might have played key roles in the shift to
episodic eruption behavior. On 13 June at 10:00, the ET cluster
ends and the CT2 cluster starts with a dominating continuous
tremor pattern. (Fig. 2a).

The variations of fountaining episodes associated with the
system status. Episodic tremors of the cluster ET show distinct
patterns with different duration, repose time, and amplitude45

(Fig. 4b–e). For a more detailed analysis of these episodic tremors,
we performed another DEC of tremor episodes between 2 May
and 14 June (lava fountaining period). This time, we used STFT

Fig. 3 Discovered precursory tremor three days before the eruption. a Seismic signal and power spectrogram (window length of 32768 samples and
overlap of 8192 samples) between 13 and 25 March. The blue lines marks the start of the eruption. b Extracted tremor signal from the seismic waveform
using harmonic-percussive separation algorithm and the tremor spectrogram between 13 and 25 March. The black box shows the extracted tremor starting
on 16 March. c, Spectrogram of the original seismic signal and the extracted tremor on 16 March. The precursory tremor starts at noon of 16 March. The
black box shows the extracted tremor on 16 March.
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of seven-minutes-long windows of the seismic signal starting
from the onset time of episodes62 as the input to our model. This
process resulted in four clusters (ET-1, ET-2, ET-3, ET-4) and
introduced four dates related to major changes in the system: 5,
11, 17 May, and 10 June (represented by blue vertical lines in
Fig. 4a). The general trend of cluster changes is in line with the
detailed study of episodic tremors in Eibl et al.45 in which they
linked the evolution of episodic tremor patterns to an evolving
shallow magma compartment, outgassed lava accumulating in the
crater edifice and a widening conduit.

Cluster ET-1 starts on 2 May. Most data in this cluster exist
until 5 May at 11:56 (Fig. 4). This cluster contains episodes with a
duration equal to 7 min or longer, with a dominant frequency
around 1.2 Hz. The amplitude of the episodes is lower compared
to other clusters. Cluster ET-2 contains episodes from 2 to 11
May (12:54) with mean duration of 4.5 min. The frequency
content is similar to cluster ET-1, but the amplitude is larger.
There are some episodes of this cluster between 11 and 17 May
and between 10 and 13 June. Episodes in cluster ET-3 mainly
start on 11 May at 15:55. They have a mean duration of 2.8 min

with a fundamental frequency of around 1.4 Hz and first overtone
around 2.8 Hz. The amplitude is higher compared to the other
clusters. Most data in this cluster exist until 10 June, but there are
some samples until 13 June as well. Cluster ET-4 contains
episodes with a mean duration of 3.3 min and frequency content
similar to cluster ET-3 but with lower amplitude. This cluster
covers most episodes after 10 June 3:39, but it also contains some
episodes from 2 May onwards, mostly after 5 May. According to
the interpretations of Eibl et al.45, our clusters ET-1 and ET-2
correspond to a time period when a shallow magma compart-
ment was modified and enlarged. Cluster ET-3 aligns with a time
period when the shallow magma compartment had stabilized,
featuring tremor episodes of consistent duration (see Supple-
mentary Fig. 7a). Cluster ET-4 primarily consists of episodes in
which tremor amplitude, signal-to-noise ratio, and repose time
were significantly reduced following a major inner crater collapse
on June 1045. The system generally exhibits a pattern of rising
episode amplitude and diminishing episode duration, attributed
to the erosion and widening of the vent45,61. However, this trend
is frequently interrupted, potentially as a result of partial crater

Fig. 4 Chronology of lava fountaining. a Four identified clusters resulted from deep embedded clustering of the episodic tremors. Each cluster represents
episodes with different duration, amplitude, and frequency content. Four dates related to major changes in the system: 5, 11, 17 May, and 10 June are
represented by blue vertical lines. b A one-hour example of seismic signal and the spectrogram (window length of 4096 samples and overlap of
1024 samples) of the cluster ET-1. c Same as b for the cluster ET-2. d Same as b for the cluster ET-3. e Same as b for the cluster ET-4.
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wall collapses45. Consequently, each cluster may include episodes
occurring outside the primary time period associated with that
cluster. This is particularly evident in the case of cluster ET-4,
where some episodes occur almost throughout the entire lava
fountaining period. Some episodes in cluster ET-4 before 10 June
might be in that cluster due to strong wind noise reducing the
signal-to-noise ratio on some days.

The link between the extracted features and major physical
properties. Establishing a definitive link between features
extracted by deep learning autoencoders and the major physical
properties in seismic signals remains a largely unresolved ques-
tion, suggesting a potential avenue for future exploration in this
study. That said, the task of clustering episodic tremors, being
simpler than clustering continuous seismic signals due to reduced
input data variation and shorter durations, has offered some
valuable perspectives on this matter. In the clustering of tremor
episodes, the autoencoder extracts three salient features from the
STFTs of episodes (Supplementary Table 1) and DEC is per-
formed using these three features. Visual inspection of raw data
for individual clusters revealed that the duration (Supplementary
Fig. 7a), amplitude (Supplementary Fig. 7b), and frequency
content of episodes (Supplementary Fig. 8) have the most
dominant role in the clustering results. This suggests a strong
connection between these three factors and the three extracted
features from the autoencoder. Hence, we can infer that fre-
quency, amplitude, and duration are the key features that char-
acterize the overall pattern of these episodes in the seismic
waveform.

Discussion
Our method provides a fast and reproducible approach for the
automatic revealing of overall temporal evolution patterns of a
volcanic system. Using the autoencoder to analyze raw seismic
signals and automatically extract pertinent features, we can
potentially uncover unexpected insights without the need for
preprocessing or detailed waveform measurements. Such an
approach can enhance our understanding of volcanic processes.
As demonstrated in this study, our methodology successfully
detected concealed pre-eruptive tremors leading up to the 2021
Geldingadalir eruption in the Fagradalsfjall rifting event and the
subtle episodic tremor before lava fountaining began.

Detecting precursory volcanic tremors can be challenging due
to their often weak and concealed nature, particularly when they
occur within the background of seismic swarms before eruptions.
The proximity of a seismic station to the eruptive site becomes
crucial for recording such signals. There may be a limited number
of stations in close proximity to eruptive sites, and they may not
operate continuously. They might not provide data for an
extended period before the eruption e.g., for dormant volcanoes
or throughout the entire eruption, especially when the station is at
risk of being affected by advancing lava flows. As demonstrated in
our study, even with a limited dataset spanning only eight days
before the eruption, we were able to identify a cluster associated
with pre-eruptive tremors. However, the restricted availability of
data can diminish the precision of our method and potentially
result in some misclustered data. In cases of highly noisy data, the
method’s performance can suffer due to the interference caused
by noises. Noise, in this context, refers to random or irrelevant
signals that are unrelated to volcanic activity. This interference
poses challenges in accurately detecting volcano-related signals,
leading to difficulties in precisely identifying signal patterns and
differentiating various volcanic activity phases. Additionally,
variations in noise levels over time can further complicate the task

of discerning meaningful volcanic signals, impacting the method’s
overall performance in accurately characterizing volcanic activity.

Our method can potentially be used in other eruptions studies
and reveal the chronology of the system. This could be beneficial
in revealing different phases of past activities and possibly dis-
covering similar patterns. Volcano observatories aiming to ana-
lyze and interpret data in a timely manner may use this approach
for large-scale seismic datasets in a near-real-time fashion. In a
real-time observation framework, the reoccurrence of a previous
cluster may inform about an upcoming similar phase only if the
system has experienced it before which implies a long-term
monitoring. During real-time analysis, evaluating the model’s
performance on entirely new and unforeseen patterns will remain
challenging since the number of clusters is determined based on
the data the model has previously seen. Volcano-related signals
may exhibit diverse patterns, particularly across various geo-
graphical areas. Therefore, the model should be trained using
datasets specific to each volcano. For all these reasons, such
methods are not yet mature enough to be integrated into an
operational warning system. Applying the algorithm to well-
documented eruptions is needed to further enhance our under-
standing of both the strengths and challenges associated with the
proposed approach. When applying the algorithm across different
volcanoes, it is important to take into account the frequency
range associated with the tremor frequency band of each volcano,
as well as the specific time resolution of interest. This con-
sideration is needed for generating the input spectrograms of the
model. Further research can explore the potential of the proposed
method in real-time monitoring, examining its advantages, lim-
itations, and challenges when applied to eruptions in different
regions.

Methods
Feature extraction using autoencoder. Grouping seismic signals
of volcanic activity with similar patterns could provide the
potential for a deeper understanding of the volcanic processes.
Clustering as a branch of unsupervised learning methods parti-
tions unlabeled data into groups of similar objects. One of the fast
and popular methods for clustering is k-means63 which clusters
data based on distance metrics. However, clustering high-
dimensional data is computationally expensive and usually less
effective as the dimension of data increases64. Hence, dimen-
sionality reduction and feature extraction are used before the
clustering to improve the clustering results by performing the
clustering in a feature space instead of the data space. The ability
of deep neural networks to automatically learn cluster-friendly
features has shown to be effective in improving clustering of high-
dimension data65,66. Here we use an unsupervised deep learning
technique named deep embedded clustering (DEC) which uses
the latent representation of data extracted using an autoencoder
for the clustering task34,65.

Autoencoders are neural networks that learn to compress their
input data in the encoder part and decompress it in the decoder
part67. The encoder learns to map the input to a latent
representation through automatic feature extraction and a
nonlinear transformation. The decoder reconstructs the input
from the hidden representation by minimizing the
reconstruction loss.

Our network consists of an autoencoder and a clustering layer,
which is connected to the autoencoder’s bottleneck (Fig. 5). The
encoder is composed of four two-dimensional convolutional
layers followed by a fully connected neural network, which after
flattening of the extracted features by convolutional neural
network layers, maps them to the latent space with low
dimension. The decoder has a fully connected neural network
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followed by four transposed convolutional layers. An Exponential
Linear Unit (ELU) activation function is applied for the
convolutional and fully connected layers. We use a linear
activation function for the last layer in the decoder. The loss
function of the autoencoder (LR) is the mean squared error
(MSE) between the input X and the reconstructed output X’ as
below:

LR ¼ 1
N

∑
N

i¼1
X � X0ð Þ2 ð1Þ

for N samples. Details about the hyperparameters of the model
are presented in Supplementary Note 2.

Deep embedded clustering. In a pre-training step the auto-
encoder is trained to reconstruct the output from the latent space
close to the input. Then the extracted features from the bottleneck
of the autoencoder are used for the clustering task using k-means
algorithm. The algorithm separates the latent space into k clus-
ters, each with a cluster centroid (μj). A cluster centroid is a data
point that represents the center of a cluster and corresponds to
the mean of all the data points within that cluster. Next, during a
fine-tuning step, the model simultaneously learns feature repre-
sentations and assigns clusters to the data points. First, the
similarity between each embedded point zi and cluster centroids
μj is calculated using Student’s t-distribution:

qij ¼
ð1þ jzijjμjj2Þ

�1

∑
j
ð1þ jzijjμjj2Þ

�1 ð2Þ

qij is the probability of assigning sample i to cluster j and
results in a set of soft class assignments. An auxiliary target
distribution pij is calculated using the membership probability qij
as below:

pij ¼
q2ij=∑iqij

∑j q2ij=∑iqij

� � ð3Þ

During fine-tuning clustering layer minimizes the Kullback–Leibler
(KL) divergence between the soft assignments, qij, and the target

distribution, pij:

L ¼ KL P k Qð Þ ¼ ∑
i
∑
j
pij log

pij
qij

 !
ð4Þ

Since qij is the membership probability of each embedded point
in each cluster, it defines the confidence of cluster assignments.
The auxiliary target distribution pij normalizes the loss contribu-
tion of each centroid by putting more emphasis on samples with
higher confidence. So the network learns from high-confidence
cluster assignments and refines the cluster centroids by
minimizing the divergence between qij and pij. During iterations
in fine-tuning the cluster centroids are refined, the autoencoder
weights are updated, more clustering-friendly features are
learned, and the clustering results are improved. LC ¼ λL is the
loss function of the clustering layer. λ is a hyper-parameter that
weights the clustering layer. A too large λ will distort the latent
space so the latent space will not represent the salient features of
the data. A too small λ will eliminate the effect of clustering layer.
We use 0.1 for λ as it is used in other studies as well34,35,65. For
the optimization of the clustering layer, we use stochastic gradient
descent with a momentum of 0.9 and a learning rate of 0.01.
Momentum is a moving average of the gradients, and it is used to
update the weight of the network. The autoencoder weights are
updated every 200 iterations. Training will be stopped when the
number of samples whose cluster assignments are changed
reaches less than 0.01% of the total number of the input data.

Clustering continuous seismic waveform. We use continuous
seismic waveform from 12 March to 24 June 2021, aiming to
identify the eruptive activity phases through clustering of volcanic
tremors. The seismograms were resampled to 8 Hz (to reduce the
size of input data) after being demeaned and detrended. Volcanic
tremors recorded on the east component of station NUPH during
the 2021 Geldingadalir eruption are dominant between 1 and
4 Hz, so we use this frequency range for our study. Eibl et al.45

used this frequency range for the study of episodic tremors as
well. The choice of an optimal frequency band depends on the
signal of interest. For clustering of volcanic tremors, the fre-
quency band of 1–9 Hz is commonly used as this is the usual
frequency range of these signals13. When selecting different fre-
quency bands, resampling should be adjusted accordingly.

Fig. 5 Network architecture. The encoder and decoder are composed of convolutional fully connected layers. The reconstruction loss (LR) and the
clustering loss (LC), as well as t-sne plots after pre-training and after fine-tuning of the continuous seismic waveform, are given in the figure.
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Since volcanic tremors have a more distinct representation in
the time-frequency domain compared to the time domain, we
calculate the short time fourier transform (STFT) of one-hour
windows of the continuous seismic signal and use the obtained
spectrograms as the input for our neural network. To choose the
window length, we opted to use the shortest duration that could
cover the longest changing pattern such as episodic tremors here.
The selected 1-h seismograms are long enough to cover most of
the signal variations in the volcanic environments. Tremors with
durations longer than one hour would be seen as a long-lasting
signal. Other signals such as earthquakes or episodic tremors with
durations of less than one hour are depicted as signals with
various lengths in a 1-h window. In this step, our aim is to
capture the overall pattern in the seismic data. Hence, to
generalize the algorithm, we use one-hour windows of the
amplitude spectrogram as the input to the autoencoder. As shown
in Fig. 5, the input and output are 96 (frequency bins) by 128
(time bins), and the bottleneck has a flat dimension of 24. The
architecture of our autoencoder is presented in Supplementary
Table 1.

As shown in Supplementary Fig. 9a, training and validation
losses exponentially decrease during autoencoder training. The
ability of the autoencoder to reconstruct the input from the latent
spectrogram is illustrated in Fig. 2. The structure of the
spectrogram is mainly preserved after the reconstruction of the
input from the encoded salient features of the latent space. This is
a good indication that during the pre-training stage, the network
has learned to extract a good set of features representing the
essential elements of our signal of interest. The k-means
clustering is then applied to the extracted features at the
bottleneck of the autoencoder.

To choose the optimal number of clusters we varied the
number of clusters, k, between 2 and 15 and calculated the
Calinski-Harabasz (Caliński & Harabasz, 1974) index, also known
as the variance ratio criterion, which is the ratio of the sum of
between-clusters dispersion and of inter-cluster dispersion
(Supplementary Fig. 10a). We choose the number of clusters to
be 4 based on the elbow point at the Calinski-Harabasz index
plot. This is the cutoff point where the index decreases much
more slowly as the number of clusters increases. Figure 6a
presents the initial result of k-means clustering of the latent space
with the selected number of clusters 4. We visualize the data with
24 dimensions in two dimensions using t-sne method68. Next,
after fine-tuning the four clusters are well separated in the t-sne
plot (Fig. 6b). The good separation of clusters in the t-sne space
indicates the effectiveness of the DEC algorithm in extracting the
most useful features for our clustering task.

More than 99% of the samples belong to their determined
cluster with high confidence: likelihood more than 0.99
(Supplementary Fig. 11). Details about samples with a likelihood

below 0.99, which are presented in Supplementary Fig. 12, are
discussed in Supplementary Note 3.

It is worth to mention that the clustering is done based on the
salient features of the seismic signal. If there are different patterns
in a time window, the k-mean distances between representative
salient patterns determine the related cluster for that time
window. For example, there are small earthquakes in our study
time that occur in time windows that do not belong to the EQ
cluster. The reason is that in those time windows in addition to
the earthquake signal there is another pattern (like continuous
tremor) that is more dominant compared to the earthquake
signal. This means that another process represents the system
state in those time windows.

Clustering episodic tremors. Episodic tremors during the 2021
Geldingadalir eruption which are the dominant pattern in the
seismic signal from 2 May to 14 June, have different durations,
repose times, and amplitudes and could indicate different periods
of the volcanic processes. The duration of lava fountaining epi-
sodes varies between 2 and 14 min (see Supplementary Fig. 7a).
For a detailed investigation on the lava fountaining episodes, we
apply a DEC for the episodes. We used 7-min windows of the
seismic waveform starting at the onset time of each tremor epi-
sode from Eibl et al.62. 7 min is a suitable length for our dataset
considering that more than 90% of the episodes have a duration
of less than 7 min.

We consider the frequency range of 1–4 Hz and calculate
the STFT of the episodes for the input of the autoencoder. The
autoencoder architecture is the same as we designed before.
This indicates that our autoencoder does not depend on the
input size and can extract features from both one-hour and
7-min spectrograms and reconstruct the input in the decoder.
Here the input and output are 1536 dimensional matrices (32
frequency bins and 48 time bins) and the bottleneck has a
dimension of 3 (Supplementary Table 1). The number of input
spectrograms for training and validation are listed in
Supplementary Table 2. For training the autoencoder, here
we used the mean absolute error (MAE) loss function with a
decay rate of 0.9. MAE, which is more robust to outliers and
calculates the average of the absolute difference between the
input and the reconstructed output.

Training and validation losses are shown in the Supplementary
Fig. 9b. Some examples of the input and output of the
autoencoder are shown in Supplementary Fig. 8. We apply
k-means clustering on the bottleneck of the autoencoder. We
choose k= 4 as the optimal number of clusters based on the
Calinski-Harabasz score (Supplementary Fig. 10b). The t-sne plot
before and after fine-tuning is shown in the Supplementary
Fig. 13.

Fig. 6 T-sne visualizations of the salient features of the continuous seismic waveform. a T-sne visualizations of data in feature space after pre-training
and clustering using k-means algorithm with 4 clusters. b T-sne visualizations of data in feature space after fine-tuning.

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-01166-w ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |             (2024) 5:1 | https://doi.org/10.1038/s43247-023-01166-w |www.nature.com/commsenv 9

www.nature.com/commsenv
www.nature.com/commsenv


Data availability
Seismic data from station NUPH are available via GEOFON (Eibl et al.62, https://doi.org/
10.14470/4S7576570845). The list of tremor episode start and end times is available at
GFZ Data Services (Eibl et al.62, https://doi.org/10.5880/fidgeo.2022.010).

Code availability
The code related to the proposed method is freely available at https://github.com/
ZahraZali/ClusTremor69.
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