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Sensitivity of extreme precipitation to climate
change inferred using artificial intelligence shows
high spatial variability
Leroy J. Bird 1, Gregory E. Bodeker 1,2✉ & Kyle R. Clem 2

Evaluating how extreme precipitation changes with climate is challenged by the paucity,

brevity and inhomogeneity of observational records. Even when aggregating precipitation

observations over large regions (obscuring potentially important spatial heterogeneity) the

statistics describing extreme precipitation are often too uncertain to be of any practical value.

Here we present an approach where a convolutional neural network (an artificial intelligence

model) is trained on precipitation measurements from 10,000 stations to learn the spatial

structure of the parameters of a generalised extreme value model, and the sensitivity of those

parameters to the annual mean, global mean, surface temperature. The method is robust

against the limitations of the observational record and avoids the short-comings of regional

and global climate models in simulating the sensitivity of extreme precipitation to climate

change. The maps of the sensitivity of extreme precipitation to climate change, on

~1.5 km × 1.5 km grids over North America, Europe, Australia and New Zealand, derived using

the successfully trained convolutional neural network, show high spatial variability.
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Extreme precipitation events (EPEs) are among the most
damaging climate hazards1–3 and, as such, changes in their
frequency and/or severity are of major societal concern. A

heuristic used by many practitioners, such as civil engineers,
based on the Clausius–Clapeyron relationship (CCR), is that a 1
∘C increase in temperature leads to a 7% increase in atmospheric
water holding capacity and hence a 7% increase in the severity of
EPEs. This, however, is not what happens in reality as myriad
other processes affecting precipitation are also affected by climate
change, chief among them being local and large-scale dynamics,
which can change the location of where rain falls4–6. A more
comprehensive discussion of variations from the CCR expectation
to estimating the sensitivity of extreme precipitation to climate
warming is provided in “Discussion”. The focus of this paper is
on deriving a more empirical estimate of the sensitivity of EPEs to
climate warming.

A common way to describe the statistics of EPEs is using
Generalized Extreme Value (GEV) distributions7. In GEV ana-
lyses, an equation of the form:

Gðz; μ; σ; ξÞ ¼ exp � 1þ ξ
z � μ

σ

� �h i1=ξ� �
ð1Þ

is fitted to N-year precipitation block maxima (i.e., the maximum
1-day precipitation in an N-year period), where μ is the location
parameter, σ is the scale parameter, and ξ is the shape parameter.
While 10-year block maxima should ideally be used (N= 10)8,
given the paucity of multi-decadal reference-quality9 precipitation
records it is typically impossible to obtain sufficient 10-year block
maxima to achieve a robust statistical description of observed
EPEs at a single site, and thus 1-year block maxima are most
often used in GEV analyses.

In the absence of unbiased multi-decadal observational records,
global climate models (GCMs), and in particular large ensemble
simulations from GCMs, might be considered as a way to derive
robust extreme precipitation statistics [e.g., ref. 10]. However, as a
result of their coarse resolutions, GCMs are often biased in their
representation of precipitation11–13 especially extreme precipita-
tion and/or precipitation over complex terrain13,14. Different
downscaling methods might be considered to mitigate the effects
of the coarse resolution of GCMs. While dynamical downscaling
of GCM output using regional climate models15,16 can create high
resolution data sets, the approach is computationally demanding.
Furthermore, if the GCM providing the boundary conditions to
the regional climate model cannot adequately simulate the
dynamical and thermodynamical processes governing the evolu-
tion of changes in the statistical distribution of precipitation (e.g.,
shifts in storm tracks), the regional climate model will simulate
incorrect precipitation fields, albeit at high spatial resolution. On
the other hand, statistical downscaling, while computationally less
expensive than dynamical downscaling, generally assumes that
the climate is stationary and thus is unlikely to simulate correct
changes in precipitation extremes, and therefore is subject to the
same shortcomings inherent in the controlling GCM.

Whether applying GEV analyses to observations, GCM output,
or regional climate model output, a common approach to infer-
ring the sensitivity of extreme precipitation to climate change is to
expand the GEV fit coefficients as a linear scaling of some climate
change covariate, e.g.:

μ ¼ μ0 þ μ1 ´X ð2Þ
where X might be the annual mean global mean surface tem-
perature anomaly. However, inferring such non-stationarity in
the GEV coefficients from relatively short historical observational
records, often compromised by inhomogeneities introduced by
changes in instrumentation or operating procedures17–19, as well
as being subjected to the effects of internal climate variability, is

seldom sufficiently statistically robust to reliably estimate the
sensitivity of EPEs to changes in global temperature.

Here we explore a method whereby a convolutional neural
network (CNN)20,21 is trained to learn the parameters of a GEV
distribution, their dependence on latitude, longitude and eleva-
tion, and their dependence on a climate covariate (in this case the
annual mean global mean surface temperature; T 0

Global). We
choose T 0

Global as the climate covariate not so much as to perform
an attribution of the observed changes in extreme precipitation,
but to obtain a robust and simple measure of the sensitivity of
extreme precipitation to climate change that can be compared
across any region of the globe. If the goal is to explain the
variability in extreme precipitation, additional regional climate
covariates, which could even be opposite in sign to T 0

Global, could
also be included. However, in this study, we focus on quantifying
the sensitivity of regional extreme precipitation to the global state
of the climate system only, which drives, in large part, the total
moisture carrying capacity of the atmosphere.

The CNN is deep in that it consists of several stacked layers of
neurons that allow a range of features at different spatial scales to
be captured. We consider observations of daily total precipitation
from 10,000 sites in North America, Europe, Australia and New
Zealand extracted from the Global Historical Climatology Net-
work (GHCN) and augmented with data from the New Zealand
National Climate Database (CLIDB). Justification for choosing
these four regions is provided in the next section. To demonstrate
the value of the CNN, we also show some results where GEV fits
were applied individually to the precipitation records at each of
these sites, noting that the temporal coverage of the observations
is likely to be heterogeneous and often of just a few decades in
length. The results, shown below, indicate that the uncertainties
on the GEV fit parameters derived individually for each site, and
especially on the parameters describing the non-stationarity in
the GEV fits, are so large as to make the derived sensitivities
unusable and unphysically spatially heterogeneous.

Our intention is that by developing a single CNN, with bespoke
training for each region, and that generalizes over thousands of
locations to capture the geographical and non-stationary nuances
of the GEV fit coefficients, we can determine the sensitivity of
precipitation extremes to changes in global mean surface tem-
perature over our four target regions in a way that is robust
against any single site with inhomogeneous, or otherwise biased,
observations and is able to generate maps at high spatial reso-
lution (e.g., 0.015625∘ × 0.015625∘) including across regions where
there are no observational records.

The architecture, training, validation and evaluation of the
CNN are described in “Methods”. We show that the CNN
demonstrates skill in capturing the sensitivity of extreme pre-
cipitation to the global temperature change (T 0

Global) and that
maps of these sensitivities for different average recurrence
intervals (ARIs) are highly spatially heterogeneous, providing
further evidence that the use of CCR-based heuristics is too
simplistic.

Results
GEV fits. The CNN was trained on daily total precipitation
depths at 10,000 GHCN+CLIDB sites (shown in Fig. 1) from
1960 to 2019 during which T 0

Global increased by ~ 0.9 ∘C. When
selecting these 10,000 sites, it was found that regions of the globe
outside of North America, Europe, Australia and New Zealand
had severely inhomogeneous data coverage both in space and
time. Reductions in the number of GHCN stations (see, e.g., Fig. 2
of Wan et al.,22 and Fig. 1 of Westra et al.23), or the volume of
data reported by stations, was found to be particularly proble-
matic for training the CNN (see Methods). As a result, only
GHCN and CLIDB sites within North America, Europe, Australia
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and New Zealand were used in training the CNN and only results
for these four regions are reported on below.

Eight sites representing large human populations, excluded
from the training, were selected to demonstrate the skill of the
CNN in simulating GEV distributions for precipitation maxima
unseen by the CNN (red dots in Fig. 1). Block maxima from these
sites and the CNN generated distributions for two different values
of T 0

Global, are also shown in Fig. 1. Other than for Auckland,
which had 55 1-year block maxima available, and London which
had 51, all other sites had 70 1-year block maxima. Additional
evidence of the skill of the CNN in generalising spatially is
provided in “Evaluating the ability of the CNN to spatially gen-
eralise the GEV functions”.

1% annual exceedance probability precipitation levels. The 1%
annual exceedance probability (AEP; 1-in-100 year event) pre-
cipitation levels, derived from the CNN-simulated GEV prob-
ability distribution functions evaluated on a grid of
0.015625∘ × 0.015625∘ at a T 0

Global of 1.1
∘C, are shown in Fig. 2.

To provide a climatological context for these 1% AEP extremes,
100 GHCN sites (50 for New Zealand) were selected, each with a
record of 20 years or more. The 1% AEP value at each site
(coloured regions in Fig. 2) was then divided by the average (over
the 20 years or more) annual maximum 1-day precipitation at
each of those sites. These values are shown in small circles at each
selected GHCN site in Fig. 2. They indicate that for North
America the 1-in-100 year precipitation depth is 243 ± 35% (1σ)
of a typical annual maximum 1-day precipitation depth, while for
Australia this is 268 ± 45%, for Europe 244 ± 30% and for New
Zealand 246 ± 38%. This suggests a potentially useful heuristic
that 1% AEP precipitation depths are typically 2.5 times the
magnitude of an annual maximum 1-day precipitation depth.

The CNN has learned the effects of topography and climate
regimes, and has used this knowledge to predict higher

precipitation extremes over moist tropical latitudes, coastlines
along warm oceans, and on the windward side of large mountain
ranges, e.g., along the western coasts of North America, Norway,
and New Zealand.

The 1% AEP field for North America is qualitatively very
similar to that shown in Fig. 2(a) of Fix et al.,24 while the
morphology of the 1% AEP field for Europe is very similar to that
shown in Fig. 4(a) of Zittis et al.25.

The results for New Zealand show good comparison with the
High Intensity Rainfall Design System product developed by the
New Zealand National Institute of Water and Atmospheric
Research (https://hirds.niwa.co.nz/); CNN-derived 1% AEP
values shown in Fig. 2(d) were compared against similar values
extracted from the High Intensity Rainfall Design System
database for 50 population centres around New Zealand, showing
a low bias by the CNN of 1.8% and an R2 value of 0.84.

To demonstrate the value our CNN approach, 1% AEP
precipitation depths, derived individually for each of the GHCN
sites with precipitation records of 35 years or longer, using the
same 6-parameter non-stationary GEV fit as used by the CNN,
are shown in Supplementary Fig. S1. While the overall
morphology of the 1% AEP precipitation depths in each region
is similar to that shown in Fig. 2, results are absent where there
are no GHCN sites and, in places, show site-to-site variability that
is physically unrealistic. The statistically robust GEV fits shown in
Fig. 1 were only made possible by the CNN gaining insights into
the broad underlying statistical structure of the precipitation
extremes through training across 1-year block maxima from all
10,000 training sites. While we have not yet developed a
statistically comprehensive method for extracting uncertainties
on the GEV fit coefficients from the CNN, the spatial coherence
of the CNN-generated GEV fits, the site-to-site consistency in
their non-stationarity (and the evaluation of the non-stationarity
- see “Methods”), and the ability of the CNN to generalise well for
sites excluded from its training (Fig. 1 and “Evaluating the ability

Fig. 1 The eight sites used to demonstrate the ability of the CNN to generalise spatially and the GEV fits derived by the CNN for those sites under two
levels of climate change. The 10,000 sites used for the training are shown with grey dots while the eight sites are shown using red dots. Insets show
histograms of observed 1-year block maxima of daily precipitation at the eight sites as well as the GEV fits for those sites, generated by the CNN, for T0

Global

of 0∘ C (dashed grey curve) and 1.5∘ C (solid black curve).
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of the CNN to spatially generalise the GEV functions”), provides
confidence that the CNN-generated GEV fits are statistically
robust; a more complete evaluation of the CNN-generated GEV
fits, and an evaluation of the ability of the CNN to correctly infer
the non-stationarity in the GEV fits, is presented in “Methods”.

5% annual exceedance probability precipitation levels. 5% AEP
(1-in-20 year event) precipitation maps, similar to those shown in
Fig. 2, are shown in Supplementary Fig. S2. As expected, the
magnitude of a 1-in-20 year event is uniformly lower than a 1-in-
100 year event. The scaling values shown in the small circles
(similar to those shown in Fig. 2) indicate that for North America
the 1-in-20 year precipitation depth is 181 ± 25% of a typical
annual maximum 1-day precipitation depth, while for Australia
this is 187 ± 26%, for Europe 177 ± 20% and for New Zealand
180 ± 28%, suggesting a potentially useful heuristic that 5% AEP
precipitation depths are typically 1.8 times the magnitude of an
annual maximum 1-day precipitation depth.

Precipitation depth vs. ARI. A view of precipitation depth for a
wider range of ARIs is provided in Fig. 3. Several sites show
increases in precipitation depth with increasing ARI. The site in
western Haiti (A in Fig. 3; 18.375∘ N, 73.875∘ W) shows the 1-day
precipitation depth increasing from 333 mm for ARI= 100 years
to 492 mm for ARI= 1000 years. Similarly, the site south-east of
New Orleans (B; 29.688∘ N, 89.812∘ W) shows the 1-day pre-
cipitation depth increasing from 308 mm for ARI= 100 years to
432 mm for ARI= 1000 years. A few sites in Australia show even
greater relative changes in precipitation depth with ARI; five of
the 100 sites analysed (A-E in Fig. 3) show 1000-year ARI pre-
cipitation depth exceeding 700 mm, all along the northern

coastline, up from 445-480 mm for 100-year ARI. The European
site close to Nice (A; 43.891∘ N, 7.391∘ E) shows the precipitation
depth increasing from 302 mm for ARI= 100 years to 566 mm
for ARI= 1000 years. The other European site with 1000-year
precipitation exceeding 400 mm is that on the Croatian coastline
(B) at 416 mm. The four sites in New Zealand with 1-in-1000
year precipitation exceeding 600 mm are all at high elevations in
the Southern Alps along the south-west coast of the South Island
(A-D in Fig. 3).

Change in the magnitude of 1% annual exceedance probability
per degree warming. Here we explore the percentage change in
the severity of 1% AEP events learned by the CNN for each 1 ∘C
change in T 0

Global. The results presented in Fig. 4 are, essentially,
the sensitivities of extreme precipitation to climate change
quantified as T 0

Global. Because the climate signal in observed
extreme precipitation time series is often weak and spatially
highly variable, especially at smaller scales, statistically robust
derivation of the sensitivity of precipitation extremes to climate
change at continental or smaller-scales, based solely on observa-
tional time series, has been challenging; Sarojini et al.26 concluded
‘compelling evidence of anthropogenic fingerprints on regional
precipitation is obscured by observational and modelling uncer-
tainties and is likely to remain so using current methods for years
to come’. Our CNN-based analysis of annual maximum daily
precipitation demonstrated here suggests a way forward to derive
these sensitivities at regional and sub-regional scales.

Sun et al.27 applied GEV analyses to the HadEX2 data set28 in
which T 0

Global was also used as the climate covariate, finding that
the global median percentage change in extreme precipitation per
∘C increase in T 0

Global is 6.6% (5.1% to 8.2%; 5%-95% confidence

Fig. 2 1% annual exceedance probability precipitation depths. These have been evaluated at a T0
Global of 1.1

∘ C for (a) North America, (b) Australia, (c)
Europe, and (d) New Zealand. The underlying shaded relief shows the topography. Note the non-linear colour scale. Values in circles show the scaling with
respect to the long-term (20 years or more) average of the annual maximum 1-day precipitation.
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interval) for annual maximum daily precipitation (Rx1day). Over
the four regions analysed here we find a mean towards the lower
end of this range of 5.1% (with a much smaller 95% confidence
interval of just 0.0026% given the huge number of data from all
four grids). Westra et al.23 found sensitivities of 5.9% to 7.7%.
These differences likely result from differences in geographical
coverage of the sites analysed and the analysis methods employed.

Over North America, changes in the severity of 1% AEP
precipitation per °C increase in T 0

Global vary from decreases of a
little more than 10% to increases of around 18% with an
interquartile range of 1.4% to 11.2%. These expected changes in
extreme precipitation, derived only from the observational record,
are consistent with previous analyses of precipitation observations
over North America29 that have shown increases in extreme
precipitation, and with model-based analyses30 which showed
that external forcing, dominated by human influence, has
contributed to the increase in frequency and intensity of
precipitation extremes in North America. Changes along the
southeast Gulf coast are around 14% increase per ∘C increase in
T 0
Global while along the east coast values frequently exceed 16%.

These increases may be related to expected increases in
hurricane-induced rainfall31; noting however that this cannot be
inferred from the CNN which has no internal representation of
hurricanes, only the precipitation depth measured during
hurricanes. Over the Rocky Mountains and other mountainous
regions of North America, decreases approaching 10% are
inferred. These negative sensitivities observed over Northwest
North America are consistent with Sun et al.27 who found that
56% of stations in this region experienced decreases in the
severity of Rx1day precipitation between 1950 and 2018.

For Australia, the CNN infers changes of -20.2% to 5.9% with
an interquartile range of -6.4% to -0.6%; most of the interior of
the continent is simulated to experience negative sensitivities in
extreme precipitation to global climate warming. In contrast, the
eastern and northern coasts near warm oceans/currents are
simulated to experience small positive sensitivities. Dey et al.32

attributed the increase in extreme precipitation in the north-west
of Australia since 1950 to increased monsoonal flow due to
increased aerosol emissions and not to an increase in atmospheric
greenhouse gas loading. The sensitivities of extreme precipitation

Fig. 3 Precipitation depth vs. average recurrence interval. Results are shown for 100 randomly selected sites in each of the four regions. Panels (a–d)
show the location of the selected sites while panels (e–h) show the precipitation depth vs. ARI curves for each of those sites, matched by colour. Locations
closer to the equator are shown in red while locations closer to the pole are shown in blue. Uppercase letter labels refer to specific sites discussed in the
text and where labels are ordered from largest to smallest precipitation depth at ARI= 1000 years.
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to climate warming that we have inferred are consistent with
previous reports33 of decreases in precipitation in austral autumn
and winter over parts of southern and especially southwestern
Australia in the past few decades. Likewise, Sun et al.27 found that
56% of stations in Australasia showed negative sensitivities to
T 0
Global with average sensitivities of ~ -6.5% per ∘C. Delworth and

Zeng34 used observations and climate models to show that some
of this decline results from changes in large-scale atmospheric
circulation, including a poleward shift of the westerly winds and
an increase in atmospheric surface pressure over parts of
southern Australia attributed to anthropogenic increases in
atmospheric greenhouse gas concentrations and stratospheric
ozone depletion. Pfahl et al.5, in diagnosing climate model
simulations, found that while thermodynamics alone would lead
to a spatially homogeneous positive sensitivity of extreme
precipitation to warming, which is consistent across models and
dominates the sign of the change in most regions, the dynamic
contribution modifies regional responses, weakening them across
the Mediterranean, South Africa and Australia. They found that
over subtropical oceans, the dynamic contribution is strong
enough to cause regional decreases in extreme precipitation,
which may partly result from a poleward shift of the storm track.
Such a shift has been a dominant attribute of Southern
Hemisphere climate change over recent decades35,36. Such
dynamical offsetting of the expected thermodynamic increase in
extreme precipitation under climate warming may suggest a
potential mechanism underlying our observed negative response
of extreme precipitation over the interior of Australia to warming.

For Europe, the CNN infers fairly homogeneous sensitivities of
between 3.9% and 23.7% with an interquartile range of 8.2% to
11.1%, slightly larger than what would be expected from
application of the CCR. The (predominantly) positive sensitivities

over Europe and North America are consistent with previously
inferred anthropogenic influence on annual precipitation maxima
over Northern Hemisphere land areas37,38.

For New Zealand, the sensitivities fall between -2.7% and
16.0% with an interquartile range of 4.8% to 10.5% and a strong
west-east gradient across the South Island driven by the
dominance of the westerly flow and the topographic barrier of
the Southern Alps. In the East Cape region of northeast New
Zealand, where 1% AEP events are close to 480 mm day−1 and
frequently cause damage39, the CNN estimates sensitivities of up
to 15% for every ∘C of global warming.

To demonstrate the value of our CNN approach, precipitation
sensitivities were derived individually for each of the GHCN sites
with precipitation records of 35 years or longer, using the same
6-parameter non-stationary GEV fit as used by the CNN. The
resultant sensitivities are shown in Supplementary Fig. S3. The
site-to-site variability is so large as to render the results unusable.
This is not surprising given that the non-stationarity in the GEV
fits can only be inferred from as few as 35 1-year block maxima
over the recent past and, as such, few of these sites will observe
even one 1-in-100 year event. This is highlighted in Supplemen-
tary Fig. S4 where 1-year block maxima from two GHCN sites in
North America, just 9.34 km apart, show very different derived
precipitation sensitivities.

It is clear from this figure that a single anomalous block
maximum can bias the non-stationarity in the GEV fits; the
block maximum at site B late in the period (when T 0

Global is
higher) is likely what causes the GEV fit at this site to generate a
long tail to model this value (>100 mm day−1 in the histogram).
Given the direct GEV fit-derived cumulative distribution
functions plotted in blue in the bottom row panels of
Supplementary Fig. S4, it is not surprising that at Site A a

Fig. 4 Percentage change in the severity of 1% AEP precipitation per 1∘ C increase in T0
Global. These have been evaluated between a T0

Global of 0.2
∘ C and

1.2∘ C for (a) North America, (b) Australia, (c) Europe, and (d) New Zealand. Note the non-linear colour scale with yellow, orange, and red showing
decreases in 1% AEP severity and green, cyan and blue denoting increases. The thick black contour shows the 0% change line.
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sensitivity in 100-year ARI precipitation of -22.6% ∘C−1 is
inferred, while at Site B a value of 58.3% ∘C−1 is inferred. The
CNN-derived GEV fits (red), and their associated cumulative
distribution functions, are far less variable as the GEV statistics
are not derived using only the block maxima from the site, but
from many neighbouring sites as defined by the convolutions
used in the network.

Sensitivity vs. ARI. A view of the sensitivity of changes in
extreme precipitation to T 0

Global for a wider range of ARIs is
provided in Fig. 5. Over North America, sensitivities are similar
to what would be expected from the CCR over ARIs of 10, 20, 50,
100 and 200 years, though with some indication of an increase in
the spread of sensitivities with ARI and, as was seen in Fig. 4, with
more southern sites generally experiencing higher sensitivities
across all ARIs.

In Australia, the sensitivities are below the CCR expectation
across all ARIs with a tendency, especially for the more northern
sites, for the sensitivities to become more negative with increasing
ARI.

Over Europe there is a clear tendency for the sensitivity of
extreme precipitation to T 0

Global to increase with ARI, especially
for more northern locations. At an ARI of 200 years, most of the
100 randomly selected sites show sensitivities above the CCR
expectation.

In contrast, sensitivities over New Zealand generally decrease
with increasing ARI, with sensitivities spanning the CCR
expectation at 10-year ARI and, especially for more northern
locations, with sensitivities falling below the CCR expectation for
northern locations at an ARI of 200 years.

Sensitivity vs. precipitation depth. Important questions that can
also be addressed through this analysis are: How do precipitation
sensitivities vary with average precipitation depth? Will climate
change drive greater relative increases in extreme precipitation for
locations that are already experiencing high precipitation? Plots of
precipitation sensitivity (% change in precipitation depth per ∘C
change in T 0

Global are shown in Fig. 6 for all four regions and for ARIs
of 10, 20, 50, 100 and 200 years). Over North America, sites with
higher average extreme precipitation (across all ARIs) tend to show

Fig. 5 Sensitivity of extreme precipitation depth to T0
Global vs. average recurrence interval. Site selection and colour coding (a–d) is as in Fig. 3 where

panels (e–h) now show the precipitation depth sensitivity vs. ARI curves for each of those sites; the percent change expected from the CCR (7%) is plotted
as a dashed line.
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larger sensitivities to climate change. This remains true for different
latitudes - noting that the more northern sites generally experience
lower extreme precipitation depths (see also Fig. 2 and Supplemen-
tary Fig. S2). The behaviour over Australia is quite different. While
the relationship between precipitation sensitivity and precipitation
depth is compact, it shows strongly non-linear behaviour, with sites
with intermediate extreme precipitation depths (e.g., between 100
mm day−1 and 350-500 mm day−1, the latter increasing with ARI)
showing positive sensitivities, while sites with very low or very high
extreme precipitation show negative sensitivities. This relationship
appears to hold true independent of latitude.

For Europe the relationships are neither linear nor particularly
compact. There is some sense that, in contrast to Australia, it is the
sites with extreme precipitation depths closer to the mean that
exhibit lower sensitivities to climate change. Sites with large extreme
precipitation depths show the highest sensitivity to T 0

Global.
For New Zealand the relationships are compact but indicate a

divergence from linearity at the highest extreme precipitation
values, especially at longer ARIs.

Change in the average recurrence interval for present day 1%
AEP events. The sensitivities of the severity of EPEs to climate
change were presented above. Here we consider the corollary, i.e.,
changes in the frequency of EPEs inferred from the CNN. Spe-
cifically, we consider present-day (T 0

Global = 1.1 ∘C) 1% AEP
events (1-in-100 year events) and consider how frequently these
events occur (1-in-x year events) at T 0

Global = 2.0 ∘C. Maps of the
ARI at 2 ∘C for 1-in-100 year events at 1.1 ∘C, for all four regions,
are shown in Fig. 7. While the results presented in Fig. 7 show a
similar pattern to those presented in Fig. 4, practitioners often
wish to understand how the ARI for EPEs is expected to change
with climate change. For North America, there are regions over
the Intermountain West where the ARI extends to beyond 150
years, but over most of the continent the ARI decreases; the
interquartile range for the continent is 60 to 93 years. There are
regions along the Pacific north-west coast where the frequency of
EPEs is projected to double under a 2 ∘C warmer world compared
to present day.

Fig. 6 Sensitivity of extreme precipitation to T0
Global vs. precipitation depth. Rows of panels show results for North America, Australia, Europe and New

Zealand. Columns show results at ARIs of 10, 20, 50, 100 and 200 years. For clarity, the sensitivities were evaluated at T0
Global = 1.2∘ C. Results are shown

for one out of every 1000 locations in each region. More poleward locations are shown in blue and more equatorward locations in red as for the
figures above.
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Over the Cape York Peninsula and much of the coastal regions
of eastern and northern Australia, the ARI reduces slightly to 80-
90 years, though over most of Australia the ARI increases beyond
100 years; interquartile range of 103 to 131 years.

Over Europe there is an almost uniform reduction in the ARI
under a 2 ∘C warmer world with an interquartile range of 64 to 69
years. Similarly, over New Zealand, the ARI reduces over almost
all of the country. Over the west coast of the South Island, the far
north-east coast, the East Cape and the coastal regions of the Bay
of Plenty, the frequency of EPEs under a 2 ∘C world is expected to
almost double compared to present day.

Discussion
The CNN detailed here represents, to the best of our knowledge,
a new approach to simulating past, present and expected future
changes in extreme precipitation. The results demonstrate the
ability of a CNN to learn the statistics of EPEs, and, by including
a climate covariate in that learning, to infer the sensitivity of
extreme precipitation to climate change. The inferred sensitivity
often deviates from the CCR expectation of a 7% increase per
1 ∘C of warming. This is primarily because changes in local and
large-scale dynamics strongly affect regional precipitation
responses to climate change. For example, locally enhanced sea
surface temperature warming along coastal regions can lead to
stronger moisture intrusions and torrential rainfall in monsoon
regions such as Asia40,41 as well to heavier coastal rainfall during
tropical cyclones, such as in East Asia and the southeast United
States42,43. The vertical distribution of temperature change also
affects local lapse rates and stability and can thus locally enhance
precipitation in regions where instability increases, while regions
that become more stable may experience a decrease in heavy
precipitation (such as in the sub-tropics)5. Finally, large-scale
shifts in storm tracks in response to climate change, such as a

poleward shift of the mid-latitude storm tracks, also affects
where heavy precipitation occurs44,45; regions receiving more
storms may experience precipitation increases that surpass the
CCR, while regions receiving fewer storms may experience a
decrease in heavy precipitation with climate change (such as in
the sub-tropics). Human activity independent of climate change,
such as land-use change and aerosol emissions, can also affect
local precipitation through changes in soil moisture
availability46, increased urban heat island-induced moisture
convergence47, and changes in aerosol-induced cloud con-
densation, latent heating, and efficiency in precipitation
production48,49. By using this large global data set of observed
precipitation, which is inherently capturing such processes, to
train the CNN, we have shown the CNN is able to learn these
spatial heterogeneities without needing to simulate (or know
about) the dynamical and thermodynamical processes driving
the rainfall.

This work has shown the value of precipitation measurements
from the GHCN. Recent declines in the number of reporting
stations and/or the volume of data reported, compromised the
application of this method in many regions. We encourage
National Meteorological and Hydrometeorological Services to
maintain and expand surface climate observing sites as these
observational data are essential to conducting the type of analysis
presented here that can then inform adaptation actions to EPEs.

There are several advantages to this CNN approach:

1. When being trained, the CNN can use station records of
any length. It is not necessary to screen for sites with long
homogeneous precipitation measurement series. Every
block maximum from every site counts towards the training
of the CNN. This greatly increases the number of sites that
can be used for such analyses.

Fig. 7 Change in average recurrence interval. The frequency (1-in-x year) at which 1-in-100 year events under present day conditions (T0
Global = 1.1∘ C) will

occur under T0
Global = 2.0∘ C for (a) North America, (b) Australia, (c) Europe and (d) New Zealand.
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2. It is independent of global or regional climate models which
are costly to run and have shortcomings in simulating
precipitation extremes.

3. Once trained, the CNN can simulate expected changes in
extreme precipitation under a wide range of greenhouse gas
emissions scenarios as represented by different time series
of T 0

Global; other climate covariates could be employed in
future work for more detailed regional studies.

There are, however, some important caveats. The first is that
the CNN can only derive precipitation sensitivities to climate
change from historical observations and the sensitivities derived
here from observations from 1960 to 2019 may not necessarily
apply in the future, i.e., those sensitivities may themselves change.
For example, over some region, past negative trends in the
severity of EPEs may switch to positive trends in the future as a
result of non-linearities in the climate system making the sensi-
tivities derived from historical observations inapplicable. There is
a large body of work [e.g., ref. 50–52] that highlights the challenges
of determining climate trends in the presence of internal climate
variability whose timescales may be similar to the lengths of the
observational records. This CNN, lacking any intrinsic repre-
sentation of the physics of the climate system and potential
triggers for such non-linear behaviour, has no ability to learn of
these non-linearities and incorporate them into its learning of
precipitation sensitivities. A focus for future work will be to
explore the possibility of using observational data as the basis for
the CNN to learn the stationary statistics of extreme precipitation,
and a preliminary learning of the non-stationary statistics, but
then to augment the observational data with transient model
simulations from which the CNN, using transfer learning,
updates its representation of the non-stationarity of extreme
precipitation.

Useful projections of expected changes in extreme precipita-
tion require multiple lines of evidence. The CNN-based
approach presented here to infer precipitation sensitivities that
can then be used as a basis to project expected changes in
extreme precipitation constitutes an additional line of evidence.
This work highlights the value that artificial intelligence can
bring to climate applications, in this case capitalising on the
ability of a CNN to learn the regional and topographical varia-
bility of extreme precipitation statistics and, importantly, how
those statistics change with global mean surface temperature,
allowing the CNN to simulate EPE statistics continuously across
space and at very high spatial resolution. As these artificial
intelligence-based methods evolve, and as we learn how to imbue
artificial intelligence-based methods with intrinsic knowledge of
the physics underlying the system (so-called physics informed
CNNs; ref. 53,54), these methods will become more useful in
combining observations of the past with our best understanding
of the physics of the system to provide robust projections of
expected future changes.

Methods
Data. Daily precipitation data were obtained from the Global
Historical Climatology Network (GHCN). The number of sites,
and the volume of data provided for each site through the GHCN,
has declined considerably in the past few decades. As such, for
this analysis which requires long precipitation records over a
dense network, only GHCN data for North America, Europe and
Australia were found to be sufficient; for New Zealand the GHCN
data needed to be supplemented with data from the New Zealand
National Climate Database (CLIDB). Therefore, only data from
sites within these four target regions of North America, Europe,
Australia and New Zealand were considered for this analysis.

Data from 1950 to 2019 from the combined GHCN and
CLIDB database (hereafter GHCN+CLIDB) were used in this
study, with the first decade being withheld from the CNN training
to be used for evaluation. Due to a lack of measurements in New
Zealand during the 1950s, data from 1960 to 2019 were used
instead, with the evaluation period covering the first five years
(1960-1964). Data flagged within the GHCN database as poor
quality were removed. Annual maximum daily precipitation
values (so-called block maxima; Rx1day) were calculated for each
site in each year for which 360 or more daily precipitation values
were available.

Site selection started by identifying eight test sites for which
long time series of daily precipitation data were available and
which represented large population centres over a diverse range
of climates. These were Los Angeles, Miami, New York, London,
Berlin, Darwin, Sydney and Auckland. First, the site furthest from
all of these evaluation sites was added to the list of sites to be used
for CNN training. Then the site furthest from the eight evaluation
sites and the site on the training list was identified and added to
the list of sites for training. This process was repeated until 10,000
GHCN sites were on the list of sites to be used for training the
CNN. As a consequence, the closest two sites to be used for CNN
training were 28 km apart. Data from the eight evaluation sites
were not used in the CNN training, nor data recorded during the
evaluation time period. To ensure each site covered a reasonable
time period, only stations with at least ten years of block maxima
were selected.

As a climate covariate to allow the CNN to learn of non-
stationarity in the GEV probability density functions, annual
mean global mean near surface temperature data were obtained
from HadCRUT.5.0.1.055. Anomalies were then calculated with
respect to the period 1850 to 1900. To remove year-to-year
variability from, e.g., El Niño events, a Savitzky–Golay filter was
applied to the anomaly time series with a window length of 21
years and a polynomial order of 3.

CNN architecture. A schematic of the CNN architecture is dis-
played in Supplementary Fig. S5. This architecture is based on
high-performing similar architectures with long heritages in
machine vision56–58. For each weather station in GHCN+CLIDB,
the surrounding 64 × 64 cells at four different grid resolutions (1/
256∘, 1/64∘, 1/16∘, and 1/4∘), selected for their representation of
different spatial scales over which precipitation might be homo-
geneous, were extracted from a land-sea mask and an elevation
data set to provide 2D features (referred to as channels in
machine vision) which can be used by the CNN to learn the
dependence of the precipitation on the spatial morphology of the
regions around each site at these different spatial scales. The
64 × 64 cell size was selected as a compromise between memory
restrictions and the need to represent the spatial morphology of
the precipitation around each site (i.e. out to scales of 16∘ × 16∘) -
there is unlikely to be relevant information beyond these scales.
These 64 × 64 grids can be considered as images with two features
(viz., land-sea mask and topography/elevation). An additional
three features, calculated at each resolution, were used to encode
positional information for each grid cell relative to the location of
the weather station or location of interest. These three variables
were the north-south distance, the east-west distance, and the
Euclidean distance, between the grid cell or pixel and the centre
pixel or grid cell.

At the highest resolution, 1/256∘, an additional four features are
added, namely: (i) the elevation of the station above sea level, (ii)
the latitude of the station, and (iii) the sine and (iv) the cosine of
the longitude of the station. These additional point-based features
were repeated across 64 × 64 pixels so that they could be
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concatenated with the other five features (see top left of
Supplementary Fig. S5). All features were first normalised by
subtracting the mean and dividing by the standard deviation.

The CNN architecture comprises four parallel branches, for
each input feature scale, that are initially processed separately, but
then later concatenated deeper in the network. The architecture
includes a series of ResNet blocks56 as well as many of the design
features detailed in57. Each resnet block consists of 3 × 3
convolutions, Mish59 activation functions, and batch normal-
isations. ResNet blocks, also known as residual blocks, are a key
component of the ResNet architecture for deep CNNs used in
image classification and other computer vision tasks56. ResNet
blocks enable the training of very deep neural networks by solving
the vanishing gradient problem. In a standard CNN, each layer
transforms the input data into a feature representation which is
then passed to the next layer. However, as the number of layers in
a network increases, it becomes increasingly difficult to train the
network due to the gradients becoming vanishingly small,
preventing the network from learning. To solve this problem,
ResNet blocks introduce skip connections that allow information
to bypass one or more layers in the network. ResNet blocks take
the input feature map and passes it through a sequence of
convolutional layers and non-linear activation functions (in our
case the Mish activation function), before adding the original
input feature map to the output of the block. This creates a
shortcut connection that allows the gradient to be directly
propagated back to the earlier layers of the network, thereby
mitigating the problem of vanishingly small gradients.

A version of the CNN, with a single branch and where all input
scales were concatenated from the start, was initially developed.
However, the four-branch version of the architecture shown in
Supplementary Fig. S5 leads to better results. The reasoning
behind this modification is that we seek to add a strong prior to
the CNN such that each spatial resolution should initially be
treated independently, only later combining the information after
important features were extracted at each scale separately.

Pseudocode for the ResNet block is shown in the bottom right
of Supplementary Fig. S5. The spatial resolution progressively
halves each time by setting the stride of the first 3 × 3 convolution
within a ResNet block to two. The number of intermediate
features is progressively increased as the spatial resolution
decreases. The final layer consists of an adaptive average pool,
averaging the 2048 × 2 × 2 output to 2048 × 1 × 1, which is then
flattened and fed through a final linear layer, with a dropout60

probability of 50%. This linear layer outputs six coefficients (μ, σ
and ξ and the coefficients describing their dependence on T 0

Global).

Training the CNN. The loss function used to train the CNN is:

f ðxÞ ¼ � log ϵ

þ
1
σ 1þ ξ x�μ

σ

� �� 	�1
ξ�1

exp � 1þ ξ x�μ
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h i
; if kξ k > ϵ;

1
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; if kξ k ≤ ϵ;

8<
:

ð3Þ
where x is a single observed block maximum, μ is the location
parameter, σ > 0 is the scale parameter, and ξ is the shape para-
meter. An extra parameter ϵ, which we set to 10−5, is added for
numerical stability.

As alluded to above, the block maxima from the 10,000
training sites were divided into a training data set (1960 to 2019
for North America, Europe and Australia; 1965 to 2019 for New
Zealand) and an evaluation data set (1950 to 1959 for North
America, Europe and Australia; 1960 to 1964 for New Zealand).
The later period was used for training since this period
experienced a larger change in climate, allowing the CNN to

learn more robustly the non-stationarity in the GEV parameters.
The CNN was trained to minimise the average negative log-
likelihood of the expanded GEV distribution (see equation (3)) of
a single randomly sampled batch of 64 block maxima. The
RAdam optimizer61, with a weight decay of 0.01, was used as the
inner optimizer within Lookahead62 which was configured with a
slow weight step of 0.5 and synchronization period of 6 steps.
Training was performed over four epochs with the learning rate
fixed at 10−3 for epochs 1 and 2 and then decreasing to 10−7 by
the end of epoch 4 using a cosine decay schedule. Early stopping
was employed in selecting the epoch with the lowest validation
loss. Training was first performed exclusively on the subset of
training sites for North America. The CNN was then trained
separately for Australia, New Zealand and Europe, in each case
taking the pre-trained weights from North America and freezing
all weights apart from those in the final output layer. Training
was then performed for one epoch with a learning rate of 10−3.
All weights were then unfrozen and training was performed for
another four epochs using the same training method as North
America. The code was implemented using PyTorch63 and
fastai64.

Evaluating the ability of the CNN to capture non-stationary in
the GEV functions. To evaluate the ability of the CNN to capture
the non-stationarity in the GEV distributions, the negative log-
likelihood was calculated for all sites with observations available
over the evaluation period, averaged across each region to avoid
single site outliers resulting from natural variability in pre-
cipitation extremes (Fig. 8). Because minimising the negative log-
likelihood is equivalent to maximising the likelihood, the minima
in the blue traces in Fig. 8 show the value of T 0

Global that max-
imises the probability of observing the precipitation block max-
ima. For North America and New Zealand the T 0

Global estimated
from the negative log-likelihood traces almost exactly match the
expected average T 0

Global for the corresponding evaluation period.
The matches for Europe and Australia are close, indicating that
the CNN was able to accurately generalise the non-stationary
components of the GEV model beyond the range of the training
period.

Evaluating the ability of the CNN to spatially generalise the
GEV functions. To further verify the CNN’s ability to generalise
spatially, and echoing the approach that was followed in “1%
annual exceedance probability precipitation levels” and
“Change in the magnitude of 1% annual exceedance probability
per degree warming”, we now compare more quantitatively the
CNN approach with an approach where GEV fits are performed
individually for single sites. For this purpose, an additional 200
test sites that were not included in the training of the CNN or
prior validation, were selected for each region. Each selected
site was required to have a minimum of 35 block maxima
during the fitting period (1960 to 2019 for North America,
Australia and Europe, and 1965 to 2019 for New Zealand).
Other than New Zealand which only had 159 additional eva-
luation sites, the other three regions each had at least 200 sites
meeting these criteria. For the regions with more than 200 sites,
sites with the most block maxima were selected. Nonetheless,
this still resulted in a distinctive lack of suitable sites for some
countries in Europe.

Unlike in “1% annual exceedance probability precipitation
levels” and “Change in the magnitude of 1% annual excee-
dance probability per degree warming”, to generate the most
robust GEV fits possible, these previously unseen sites were
allowed to source block maxima back to 1901; each site was
required to have at least one block maximum in the period prior
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to 1960/1965 to be used in the evaluation (see below).
Furthermore, a stationary GEV was fitted to the block maxima
at each site. While this prevents the GEV fit from being used to
determine the sensitivity of extreme precipitation to climate
warming, it results in a more robust stationary fit.

To provide comparison statistics from the CNN at these new
evaluation sites, GEV coefficients were extracted from the cell
nearest to the evaluation site from the 1.5 km gridded CNN
output and evaluated at a T 0

Global of 0.2
∘C. Slightly better CNN

results may have been generated by evaluating the CNN at the
exact location of the site, especially in mountainous regions, and
at an appropriately weighted value of T 0

Global. As such, the
comparison statistics presented below are conservative.

As we are comparing the accuracy of the CNN to a direct GEV
fit at a single site, we replicated the same validation split as before
- any data before 1960 (or 1965 for New Zealand) were used for
evaluation, and any data thereafter were used for the fit (at least 35
years, but typically more). This ensured that any single extreme
precipitation event that the CNN was trained on would not
impact the comparison. The mean negative log likelihood for all
observations during the evaluation period (i.e., before 1960/1965)
was then calculated both for the individual site GEV fits and using
the GEV coefficients extracted from the CNN; each was evaluated
against the same set of block maxima unseen in their training.

The results are summarised in Table 1. Overall, the CNN
performs markedly better than a direct fit in North America and
Europe, where 74% and 63% of sites, respectively, showed a better
fit. For Australia and New Zealand, the results are mixed with the
CNN providing a better fit to the observations about half the
time. There is some ambiguity in these results however. A site
with block maxima closely following a typical GEV function, but
with each block maximum inflated by a factor of 10, would
generate a very small negative log likelihood (good GEV fit) but
would generate highly erroneous 1% AEP precipitation depths.
The CNN, evaluated at the same site, would generate a very large
negative log likelihood (poor GEV fit) because the CNN
generalises spatially and is not influenced by the 10x biased
observations at that site.

The spatial patterns of the differences in the negative log
likelihoods between the individual site GEV fits and the CNN-
derived GEV fits are shown in Supplementary Fig. S6. Other than
potentially in Norway, which contains a region where the CNN
appears to perform poorly (potentially due to complex topo-
graphy), there are no spatially coherent biases that can be
discerned. In every region there are nearby stations that show
opposing results. There are two explanations for this viz., (1) due
to random variations and small sample sizes, and (2) due to
anomalous block maxima at a single site as was seen in
Supplementary Fig. S4. In the second case, while a direct GEV
fit is influenced by this anomalous block maximum, the CNN,
having generalised spatially, will perform comparatively poorly.
While most sites contained sufficient block maxima for this
evaluation, for New Zealand there were far fewer block maxima
available during the evaluation period (less than 5 on average). As
a result, for New Zealand there is considerable random variation
such that no spatially consistent results can be discerned.

Another way of evaluating the benefits of the CNN compared
to direct GEV fits is to evaluate the number of very rare events
inferred from the fit; essentially a test of the robustness of the
inferred long tail of the distribution. In this case a very rare event
was considered to be an event with an AEP of less than 0.1%, i.e. a
1-in-1000 year event. The number of such events, in the context

Fig. 8 CNN evaluation of non-stationarity. The negative log-likelihood across all 10,000 sites that had observations available during the evaluation period,
averaged for each region at different values of T0

Global from -2∘ C to 2∘ C (blue lines). The vertical red dashed line in each panel shows the average T0
Global

over the evaluation period, 0.240∘ C for New Zealand from 1960 to 1964, and 0.264∘ C over 1950 to 1959 for the other locations. If the linearly expanded
coefficients accurately generalise over the evaluation period, the minimum in the negative log-likelihood curve is expected to coincide with the vertical
dashed line.

Table 1 The mean and median negative log likelihoods for
both the CNN and the direct GEV fits to each site.

Location CNN
Mean

GEV
Mean

CNN
Median

GEV
Median

CNN
Better

NA 0.733 0.786 0.493 0.541 74%
EUR 0.316 0.326 −0.006 −0.031 63%
AUS 0.801 0.795 0.468 0.482 51%
NZ 0.916 0.890 0.568 0.624 49%

Lower numbers represent better fits to the block maxima. CNN better shows the percentage of
times the CNN produced better results than a direct fit at a given site.
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of the total number of 1-year block maxima available, is shown in
Table 2. Rare events were estimated to be far more frequent when
evaluated from the individual site GEV fits compared to when
evaluated from the CNN-derived GEV coefficients. Over all four
regions, the CNN derived frequency of rare events is not
substantively different from the total number of 1-year block
maxima available, i.e., 0.1% of the total number of observations.
This suggests that a direct GEV fit is much more likely to
underestimate the bounds, or extremes, of a GEV distribution.
Given that the CNN saw much more data in its training,
including very rare events which it had to account for, it is
unsurprising that it models these events with greater fidelity.

This evaluation shows that while the CNN generalises well to
unseen locations, it is not always better than a stationary direct fit
(noting, however, the ambiguity in such an evaluation as
discussed above). If the primary goal is to derive estimates of
stationary precipitation return periods, then repeating the CNN
training process with no, or fewer, terms expanded in T 0

Global (see
equation (2)), would be beneficial, especially for a region such as
New Zealand with limited volumes of data.

Data availability
All data sets used in this study are publicly available. The Global Historical Climate
Network (GHCN) data are available from ref. 65 while the New Zealand National Climate
Database data are available from ref. 66. The data required to generate all of the figures in
the paper are available through a Zenodo database67.

Code availability
All code used to produce the analysis is publicly available from68.
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