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Global inequities in population exposure to urban
greenspaces increased amidst tree and nontree
vegetation cover expansion
Song Leng 1, Ranhao Sun1,2✉, Xiaojun Yang3 & Liding Chen1,2

Cities worldwide are expanding greenspaces, including parks, urban forests, and grasslands.

However, population exposure to tree and nontree vegetation is less well understood. Here,

we use multiple satellite-derived datasets on vegetation, climate, and socioeconomic factors

to examine the variations of urban tree and nontree vegetation cover, drivers of changes, and

the impacts on global urban population exposure between 2000 to 2020. We find that

approximately 90% of cities experienced an ascending trend in tree cover, and 49% of cities

showed growth in nontree vegetation (p < 0.05). The increase in urban tree cover is most

evident in high-latitude areas, such as Eastern Russia and Northern Europe. Human exposure

to urban tree vegetation considerably declined in the Global South, widening the disparity

between the North and South. Our study underscores persistent inequalities in human

exposure to green space in cities and calls for evidence-based strategies that reduce

increasing disparities.
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Urban areas with ~3% of Earth’s land surface accommodate
more than half of the global population1,2. Making cities
and human settlements inclusive, safe, resilient, and sus-

tainable is a critical goal in the Sustainable Development Goals
(SDGs) adopted by the United Nations in 20153. However, rapid
urban expansion exacerbates various environmental challenges,
such as heat stress, habitat loss, air pollution, and water
shortage4–9. To address these issues and achieve SDGs, city
planners and policymakers should pay more attention to the way
they build and manage urban space10.

Vegetation is an essential component of urban nature and plays
an indispensable role in mitigating climate changes, improving air
and water quality, fostering urban biodiversity, and promoting
human well-being11–16. As societal awareness regarding the sig-
nificance of the natural environment continues to grow, evidence-
based studies reveal that there was an upward trend in urban
vegetation growth, giving rise to urban greening in the past
decades17–20. Nonetheless, a recent study identified a considerable
disparity in greenspace exposure between cities in the Global
South and the Global North, with the former experiencing nearly
twice the level of inequality21. By 2030, providing universal access
to inclusive greenspace, especially for less developed countries in
the Global South, remains challenging. Moreover, whether the
widespread urban greening could help mitigate the inequality in
urban dwellers exposure to vegetation remains an open question.

Urban greenspace is commonly examined as a holistic concept
when assessing human exposure to urban nature21,22. However, it
is essential to acknowledge that urban green infrastructure
comprises two distinct categories: tree and nontree vegetation,
each with unique ecological characteristics. Trees offer substantial
cooling benefits and can reduce maximum surface temperatures
by up to 5.7 °C in the summer14,23. Recent literature indicates
particle pollutant levels are substantially higher in open treeless
urban green areas than in adjacent tree-covered areas, and thus
highlight the ability to improve the air quality of urban trees24,25.
Moreover, urban forests excel in water retention and carbon
sequestration compared to nontree vegetation26–28, making them
valuable in promoting livability and resilience to climate
change29. On the other hand, urban grasses also provide a habitat
for a variety of animal species and various social and aesthetic
benefits for local residents and environments30. Despite the dif-
ference between urban trees and treeless greenspaces, it remains
unclear how urban tree and nontree vegetation would vary under
the context of urban greening and whether there would be dis-
parities in human exposure to the two greenspace types.

To address the above two major literature gaps, we conducted a
global analysis to examine the variability and potential drivers of
urban greenspace (in terms of tree and nontree vegetation) and
their associated changes in human exposure to the two major
components of greenspace over the past two decades. Utilizing the
multiple satellite-derived vegetation and climate datasets, along with
various socioeconomic datasets, we analyzed the spatiotemporal
variability of global urban greenspace, its relationship with urban
greenness, and the potential drivers of urban vegetation dynamics.
Moreover, we examined the variation in human exposure to
greenspace due to the changes in urban vegetation within the
context of prevalent urban greening. The technical details can be
found in Section Methods. This study has contributed a global
perspective on urban greenspace dynamics and highlighted the
implications for addressing inequality and promoting sustainable
urban development under the context of climate change.

Results
We separately assessed the relationship between urban greenness
and each of the two major components of vegetation (i.e., tree cover

and nontree vegetation) across world cities. Approximately 90% of
cities (1320 of 1464) showed a considerable upward trend in tree
cover (Fig. 1a). In contrast, 48.8% of cities (467 out of 957)
exhibited an ascending trend in nontree vegetation (p < 0.05, Sup-
plementary Figure 1). Our findings indicate that urban tree cover
consistently exhibited a stronger association with urban greenness
as measured by EVI (Enhanced Vegetation Index) (Fig. 1b, Sup-
plementary Figure 2). The strength of their relationships, close to
those between UGS (Urban greenspace defined as the sum of tree
and nontree cover) and EVI, was nearly twice as high as those
between nontree vegetation and EVI (Supplementary Figure 2).

In the first two decades of the twenty-first century, there was a
consistent and noteworthy growth in the average urban tree cover
observed in both the Global North and South, contributing to an
overall increase worldwide (Fig. 1c). In particular, a positive trend
in tree cover was observed in the majority of cities situated in
high-latitude areas of the Northern Hemisphere, notably Eastern
Russia and Northern Europe (Fig. 1a). Conversely, cities located
near the equator, primarily in Central America, Western Africa,
and South-Eastern Asia, displayed a declining trend in urban tree
cover. Furthermore, a considerable proportion of cities along the
northern coast of the Black Sea, as well as Western Asia, also
exhibited a decreasing trend (Fig. 1a, e).

By employing relative importance analysis and partial corre-
lation analysis, we developed a generalized additive model (GAM)
with four climatic and three socioeconomic drivers, providing
insights into the factors influencing the presence and growth of
global urban trees. The model accounted for approximately 70%
of the variability observed in urban tree cover (Fig. 2, Supple-
mentary Figure 3). Among the climatic drivers considered,
thermal-hydrologic compound factors, such as climate water
deficit and vapor pressure deficit, exhibited a stronger negative
correlation with global urban tree cover compared to
solely water-related indicators like precipitation and soil moisture
(Supplementary Figure 3). In addition, we identified a significant
and consistent relationship between downward surface shortwave
radiation and the global urban trees (Fig. 2). Furthermore, our
analysis revealed that urban tree cover tended to increase with
annual mean maximum air temperature when it was below 15 °C
but declined thereafter (Fig. 2). On the other hand, socio-
economic factors including human development index (HDI),
population density, and urban development intensity (UDI) also
exerted considerable influence on the presence of urban trees
across world cities (R ranges from −0.41 to 0.3). When HDI
reached 0.7, there was a considerable rise in tree cover along with
the increased HDI (Fig. 2b). Population density and urban
development intensity (UDI) negatively correlated with urban
tree cover (Fig. 2b, Supplementary Figure 3).

In contrast to the steady growth observed in urban tree cover
(Fig. 1c), our analysis reveals a concerning trend of declining
mean human exposure to urban trees (HET) in the Global South,
changing from 5.22% in 2000 to 4.13% in 2020 (Fig. 3). In
comparison, HET in the Global North remained relatively stable,
ranging from 15.3% to 15.4% over the past two decades (Fig. 3). A
substantial proportion of cities, 57.8% in the Global North and
88% in the Global South, experienced a HET decline, especially
for African cities with a notable reduction. Furthermore, the
inequality in human exposure to urban trees as measured by Gini
coefficient has intensified over the study period. In the Global
North, the Gini coefficient for HET increased from 0.26 in 2000
to 0.29 in 2020, while in the Global South, it rose from 0.3 to 0.36
(Fig. 3). In contrast to the HET changes, human exposure to
urban nontree vegetation (NTV exposure) remained relatively
stable from 2000 to 2020 in both the Global North and South.
The associated Gini index of NTV exposure witnessed only a
marginal decrease during this period (Supplementary Figure 4).

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-01141-5

2 COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:464 | https://doi.org/10.1038/s43247-023-01141-5 | www.nature.com/commsenv

www.nature.com/commsenv


Temporal variation in region-wide mean HET as well as the
corresponding Gini coefficients at a sub-continental scale are
shown in Fig. 4. Except Eastern Europe and Eastern Asia, all other
regions experienced a decline in HET. Notably, Australia and
New Zealand exhibited a slight decrease in the inequality metric,
with the Gini coefficient of HET declining from 0.16 to 0.14 over
the past two decades. However, in Asia and Africa, the Gini
coefficients showed a notable increase, particularly reaching 0.6 in
Western Asia. A closer examination of the three most populous
countries nowadays, China, India, and the United States, revealed
a consistent decrease in HET accompanied by an increase in
inequality (Supplementary Table 1). In contrast, Russia exhibited
an ascending trend in HET, albeit with a slight increase in the
Gini coefficient (Supplementary Table 1).

Discussion
Previous studies documented widespread urban greening as a
result of direct and indirect impacts of urbanization5,17,18.
However, these studies have primarily relied on satellite-derived
reflective greenness indicators which lack the ability to differ-
entiate the specific contributions of different vegetation types
within enhanced urban greenery5,18. In this study, we conducted
a comprehensive assessment, examining the spatial distribution
and temporal dynamics of the global urban tree and nontree
vegetation separately. Our findings confirm a significant increase
in urban greenness across the majority of cities worldwide over

the past two decades, which has primarily been driven by the
prevalent growth of urban trees with nearly 90% of cities exhi-
biting an upward trend.

Similar to the presence and growth of natural forests, urban
trees are also constrained by climate and geographic factors
shaping the hydrothermal environment, including precipitation,
temperature, and solar radiation (Fig. 2, Supplementary Figure 3).
The substantial expansion of urban tree cover, particularly in
high-latitude areas of the Northern Hemisphere, can be attributed
to a combination of depopulation and global warming. The
negative correlation between urban tree cover and population
density is evident as we observe a decline in population density in
Eastern Russia and Northern Europe (Supplementary Figure 5),
which has contributed, at least in part, to the proliferation of
urban trees. Furthermore, in colder regions where the annual
mean temperature is below 15 °C, increased temperatures have
been found to considerably contribute to the expansion of urban
tree cover (Fig. 3). Conversely, a warming climate can hinder the
growth and functioning of urban forests in tropical and sub-
tropical areas, leading to a slight ascending or even declining
trend in tree cover within cities31. In addition, a notable increase
in surface temperature, coupled with the intensification of urban
heat island effects, results in a greater water deficit, which nega-
tively impacts the growth of urban trees32,33. On the other side,
anthropogenic factors also exert an important influence on urban
tree growth, resulting from urbanization and various manage-
ment practices, such as irrigation, pest control, and pruning34–36.

Fig. 1 Global patterns of urban tree cover trends. a Geographic distributions. b Relationships between urban tree cover and urban greenness across the
globe. cMulti-year variations in the mean urban tree cover over the globe as well as the Global North and South. d The density of the slopes of the trends in
urban tree cover. e Boxplots of the urban tree cover trends among the sub-continental regions. The shaded areas around the fitted line indicate 95%
confidence intervals in Fig. 1c. Eastern Asia (E. Asia), South-Eastern Asia (SE. Asia), Southern Asia (S. Asia), Western Asia (W. Asia), Central Asia (C.
Asia), Eastern Africa (E. Africa), Middle Africa (M. Africa), Northern Africa (N. Africa), Southern Africa (S. Africa), Western Africa (W. Africa), Western
Europe (W. Europe), Northern Europe (N. Europe), Eastern Europe (E. Europe), Southern Europe (S. Europe), Australia and New Zealand (ANZ), Northern
America (N. America), South America (S. America), Central America (C. America) (p < 0.05, N= 1464).
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Fig. 2 Response of urban tree cover to climate and socioeconomic drivers. a Climate factors, including climate water deficit, downward surface shortwave
radiation, soil moisture, and mean maximum air temperature. b Socioeconomic factors, including human development index, population density, and urban
development index. c Performance of the generalized additive model (GAM). GCV: generalized cross-validation. The shaded areas indicate 95%
confidence intervals. The proportion null deviance explained (r2adj) and the significant level (p) of each variable are inserted.
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a b
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Fig. 3 Changes in human exposure to urban trees and the corresponding inequality of the world’s cities. a Scatterplots of the human exposure to urban
trees (HET) of the world’s cities in 2000 and 2020. The top and right panels refer to the histogram of HET in 2000 and 2020, respectively. b The region-
wide mean HET over Global North and South from 2000 to 2020 as well as the corresponding Gini index (N= 1464).
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The development of the economy and society is likewise instru-
mental in increasing urban tree cover, as it is positively correlated
with a synthetical index (HDI) when it exceeds a threshold of 0.7
(Fig. 3). This result suggests that highly developed cities or
regions with adequate financial support and effective manage-
ment capabilities have the potential and prioritize the protection
of natural environments through sustainable urbanization and
urban renewal efforts.

While a considerable enhancement of urban tree cover did
trigger widespread urban greening, our findings reveal that the
disparities in human exposure (HET) between the Global North
and South have intensified. Surprisingly, despite the mean level of
greenspace exposure remaining relatively constant in the Global
North, the corresponding inequality has substantially increased in
both the Global North and South, indicating a greater uneven
distribution of greenspace exposure globally. Recent studies have

Fig. 4 Global hotspots of degrading human exposure to urban trees. a, b The difference in HET of each urban cluster between 2000 and 2020 and the
density plot for sub-continental regions. c Regional differences of the temporal variation in human exposure to urban trees from 2000 to 2020. Error bars
refer to ±1 standard deviation. The red triangle indicates an increased Gini index and the green triangle indicates a decreased Gini index. Eastern Asia (E.
Asia), South-Eastern Asia (SE. Asia), Southern Asia (S. Asia), Western Asia (W. Asia), Central Asia (C. Asia), Eastern Africa (E. Africa), Middle Africa (M.
Africa), Northern Africa (N. Africa), Southern Africa (S. Africa), Western Africa (W. Africa), Western Europe (W. Europe), Northern Europe (N. Europe),
Eastern Europe (E. Europe), Southern Europe (S. Europe), Australia and New Zealand (ANZ), Northern America (N. America), South America (S. America),
Central America (C. America) (N= 1464).
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pointed out the contrasting differences in human exposure to
urban greenspace at a regional and global scale21,22,37. By sum-
ming up the total coverage of urban vegetation, they have
quantified greenspace exposure inequality and reported that
Global South cities exhibit nearly double the inequality compared
to Global North cities21. However, these analyses have primarily
focused on total greenspace coverage without distinguishing
between different vegetation types and their ecological functions,
giving rise to a lack of understanding regarding the specific
implications of exposure to tree and nontree vegetation for
human well-being. Furthermore, the dynamics of greenspace
exposure and the associated inequality under the context of
prevalent urban greening in recent years remain largely unex-
plored. Our study fills these knowledge gaps by examining the
temporal dynamic of human exposure to urban greenspace,
specifically focusing on tree and nontree vegetation, over the past
two decades. The ability to differentiate the specific contributions
of different vegetation types within enhanced urban greenery
represents a crucial contribution of our work. This study
leverages a comprehensive data integration approach that allows
us to achieve a finer spatial resolution and granularity compared
to prior studies21,22,37. As a result, we were able to differentiate
between tree and nontree vegetation at a much more localized
level within urban areas and provide a more detailed and nuanced
understanding of urban greenspace variability. We identified
trends and patterns in the distribution and abundance of these
two vegetation types, shedding light on their specific contribu-
tions to the overall greenspace dynamics. By emphasizing the
differentiation between tree and nontree vegetation within urban
greenspace and highlighting the disparities in human exposure,
our study contributes to a more comprehensive understanding of
urban greening dynamics. This insight can inform policymakers,
urban planners, and researchers in developing strategies that
address the specific needs and benefits of different types of
vegetation within urban areas, ultimately fostering more equitable
and sustainable urban environments.

Taking the example of China, India, and the United States (the
three most populous countries), the mean HET of all three
countries gradually declined, along with the increased Gini index,
primarily due to the massive population growth in the past
decades (Supplementary Table 1). The rising inequality was a
consequence of uneven development and population growth
within the vast extent of China and the United States (Supple-
mentary Figure 6). Conversely, a steady increase in the nation-
wide mean HET but with the fairly escalating Gini index in Russia
confirms that cities with substantially enhancing urban tree cover
were associated with depopulation in Eastern Russia, giving rise
to a nationwide enlarging inequality. The findings highlight a
pressing need to address the growing inequalities in human
exposure to urban greenspace regardless of the developing and
under-developed countries. Moreover, the observed increase in
inequality within the Global North also indicates the need for
proactive measures to prevent the concentration of greenspace
exposure within specific privileged neighborhoods or commu-
nities. As cities strive for sustainable development and inclusive
urban environments, it is essential to ensure that the benefits of
urban greening are accessible to all residents regardless of their
geographic location or socioeconomic status10,38. This requires
targeted interventions and evidence-based strategies that promote
equitable distribution and access to both tree and nontree
vegetation.

As the somewhat disparity in greenspace exposure compared
with previous studies21, we further examined the correlations of
urban vegetation coverage derived from multi-satellite observa-
tions with a spatial resolution ranging from 10 to 250 m. In
general, global urban tree cover derived from three different

sources of datasets exhibited strong relationships with consider-
able consistency (Supplementary Figure 7). Therefore, the mag-
nitude of differences in human exposure to urban trees as well as
the corresponding inequality in the Global North and South
seems to be in line with previous findings21. By contrast, there
was a discrepancy in urban nontree exposure compared with
previous findings, mainly owing to the fact that urban nontree
cover derived from MODIS and WorldCover showed a weak
correlation. Unlike the discrete land cover characterizations, VCF
provides a continuous, quantitative portrayal of tree and nontree
cover39–41. Given the fast pace of current urban fragmentation
nowadays, the percentage of urban shrubs and grasses could be
over- or underestimated based on the land cover classification at a
10 m resolution, giving rise to large discrepancies of urban mean
nontree vegetation cover derived from VCF and WorldCover. On
the other hand, relative to the natural landscapes, the accuracy of
urban vegetation cover estimation is moderately lower as a result
of limited high-quality input as well as high urban
heterogeneity42. Therefore, the assessment of tree and nontree
vegetation coverage derived from remotely sensed imagery needs
to be calibrated and improved in further research, especially in
urban areas, by incorporating field measurement. With the help
of emerging land cover datasets, such as SinoLC-1, which offers a
high spatial resolution of 1 m, there is a promising opportunity to
greatly enhance the accuracy of estimating urban tree coverage in
further research43.

While the GAMs models have demonstrated robustness under
various tests, it is acknowledged that no model is entirely immune
to uncertainties or limitations and the general explanation
accounts for nearly 70% of global urban tree coverage variability
and 28.8% for nontree vegetation variability. Besides, the input
explanatory factors of the GAMs were also affected by the limited
and unified urban inventory worldwide, especially for the
anthropogenic drivers. Here, we employed the three socio-
economic factors (GDP, HDI, and UDI) as the surrogates of the
impacts of human-related activity on urban greenspace varia-
bility. Therefore, a more direct open-source dataset with regard to
anthropogenic factors, such as urban green infrastructure
investments, is needed and can further enhance the interpret-
ability and adaptability of the results.

In this study, we used constant urban boundaries of global
3678 cities and it also could introduce to some extent biases since
our planet is under rapid urbanization. Most cities worldwide,
especially in developing countries such as China, and India, are
expanding and growing. Along with the swiftly increasing num-
ber of populated residents, urbanization which converts natural
lands to artificial surfaces usually leads to a significant downward
in vegetation cover. Studies reveal that most major cities exhibited
a contrasting vegetation pattern, with notably upward trends in
urban greenspace coverage in the urban areas but downward
trends in urbanized areas42. While the constant urban boundaries
probably bring out uncertainties, it might insignificantly affect the
overall decreasing trend in human exposure to urban greenspace.
Furthermore, a yearly dynamic dataset of global urban extent
coupled with annual vegetation coverage could further minimize
the uncertainties induced by the constant urban boundaries44.

By adopting a holistic approach that considers both the eco-
logical functions of diverse vegetation types and the equitable
distribution of greenspace exposure, cities can strive towards
achieving the SDGs, fostering inclusive and livable urban envir-
onments, and promoting global sustainability. Cities have
emerged as policy actors in implementing the SDGs, which offer a
blueprint for achieving global sustainability45,46. City planners
and managers increasingly recognize the benefits of incorporating
urban greening strategies into their planning and design to
improve sustainability and livability38,45. Although we witnessed
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a widespread urban greenery enhancement mainly driven by the
urban forest growth in the past 20 years, human exposure to
greenspace across most world’s cities declined, along with
increased inequality. This study emphasizes the need to go
beyond the existing knowledge of greener cities and delve into the
dynamics of urban greenspace. It highlights the persistence of
inequalities in human exposure to greenspace in both developing
and developed nations and further underscores the importance of
understanding the impacts of urban greenspace on human
exposure. The disparity in greenspace distribution can contribute
to environmental injustice, as it disproportionately affects com-
munities worldwide, particularly in the Global South. Margin-
alized communities, often located in urban areas with limited
greenspace, may experience reduced access to the numerous
environmental, social, and health benefits that greenspaces pro-
vide. This further exacerbates existing social inequalities and
disparities in quality of life. Addressing these inequities requires a
multifaceted approach that considers social, economic, and
environmental factors, as well as the involvement of local com-
munities in greenspace planning and management. In order to
enhance sustainability and create more equitable and livable
urban environments, we advocate for evidence-based strategies in
sustainable urban greenspace management, including urban
planning policies, land use regulations, community initiatives,
and environmental awareness. Overall, it is still challenging and
far away from providing universal access to greenspace by 2030,
which is an indicator of the targets to achieve inclusive, resilient,
and sustainable cities and human settlements as part of the SDGs.

Despite the uncertainty inherent in the datasets, our study
reveals that the urban tree growth predominantly contributed to
the prevalent urban greening across most world cities in the first
two decades of the 21st century. Moreover, by providing a holistic
understanding of human greenspace exposure, our findings
support and further highlight the enlarging disparity in urban
greenspace exposure and the corresponding inequality regardless
of developing and developed countries and emphasize the
demanding task for achieving global sustainability.

Methods
Vegetation coverage and greenness. (1) The Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) Vegetation Con-
tinuous Fields (VCF) product (MOD44B, Version 6) is a valuable
dataset that provides a yearly continuous and quantitative
representation of land surface cover at a spatial resolution of
250 m39,40. It offers a global depiction of the sub-pixel fraction of
surface vegetation cover, including three components: percent
tree cover (TC), percent nontree vegetation (NTV), and percent
non-vegetated area. The dataset is generated using daily surface
reflectance and land surface temperature data from the MODIS
instrument aboard NASA’s Terra satellite. A fully-automated
machine learning algorithm is employed to estimate these sub-
pixel fractions based on a comprehensive analysis of the input
data39. The tree cover layers specifically indicate the percentage of
horizontal ground within each pixel that is covered by woody
vegetation exceeding a height of 5 m. We obtained and processed
a 21-year dataset (from 2000 to 2020) of VCF using the Google
Earth Engine (GEE). The quality layer of VCF data defined by the
MODIS surface reflectance quality assurance values was used to
mask out the low-quality pixels that are cloudy, high aerosol,
under cloud shadow, or with view zenith >45°. This 8-bit packed
bit quality layer represents 1 of the 8 input surface reflectance
composite files used to create the model and predict vegetation
cover percentages. In this study, pixels with at least 7 ‘clear’ time
periods out of 8 remained for further analysis. (2) The Landsat
Vegetation Continuous Fields dataset with a spatial resolution of

30 m offers estimates of global tree canopy cover for the years
2000, 2005, 2010, and 201540. Urban Tree Canopy (UTC) is
defined as the average tree cover within urban areas of each city
worldwide. This information provides insights into the presence
and extent of tree canopy cover specifically in urbanized regions.
Pixels with large uncertainty were excluded. (3) Enhanced
Vegetation Index (EVI) is an adjusted vegetation index com-
monly used as a surrogate for canopy greenness47,48. It effectively
reduces the influence of soil background signals and has been
widely adopted in various studies. The equation of EVI is shown:

EVI ¼ 2:5 ρNIR�ρred
ρNIRþ6ρred�7:5ρblueþ1 ð1Þ

To minimize noise and uncertainties, we employed a rigorous
data selection process. Specifically, pixels with a quality control
flag of the first 2 bits that did not correspond to either “00” or
“01” were excluded from the analysis. This approach ensured that
only the highest quality data points were included in the study.
Cloud cover was mitigated through the use of cloud masks and
quality assurance flags provided in the original datasets. Annual
maximum greenness (EVImax) per pixel was estimated from
MOD13Q1, in line with the temporal resolution of VCF datasets.
The region-wide mean of urban vegetation coverage (tree and
nontree cover) and greenness was computed at the city scale for
further inter-comparison. Relationships between urban vegeta-
tion coverage and greenness among global cities were examined
through both linear and nonlinear regression.

Urban-related datasets. (1) The urban extent data are based on
the simplified urban-extent algorithm, which combines the global
urban land database with the Oak Ridge National Laboratory’s
LandScan population database49,50. In order to generate the urban
extent, these global urban data is overlapped with the LandScan
population-derived Thiessen polygons. It has undergone validation,
with a commendable overall accuracy of 93%51. This validation
process involved comparing the dataset with a Landsat-based map
encompassing 140 urban areas situated in various ecoregions, and
accounting for diverse levels of population and economic
development51. In this study, we selected the cities with a geo-
graphic area exceeding 100 km2 from the global urban extent data.
This selection criterion resulted in a total of 3567 urban clusters
that were included in our analysis. Subsequently, we focused on
two specific aspects: urban tree cover and nontree vegetation.
Among the identified urban clusters, 1464 cities exhibited a sig-
nificant trend in urban tree cover, while 957 cities showed a sig-
nificant trend in nontree vegetation (both with a significance level
of P < 0.05). (2) To facilitate the spatial analysis of greenspace
exposure at a global scale, we utilized the Global Administrative
Unit Layers (GAULs) provided by the Food and Agriculture
Organization of the United Nations. These administrative layers,
which include country, state, and county divisions, served as
hierarchical units for our analysis, enabling us to assess greenspace
exposure patterns across different administrative levels in 2015. (3)
To quantify the urban development levels, we utilized the global
impervious surface area dataset, which provides information on
built-up areas from 1985 to 2018 at a resolution of 30m52. Using
this dataset, we calculated the urban development index (UDI) as
the ratio of the built area to the total area of the urban extent. The
UDI serves as an indicator of the extent of urbanization and
development within each urban cluster.

UDIi ¼
Built area
Total area

´ 100% ð2Þ

Climate datasets. In this study, we utilized two climate datasets to
analyze the climatic factors influencing urban greenspace
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dynamics. (1) The TerraClimate dataset provides monthly climate
and climatic water balance information for terrestrial surfaces
worldwide53. Actual evapotranspiration, climate water deficit, soil
moisture (derived using a one-dimensional soil water balance
model), precipitation accumulation, downward surface shortwave
radiation, vapor pressure deficit were used in this study.
(2) We also incorporated data from ERA5, the fifth generation of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) atmospheric reanalysis dataset. ERA5 combines model
data with observations from across the globe to create a com-
prehensive and consistent dataset. The monthly datasets offer
aggregated values for seven climate reanalysis parameters,
including air temperature (maximum, mean, and minimum
temperature at 2 m height), total precipitation, mean sea level
pressure, surface pressure, 10m u-component of wind and 10m
v-component of wind.

Socioeconomic datasets. We relied on two datasets to incorpo-
rate population and socioeconomic factors into our research. (1)
The Gridded Population of World Version 4 (GPWv4), Revision
11 provides the distribution of the global human population for
multiple years, including 2000, 2005, 2010, 2015, and 2020. The
dataset utilizes a 30 arc-second (~1 km) grid resolution and
employs a proportional allocation method to distribute the
population to grid cells based on census and administrative units.
(2) We also utilized the Gridded Global Gross Domestic Product
(GDP) and Human Development Index (HDI) dataset at a
resolution of 30 arc-seconds for the year 201554. The HDI,
developed by the United Nations Development Programme, is a
comprehensive indicator that captures key dimensions of human
development, including life expectancy, education, and standard
of living. The HDI is calculated as the geometric mean of nor-
malized indices for each of the three dimensions. By incorpor-
ating the GDP and HDI into our analysis, we gained insights into
the socioeconomic aspects of urban greenspace dynamics and its
association with human development.

HDIi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ihealth ´ Ieducation ´ Iincome
3
p ð3Þ

Statistical analyses. To analyze the data and determine trends
and relationships, we employed several statistical methods. (1)
We utilized the Mann-Kendall method, a nonparametric test for
monotonic trends, to assess the trends of urban greenspace, tree
cover, and nontree vegetation during the past 21 years on a global
scale. The Theil-Sen approach was employed to calculate the
gradient of the trend. We tested the significance level of the trend
analysis, and only pixels with a significance level of p < 0.05 were
considered for further analysis. (2) To understand the contribu-
tion of different climate, geographic, and socioeconomic variables
in explaining the variations in global urban trees, we conducted a
relative importance analysis. It is based on established meth-
odologies and has followed best practices to ensure the reliability
of the results. The relative importance analysis works by trans-
forming the set of independent variables into a set of orthogonal
variables that are not correlated with each other. It turns out that
the squared regression coefficients from the linear regression
using the orthogonal variables represent each variable’s con-
tribution to the R-square. This analysis helped us estimate the
influence of each variable in interpreting the variability of urban
trees and nontree vegetation. We also used partial correlation
analysis to measure the strength of the correlations between
urban greenspace and climate or socioeconomic factors while
controlling for other variables. (3) The correlations between the
two components of greenspace (tree and nontree cover) and

urban greenness (annual EVImax) were assessed by applying linear
and nonlinear regression with the least squares method.

Generalized additive model. To better understand the relation-
ships between global urban greenspace and a range of predictor
variables representing climate variability and anthropogenic
influence, we employed generalized additive models (GAMs) for
modeling the complex relationships between urban greenspace
coverage and various drivers. GAMs is a type of semi-parametric
multivariate regression model that can effectively incorporate
both linear and nonlinear terms to capture various types of
effects55,56. Through driver analysis and contribution analysis, we
identified four climatic drivers and three socioeconomic drivers
that largely influenced global urban greenspace. These drivers
were integrated into the GAM model to explain and interpret the
variability of urban greenspace. This approach enabled us to
develop a robust model that effectively captured the complexity of
the factors influencing urban greenspace at a global level.

g E Yð Þð Þ ¼ f 1 def
� �þ f 2 sradð Þ þ f 3 smð Þ þ f 4 Tmax

� �

þ f 5 HDIð Þ þ f 6 POPð Þ þ f 7 UDIð Þ ð4Þ

To assess the robustness of our GAMs, we conducted cross-
validation to evaluate the predictive performance and carefully
validated the model to ensure its effectiveness in addressing the
research questions posed in our study.

Population-weighted exposure model. Human exposure to
urban greenspace was assessed using a population-weighted
exposure model, building upon the methodology proposed by
Song et al.21. Relative to the greenspace-oriented provision,
accessibility methods without differentiating the real amount of
greenspace exposed to humans21, the population-weighted
exposure model provides a wall-to-wall fine-resolution assess-
ment of urban greenspace and populations. It is able to map the
multiscale differences in human exposure to greenspace from
country to state, county, and city levels. This approach accounts
for the spatial interaction between the population and urban trees
or nontree vegetation, providing a quantitative measure of the
extent to which people are exposed to green areas in urban
environments. The population-weighted exposure model adopts a
bottom-up approach, considering the density and distribution of
both population and greenspace. Higher weights are allocated to
greenspace exposure in areas where a larger population resides,
ensuring that the model captures the varying levels of human
exposure to urban greenspace. By incorporating population
density and the spatial distribution of greenspace, the model
provides a more accurate assessment of the interaction between
people and urban green areas.

HETd ¼ ∑N
i¼1Pi ´TC

d
i

∑N
i¼1Pi

ð5Þ

where Pi refers to the population of the i-th pixel, TCi
d refers to

the fractional vegetation cover of the i-th pixel considering
adjacent greenspace with a buffered areas of d, N is the overall
number of pixels within each city, and HET represents the
population-weighted greenspace level of exposure to urban tree or
nontree vegetation.

Inequality metric. The Gini index, the most commonly used
measure of inequality, is typically used as a measure of income
inequality, but it can be used to measure the inequality of any
distribution22. In this study, the Gini index was used to assess the
inequality in greenspace exposure at different scales, including
city, country, regional, and continental levels, from 2000 to
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202021,22. The Gini coefficient, which is derived from the Lorenz
curve, was employed to quantify the degree of inequality in
greenspace exposure. The Lorenz curve represents the cumulative
proportion of total greenspace exposure (y-axis) earned by the
cumulative proportion of the population (x-axis). The Gini
coefficient is calculated based on this curve and ranges from 0 to
1. A Gini coefficient of 0 indicates perfect equality, meaning that
greenspace exposure is evenly distributed among the population.
Conversely, a Gini coefficient of 1 represents absolute inequality,
indicating that greenspace exposure is concentrated among a
small portion of the population, while the majority has limited or
no access to greenspace.

Gini ¼
∑n

i¼1∑
n
j¼1

�
�xi � xj

�
�

2∑N
i¼1∑

n
j¼1xj

ð6Þ

Data availability
This study uses data from multiple open-access datasets, including MOD44B,
MOD13Q1, Landsat GFCC, TerraClimate, and ERA5 retrieved from the Google Earth
Engine platform (https://developers.google.com/earth-engine/datasets/). Socioeconomic
datasets, such as GPWv4, Gridded Global Gross Domestic Product (GDP), and Human
Development Index (HDI) are downloaded from (https://gee-community-catalog.org/).
The city-level population as well as population exposure to urban greenspace are
deposited into https://doi.org/10.6084/m9.figshare.24570913.

Code availability
Custom code (R script) for graphs in this study can be accessed on Figshare (https://doi.
org/10.6084/m9.figshare.24570913).
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