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measurements of floods and their societal
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Merging observations from multiple satellites is necessary to ensure that extreme hydro-

logical events are consistently observed. Here, we evaluate the potential improvements to

flood detectability afforded by combining data collected globally by Landsat, Sentinel-2, and

Sentinel-1. The enhanced temporal sampling increased the number of floods with at least 1

useful image (≤20% clouds) from 7% for single sensors to up to 66% for a potential multi-

sensor product. As dramatic as the increased coverage is, the socioeconomic impacts are

even more tangible. In the pre-Sentinel era, only 22% of the total population displaced by

flood events benefitted from having high-resolution images, whereas a potential multi-sensor

product would serve 75% of the displaced population. Additionally, the merged dataset could

observe up to 100% of floods caused by challenging drivers, e.g., tropical cyclones, tidal

surges, including those rarely seen by single sensors, and thereby enable insights into gov-

erning mechanisms of these events.
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F looding is the deadliest and costliest natural disaster, both in
the US and worldwide. It devastates cities, farmlands, and
infrastructure, causes the loss of human lives, and con-

tributes to disease outbreaks and reductions in food and water
security1. Global damages due to flooding since 1980 exceed $1
trillion2 and by the end of the century, it is estimated that climate
change will increase these losses by up to a factor of 203. Mapping
extents and impacts of flood events in near-real time is of utmost
importance for first responders, whereas long-term observations
are instrumental for policymakers, government agencies, and
insurance companies for quantifying flood risks. Disaster man-
agement teams need accurate flood information to assess
impacted areas to quantify damage, coordinate mitigation efforts,
and determine insurance refunds. Additionally, scientists rely on
flood information—by using flooded area as a metric—to cali-
brate prediction models to assess model performance for future
risk assessment and management4.

Earth-observing satellites have become a strong asset in
investigations of global floods5–7. They provide large amounts of
worldwide or near‐worldwide data, can fill data gaps in the
existing network of stream gauges8–10, cover geographical loca-
tions inaccessible to humans, and circumvent restrictions on data
sharing across country borders11–13. However, one of the major
limitations is the sparse temporal sampling afforded by many
satellite missions.

The typical time between observations, ranging from days to
weeks, may lead to loss of crucial flood information, and at times
leave flood events with no imagery at all. The uneven spatial and
temporal sampling produced by the new wide-swath altimeter of
the Surface Water and Ocean Topography (SWOT) mission is
likely to miss a significant portion (~45%) of globally occurring
floods14. Traditional nadir altimeters also did not fare much
better; space and time samplings of these missions are limited in
their ability to observe floods that last few days or less15, and
global distributions of extreme discharge values (typically leading
to floods) required more frequent sampling for accurate
detection16. For example, not every ephemeral flood that peaked
and retreated over the Murray–Darling Basin, Australia could be
captured by Landsat TM/ETM+17.

There is currently widespread recognition of the need for better
observations and quantification of surface water and flooding
dynamics18. The frequency of sampling is increased when data
from several missions are combined or a constellation of satellites is
used, which is needed as no single orbit produces samples with
adequate spatial coverage and temporal resolution15. The increased
temporal sampling is also helpful in reducing the possibility that
any place of interest may have data gaps from cloud cover (optical)
or high attenuation from heavy rain (radar). Additionally, the short
revisit period afforded by mission architecture based on con-
stellations of satellites or by multi-mission merging increases the
number of available images per event, which translates to better
imagery (i.e., more stringent quality controls on imagery increases
the ability to observe flood dynamics).

For the Murray-Darling Basin, merging of Landsat and
Sentinel-2 imagery by Harmonized Landsat and Sentinel-2 (HLS)
detected more ephemeral flooding compared to Landsat-8 and
Sentinel-2, individually17. The improved effectiveness of com-
bined Sentinel-1 and Sentinel-2 to map floods in Europe based on
the revisit time of the satellite constellations and the presence of
atmospheric clouds has also been demonstrated7. Inundation
extent measurements from visible (Landsat-8 and Sentinel-2) and
SAR (Sentinel-1) imagery were compared and contrasted for
selected water bodies in Bangladesh for the monsoonal/post-
monsoonal time period19. Additional work has demonstrated the
benefits of multi-mission merging for measuring flood
duration20. Here we evaluate, on a global scale, the benefits of

combination of three families of satellite missions (Landsat,
Sentinel-2 and Sentinel-1) to quantify the increased detection of
floods caused by different drivers, including tropical cyclones, ice
jams/breakups, and others. We also assess the potential societal
benefits of the finer spatiotemporal sampling afforded by multi-
sensor combination by quantifying the number of displaced
people with and without access to high-resolution spatial imagery
obtained during the flood events, as inundation maps produced
from such imagery may be used for disaster response, recovery,
and to support actions to increase flood resilience.

Our goals are to: first, compare the flood detection potential
between individual sensors and the combination of satellite sen-
sors. This is achieved by calculating global revisit periods at a 0.5°
grid resolution for the sensor(s), and then, comparing the dura-
tions of historical floods to the revisit times at the flood location
on the 0.5° resolution grid. Second, we wish to understand the
upper limit and lower limit of image availability for global floods
between single sensor vs their combination over time. The upper
limit assumes that all captured imagery could be used for flood
information (e.g., extent, depth) extraction, whereas the lower
limit accounts for data quality by setting a cloud cover threshold
for image viability (≤20% atmospheric cloud cover threshold).
This is obtained by quantifying the availability of imagery for
5130 media-reported historical flood events since 1985. The
detection limits are compared and contrasted between single and
combined sensors. Finally, we demonstrate how the increase in
viable imagery leads to the identification of different drivers of
global floods (i.e., monsoonal rain-driven, dam break-driven) and
estimate how the more frequent revisit times serve the affected
human populations. This is achieved by quantifying the different
drivers of floods captured by the combination of sensors com-
pared to single sensors, and quantifying the number of flood
events that displaced human populations and for which remotely
sensed imagery was available.

Results
Global revisit periods of satellites and their flood detection
potential. The global revisit periods of the different sensor plat-
forms are shown in Fig. 1a1–a4. The ‘revisit period’ is the mean
time elapsed between observations of the same point on Earth by
a satellite. In contrast, the ‘repeat cycle’ is the time elapsed
between nadir points of satellite passes over the same point when
the satellite retraces its path. Revisit periods can be smaller than
repeat cycles due to swath overlaps. Average revisit periods of the
three satellite missions and their combination were enumerated at
a 0.5° global grid spacing based on imagery acquired (regardless
of image quality) between 2016 and 2020. Details on the rationale
for a 0.5° grid, constructing the global grid, the choice of multiple
years to calculate an ‘average revisit period’, and calculating
revisit periods for each of the grid points for the 3 missions
(5 satellites; Landsat-8, Sentinel-1 twin satellites, Sentinel-2 twin
satellites) can be found in the Methods section.

As expected, we find that leveraging different data sources leads
to a combined spatiotemporal sampling that is better than any
single sensor and results in a much-increased capture of global
floods. The global median revisit period ranges from 12.3 days for
Landsat (Figs. 1a1); 12.0 days for Sentinel-1 (Figs. 1a2), 4.2 days
for Sentinel-2 (Figs. 1a3) to only 2.4 days, for the composite
evaluation of the three sensors together (Fig. 1a4). This is a
frequency increase of 80.5% for the composite of satellites
compared to the individual sensor system with the highest revisit
time (Landsat, at 12.3 days). In the composite (Fig. 1a4), the
northern Latitudes (70°−85°) show median revisit periods as low
as 0.7 days, the tropical region (latitudes 23.5° N–23.5° S),
3.4 days, and the lower latitudes (40° S − 60° S) 2.2 days, a
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considerable improvement from 7, 16.8 and 9.8 days for Landsat
for the same latitudinal belts, respectively. We also find that
certain regions (i.e., South America, China and Eastern Africa)
are observation-poor when only Landsat is considered (due to
downlink limitations that may cause operators to prioritize
geographical areas, spacecraft maneuvers to balance heat, orbit
corrections, and sensor malfunctions), but observations greatly
increase in spatial coverage when the individual sensor results are
combined. The improvements in South America and Eastern
Africa especially are attributed to the addition of Sentinel-2 and
its better revisit times in these areas.

Comparing the revisit period with the duration of a flood event
allows a metric for measuring the potential for flood detection by

a satellite/group of satellites. We contrast the temporal sampling
of the individual missions and the potential merged product with
the flood durations of 5130 reported events in the DFO
(Dartmouth Flood Observatory) database21. We assume that
floods with durations greater than the revisit period of the satellite
in consideration, or the group of satellites, at the location of each
flood would have a guaranteed observation if the satellite
mission(s) was operational at the time of the event. Conversely,
if the duration of the flood was smaller than the revisit period,
that event would only be observed by chance, depending on how
the event duration aligned with the data acquisition times. The
observed improvement in revisit periods is reflected in the floods
that would have been captured by different missions as shown in

Fig. 1 The potential for flood detection by different missions based on average global revisit periods. a1–a4 Global revisit periods of individual missions
and their combination. b1–b4 Potential detection of DFO floods by the sensors if sensors were operational at the time of each event. Flood events with at
least 1 guaranteed image (flood duration > revisit period at flood centroid location) are depicted in blue: no guaranteed images, in orange. The striping
pattern (A1-A4) results from satellite swath overlap resulting in high frequency sampling in overlapping areas. Downlink restrictions on Sentinel-1 imagery
cause relatively low observation frequencies in northern Russia and Mongolia.
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Fig. 1b1–b4). For comparison purposes, we assume that all 3
missions were operational since 1985 (the earliest date of a flood
record in the DFO database). By comparing the revisit periods of
the satellite missions with the duration of flood events, we find
that if Landsat were the only operational platform at the time of
the events, out of the 5130 floods in the database, only 19.1%
would have had a guaranteed observation (Figs. 1b1). Over 80%
of the floods were not guaranteed an image acquisition (only a
fortuitous acquisition would have been possible). For Sentinel-1
and 2, the fraction of events with guaranteed acquisitions were
27.9% and 46.6% respectively (Figs. 1b2/b3). Using the same
criteria, the composite shows detection of at least 72.0% of global
floods, not including events with fortuitous acquisition (Fig. 1b4).

How well are floods captured over time? Next, we consider the
potential for flood capture by the sensors as compared to
location-averaged (grid-based) return periods. We empirically
evaluated the existence of images during the floods for the 5130
historical events in the DFO database. This event-based enu-
meration accounts for irregular revisit periods of satellites, image
downlink issues, and other random download interruptions not
reflected in the average revisit time calculations, and it provides
the exact availability of imagery per flood event. For each year
since 1985, we tabulate the number of annual floods that had at
least 1 guaranteed image acquisition by a given satellite. For
missions that have simultaneous twin satellites in orbit (e.g.,
Sentinel-1 and 2), images from both satellites were considered.
Although there was overlap of Landsat 5 TM and Landsat 7 ETM
+ acquisition timelines during 1999 and 2012, we only use
Landsat 5 TM between 1985 and April 2012. The image gaps
created due to the scanline failure in Landsat 7 ETM+ and the
impact on image useability are discussed in Methods. Flood
events between May 2012 and April 2013 were tested for guar-
anteed image availability with Landsat 7 ETM+ and from May
2013 until the most recent flood in the database in 2021 by
Landsat-8. Flood events occurring after October 2014, and June
2015 were analyzed by Sentinel-1 and Sentinel-2 constellations
respectively. Additional information on satellite data availability
timelines is presented in Table 1 in the Methodology section.

Acquiring well-timed imagery during a flood is necessary to
derive the needed flood information (e.g., extent, depth).
However, the presence of frequent and persistent clouds can
compromise optical imagery. We therefore investigated the
constraints of acquired imagery for the potential for flood
detection based on these satellites. Figure 2a provides the annual
variability of acquired imagery. Each color is representative of a
satellite mission; the envelope represents the number of annual
flood events for which at least 1 guaranteed image was available
constrained within the upper and lower limit based on cloud

cover conditions. The upper limit represents the number of
events that had at least 1 image regardless of image quality (i.e.,
no filtration for clouds). The lower limit of a given colored
envelope represents the number of floods that could have been
observed after filtration for clouds was performed (≤20% cloud
cover; refer to Methodology for details on the rationale for
thresholding). These are the number of events that had high-
quality imagery. For example, in 2006, the number of events seen
by all satellites regardless of image quality is 48. With at least 1
good-quality image (lower limit), there are 18. Some users may be
more restrictive when cloud cover is concerned: discarding more
images, thus resulting in the true number of useful images being
closer to the bottom of the envelope in Fig. 2a. Others may
tolerate more cloud cover, which would push image availability
toward the upper limit of the envelope.

The evolution in the number of events with viable imagery
through the years provides an understanding of the marginal gain
in flood detection as more satellites are added to the existing
constellation. We observe a strong increase in the number of
detected floods post-2014 (Fig. 2a); this is the timeline marker
coinciding with the launch of the Sentinel suite of satellites
(Sentinel-1A– April, 2014; Sentinel-2A– June, 2015). More
importantly, the number of events with imagery quickly
approached the total number of floods, which is more visible in
relative numbers, and when the total number of detected events
per year is normalized by the total number of floods occurring in
the year. The relative number of detected events per year is shown
in Fig. 2b.

When the gain in having a guaranteed image regardless of
cloud cover for the pre- and post- 2014 eras is quantified, we find
an increase from 17% to 84% of DFO events, post-2014. Prior to
2014, only Landsat existed, and as such the 17% is entirely
attributed to Landsat. It is interesting to note that, of the 84%
post-2014 coverage, 42% of events had a guaranteed acquisition
by Landsat-8, rather than an expected value closer to 17% as for
the pre- 2014 era. The transition between two eras (pre- 2014 and
post- 2014) has seen an increase in Landsat acquisitions.
Investigation into durations of floods recorded in the DFO
database shows that the average annual duration of a flood before
the 2014 era was 9.7 days, and after 2014, 10.0 days: flood
duration was fairly constant between the two eras and increased
flood duration is not the cause for the increased number of events
observed by Landsat. Subsequent investigations revealed that
improvement of acquisitions is due to the different number of
scenes acquired by the Landsat satellites throughout time.
Landsat-5 acquisitions peaked at 147 scenes/day in 1986 and
averaged 50–140 scenes/day from 1993 onward. Landsat 7
acquired 438 scenes per day. Landsat 8 has been regularly
acquiring 725 scenes per day22.

An evaluation of the amount of viable imagery (imagery with
≤20% cloud cover) shows that pre-2014, viable imagery by any
sensor stood at 7.0% (297 of 4215 events) and increased to 65.8%
(602 of 915 events) after 2014. Of this 65.8% we quantify a 56.1%
contribution from the Sentinel suite alone (events observed by
Sentinel-1, 2 or both, but not Landsat). Events with viable Landsat
imagery are at 7.0% and increased to 9.7% post-2014.

Taking into consideration the varying number of global floods
that occur annually and potential temporal changes to the
sampling provided by the DFO annual flood record (earlier
events may be less documented than current ones)23–25, we
normalize the number of floods with images by the total number
of floods occurring annually (yellow envelope constrained by two
curves in Fig. 2b). The number of events without images
normalized by the number of floods in the year are shown as
the purple envelope constrained by two curves. As in Fig. 2a, the
intervals in 2b represent different levels of user tolerance for

Table 1 Imagery Search Time Windows for the different
satellites on Google Earth Engine.

Sensor Flood Dates

Landsat 5 TM From 1985/01–2012/4/30
Landsat 7 ETM+ 2012/05/01–2013/4/30
Landsat 8 OLI 2013/05/01–until present day
*Sentinel-1 2014/10/04–until present day
Sentinel-2 2015/06/23–until present day

*Copernicus Sentinel-1B experienced an anomaly on 23 December 2021 related to the
instrument electronics power supply provided by the satellite platform, leaving it unable to
deliver radar data. Sentinel-1C is targeted for launch in the second quarter of 202348. However,
impact on analysis was minimal as (a) revisit periods were calculated between 01/01/2016 and
12/31/2020, and (b) the DFO database used for this analysis contained floods only until 10
September 2021.
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cloud cover, with the dashed and solid curves determining the
limits for cloud cover (stringent cloud cover filter, dashed yellow
line) for the ≤20%; no cloud cover filter (solid yellow line).

We see that the fraction of floods with available imagery,
measured as the average of datapoints on the solid yellow line in
Fig. 2b increased from 17.7% before 2014 to 82.6 after 2014. For
more stringent cases, where potential users may require reduced
cloud cover, the availability of viable images before and after 2014
increased from 7.2% to 63.9% (Fig. 2b; average of data points
connecting the dashed yellow line before and after 2014). The
ratio of the viability of an image per guaranteed acquired image
during a flood increased from 0.42 pre-2014 to 0.78 post-2014.
This is mostly attributed to the Sentinel-1 radar satellites where
cloud interference is minimal.

Figure 2c–f illustrates the significance of multi-sensor combi-
nation and the impact of radar platforms. Tropical Cyclone Idai
made landfall in Beira city, Mozambique on March 14, 2019 and
caused catastrophic flooding that displaced 95,388 people in
19,660 households26. The floods mapped using Sentinel-2b
(optical) and Sentinel-1b (radar) over the same region only
3 days apart demonstrates (a) the severity of cloud cover affecting
the optical sensors, (b) the advantage of the radar acquisition, (c)
the need for complementing optical data with radar, and (d) the
importance of setting cloud cover thresholds in evaluating image
availability for flood studies.

Utility of increased flood detection. Now we investigate how the
increase in flood detection potential could be used to analyze
floods caused by different drivers over the years. Since the ima-
gery acquired during a flood needs to be of operational use (e.g.,
to map extent of floods), we only account for the number of
viable images (≤20% clouds) available for each of the identified
flood drivers. Figure 3a shows that before 2014, when only
Landsat was operational, only viable imagery to investigate
damages from floods due to snow melt existed at best. There was
no usable imagery for extra-tropical cyclones and tidal surges.

Post- 2014 (Fig. 3b), we could observe floods of the following
causes using the combination of sensors, with percentages
recorded within brackets: Torrential Rains (50%), Others (i.e.,
Avalanches, Glacial Lake outburst; 50%), Dam/Levee Breaks
(55.6%), Tropical Storms (62.4%), Heavy Rains (72,8%), Mon-
soonal Rains (73%), Snowmelts (80%), Ice jam or ice break-ups
(83.3%), Tidal Surges (100%), and Tropical Cyclones (100%).
However, no extra-tropical cyclones were captured because none
were recorded in the DFO database since 2008 and the 19 that
were recorded before 2008 were not captured by Landsat. Thus,
there are significant percentage gains of different drivers of flood
events when sensor combination is performed: Torrential Rains
(46.4%), Others (45.8%), Dam Break/Levee Breaks (43.9%),
Tropical Storms (51.8%), Heavy Rains (65.1%), Monsoonal Rains
(64.4%), Snowmelt (65.8%), Ice jam or ice break-ups (73.7%),

Fig. 2 The benefits of multi-sensor combination for flood detection. a Flood detection potential of individual sensors and gain of detection over time. The
orange envelope is overshadowed by the green as prior to Sentinel-1 and 2, events captured by all 3 missions were, in principle, events captured by Landsat.
b Efficacy of multi-sensor combination in flood detection. The flexibility for the user to choose imagery based on cloud cover is denoted by the yellow
envelope, users with higher tolerance to cloud cover expect a fraction of events closer to the upper limit of the envelope, users that require nearly cloud
free images expect values closer to the lower limit of the envelope. c Beira City, Mozambique where Tropical Cyclone Idai made landfall on March 14, 2019.
Base layer credits to QGIS. d A near-real time, natural color Sentinel-2 image acquisition of the Beira City flooding. e, f The impact of cloud cover on image
viability illustrated by comparison of near-real time image acquisitions between a Radar (Sentinel-1; E) and optical (Sentinel-2; F) platform. Satellite-
captured floodwater is represented by cyan in both panels. Sentinel-2 image credits: Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0
IGO.
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Tidal Surges (100%), and Tropical Cyclones (95.9%). Further
analysis that disentangles the roles temporal sampling, flood
duration, and quality control on the availability of viable imagery
for each of the flood drivers is located in the supplementary
information. It is important to acknowledge that the DFO
database is a curated collection of global flood events and has
been known to offer an incomplete picture of floods in the
African Continent. This is mainly because DFO flood records are
often derived from media reports23,25 and small-scale events or
events in remote areas might not be captured by media outlets.

We also assess the societal benefits of multi-mission merging
by using the number of people displaced by floods as a proxy for
the socioeconomic damage they caused. Greater numbers of
viable imagery from medium to high-resolution satellite plat-
forms are desirable for flood impact mitigation. More specifi-
cally, imagery made available during the event can be used to
assess damage and prioritize and coordinate response. Imagery
captured during the flood but made available after the event can
be used for surveying damage, coordination of recovery,
assessing flood vulnerability, and planning flood resilience
measures. In the absence of high-resolution imagery, damage
surveying relies on labor and resource-intensive alternatives,
such as local surveys of high water marks and aerial (manned or
unmanned) imagery.

Of all floods that occurred pre-2014 when only Landsat existed
(Fig. 3c), the highest number of displaced people that the Landsat
platform could serve was for events in Asia (25% of events had at
least 1 viable image). The percentage of events that had at least 1
image in period 2 when considering the combination of data
collected by the three satellite missions (Fig. 3d) showed increases
in percentual points as follows: Africa (24.4%), Asia (46.2%),
Australia/Oceania (41.6%), North America (89.5%), South
America (85.4%), Europe (77.6%). The results show that one
optical sensor alone had limited reach as a source of high-
resolution imagery. However, data provided by a potential multi-
mission merger are much more reliable for measuring the flood
impacts on populations.

Sentinel-1 radar imagery strongly influences the results due to:
(a) the relatively short repeat cycle of Sentinel-1 in comparison to
Landsat (6 days vs 16 days) and (b) the reduction in usable optical
imagery by clouds. However, optical imagery does help overcome
some inherent problems in radar. These include misclassification
of surface water in urban areas (urban features misrepresented as
water) due to the double bounce phenomenon of the radar
beam27 and wet soils misclassified as water due to backscatter
similarities between wet soil and water pixels, or smooth tarmac/
asphalt surfaces misclassified due to the specular reflection as
with flooded surfaces. Radar imagery is also prone to speckle

Fig. 3 Comparison of the drivers of floods and differences in human populations served with(out) multi-sensor combination. a Drivers of floods pre-
2014 only when Landsat was operational. b Drivers of floods post-2014 (Landsat, Sentienl-1 and 2 operational). c Displaced population served when only
Landsat was operational. d Displaced population served with all 3 missions operational.
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noise due to the coherent nature of the radar backscatter28. This
can result in degraded image quality and make interpretation
more difficult29. Thus, optical platforms not only complement
radar acquisitions through their different orbit cycles, but can also
help interpret the radar-derived inundation maps and can be used
to provide water quality metrics (e.g., sediment load) of
flood water.

Discussion
This study offers several unique findings. Firstly, it provides a
quantitative understanding of the role of temporal sampling
enabled by individual satellites and their combination in their
ability to reliably collect imagery during flood events. Previous
studies showed that if a satellite provides an average global revisit
time of 2 days, almost all events in Europe could be mapped7.
While no individual satellite at approximately these spatial
resolutions can provide such revisit period for the whole globe, we
find that the global average revisit time for the composite
3 satellite missions to be 2.4 days. Moreover, our results com-
plement the body of literature that indicate theoretical coverage
based on planned satellite orbits, because we provide here the first
measure of the effective revisit time for an ensemble of satellite-
mounted sensors. Such may differ from theoretical values due to
data availability limitations caused by operational constrains, e.g.
spacecraft maneuvers interrupting data acquisition, downlink
bandwidth limitations, and others, as well as environmental fac-
tors that may impact data quality (in the present case, the
inability to directly observe flooded surfaces due to cloud cover).
Whereas a global average revisit period of 2.4 days provides a
great extension in the ability to survey the flood events such as
recorded by the DFO, additional satellites soon to enter operation
will undoubtedly improve the potential revisit time.

Two significant additions to the current fleet of satellites cap-
able of surveying surface waters are the SWOT and NISAR
missions. The SWOT satellite mission8,30,31 was launched in
December 2022 and will contribute to monitoring of global flood
dynamics by providing the first simultaneous measurements of
inundation areas and water surface elevation from space, which
are very relevant measurements for flood mapping and damage
assessment. Also, the NISAR interferometric radar satellite mis-
sion, planned for launch in 2024, will provide bi-weekly obser-
vations that complement optical data with its cloud penetration
capabilities32 and is therefore expected to provide valuable
information for flood responders.

Secondly, we provide two estimates: a conservative and also an
optimistic estimate, of how many flood events could be observed
by satellites, and of those, how many would have had viable
imagery for flood mapping. Thirdly, we provide an overview of
the detectability of floods categorized by their causes across the
globe by different sensors and their combinations, and the rea-
sons for certain drivers of floods to generate events that can be
more easily captured than the others. The breakdown of the
needed temporal sampling for floods for each of the different
drivers reveals bottlenecks in the current, and possibly future
Earth observing systems. It shows, for example, that although the
combined sampling is sufficient to capture 90% of the large
floods, it is still overwhelmingly lacking in the ability to observe
floods caused by extra-tropical cyclones and is insufficient to map
floods caused by torrential rains, dam or levee breaks, and others
(Fig. 3c). The breakdown by continent also shows potential
geographic gaps in the observational network, which is important
to prevent biases in studies that use remote sensing observations
to characterize floods and relate flood characteristics to driving
environmental factors around the globe. For example, see Fig. 3d
which shows that floods happening in Australia and Oceania and

Asia have a much smaller probability of detection than those in
Africa, Europe, North America, and South America. It is
important to note that the estimate of flood events with viable
imagery in Africa may be overly optimistic due to potential biases
in the DFO recording of African floods. Because media reports
were an important source of information when creating database
entries in the early years of the DFO database, older, smaller
events or those happening in remote locations may be
overlooked.

With their fine to medium spatial and high temporal resolu-
tions, these satellites, particularly when coupled, will have great
potential to improve on the number of floods that are imaged by
spaceborne sensors and to generate rapid information of the
affected flooded parcels: data that is key to support local gov-
ernment bodies during and after an emergency. Identification of
flood extents at different points in time helps identify the extent
of the event on a large scale. It also aids in detecting affected
infrastructure (i.e., roads and settlements) and impaired regions
of interest such as agricultural areas, where flood observation is
notoriously sparse. This information can also be used by disaster
management agencies and other stakeholders to coordinate
appropriate recovery activities, validate insurance claims, and
implement effective flood mitigation measures. In addition,
having imagery at multiple points during a flood (i.e., rising limb,
peak, falling limb) can help validate flood forecasting models such
as those currently being employed operationally in the U.S. and
elsewhere. These models are also used in simulating floods with
different return periods to (a) run damage-impact assessment
tests, and (b) guide relocation of residents in flood-prone regions
in anticipation of possible upcoming flood events.

The scientific and societal benefits of merging flood data
streams from different sensors are evident. The technical and
processing methodologies to accomplish this are still to be
accomplished. Therefore, future work devoted to identifying and
characterizing the exact societal benefits from merging the new
and next generation of high-resolution sensors is imperative to
transforming the significant potential benefits outlined here into
reality. Specific research disciplines that can benefit are the study
of flood retention periods on floodplains, flood propagation
dynamics, impacts of levees holding or failing33, and coastal
flooding (especially relevant to marginalized populations in the
world’s deltas34,35. However, the amount of data generated will
require the development of smart and targeted search queries on
very large data cubes and also sophisticated online Big Data
processing APIs in order to turn these data into quick actionable
information. Merged data can also suffer from potential artifacts
that can arise with data from different platforms and their distinct
image characteristics, performance, and resolution. Such artifacts
can lead to inconsistency in products based on which data source
is used for the imaging of an event: a hurdle that can discourage
potential users from relying on multi-mission merged products.
Thus, additional work is also needed to evaluate the occurrence of
such drawbacks and investigate ways to mitigate their deleterious
effects. Multi-sensor combination, overall, is an exciting avenue
for future research, especially with open data policies now
allowing new endeavors in high-frequency flood monitoring.

Methodology
The choice of satellites. For this study, we use Landsat, Sentinel-1
A/B, and Sentinel-2 A/B satellite data. The choice of satellites is
driven by their free public availability, temporal span and proven
application in surveying water and flood extent dynamics. The
Landsat archive contains 40+ years of systematically acquired
global optical data. The following Landsat archives on Google
Earth Engine (GEE) were used in the study: Landsat 8 OLI
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(LANDSAT/LC08/C02/T1_TOA), Landsat 7 ETM+ (LAND-
SAT/LE07/C02/T1_TOA), Landsat 5 TM (LANDSAT/LT05/C02/
T1_TOA).

It is of importance to note that, although Landsat 5 TM and
Landsat 7 ETM+ overlapped from 1999 to 2012, we only use
Landsat 5 TM between 1984 and April 2012. This is primarily
because the Scan Line Corrector (SLC) of Landsat ETM+ failed
in 2003, creating a systematic error on image pixels resulting in
these scenes being not readily available (uniform stripes of data
gaps) in flood mapping applications, with as much as 22% of area
per scene being affected by the SLC failure36. Therefore, we only
use Landsat ETM+ minimally in the analysis when no other
Landsat platforms were available (see Table 1 for details).

The launch of the Sentinel-1 satellites in 2014 and 2016
provided free access to global time series data streams to
otherwise proprietary radar imagery37,38, and has been used at
different scales for flood mapping since39,40. The Sentinel-1
mission consists of a constellation of two polar-orbiting satellites
(i.e., Sentinel-1 A/B; Sentinel-1B’s data is unavailable since 23
December 2021, Sentinel-1C is planned to take its place)
providing C-band synthetic aperture radar imaging, enabling
them to gather data in any weather41. The following Sentinel-1
archive on GEE was used: COPERNICUS/S1_GRD.

The choice of the Sentinel-2 satellites for this study’s flood
analysis was based on native resolution: commensurate with
Sentinel-1 and Landsat. The Mean Local Solar Time (MLST) at
the descending node of Sentinel-2 is 10:30 (am)41. This value is
close to the local overpass time of Landsat and allows the
integration of Sentinel-2 data with existing and historical Landsat
missions which consequently aids in long-term high-density time
series data collection41. The Sentinel-2 mission consists of two
polar-orbiting satellites providing optical imaging41. The follow-
ing Sentinel-2 archive on GEE was used: COPERNICUS/S2.

We do not use MODIS (MODerate resolution Imaging
Spectroradiometer; onboard Terra and Aqua satellites) data in
our analyses as the native resolution of MODIS is an order of
magnitude coarser than that of the Landsat and the Sentinel suite.
Although MODIS can be useful in providing synoptic views of
flood events that might otherwise not be possible with other high-
resolution, low spatial coverage sensors, the limited spatial
resolution of MODIS hinders the mapping of small-scale floods.
Additionally, it is of limited use as a source of validation for
hydraulic flood models, even those capable of operating in large
domains, such as the LISFLOOD-FP model42,43, recently used to
produce flood risk assessments at 30 m resolution at the scale of
the continental United States44. While a set of high-resolution
imagery obtained during a given flood event can be potentially
used to downscale MODIS data, possibly leading to a dense time
series of images at the MODIS temporal cadence with the desired
spatial resolution to calibrate flood models, such efforts still hinge
on the availability of some high-resolution imagery during the
flood event. Therefore, we ultimately chose to not use MODIS in
the present evaluation.

Calculation of global revisit periods. We estimated the revisit
periods, here defined as the average time between two consecutive
observations of a particular point on the surface, for the satellite
missions Landsat, Sentinel-2 and Sentinel-1 based on a 0.5-degree
resolution grid. The grid was created using ArcMap 10.8.1 and
intersections of the grid were used to create points. The spacing of
land grid points was set to be small enough to capture overlap
between satellite observations along-track and across-track), and
large enough to manage data processing times (significant overlap
of satellite ground tracks at the poles could increase data pro-
cessing of closely spaced points by orders of magnitude). For each

individual point, average revisit times (i.e., to account for irre-
gular revisits, downlink issues) were calculated for each individual
satellite and the composite of the three satellites. Averaged revisit
times for each of these points were calculated based on the
number of image tiles that intersected a particular grid point with
more than a 30-minute time difference between each other
acquired between 01 Jan 2016 and 31 Dec 2020. This was done to
ensure that two image tiles overlapping each other over a point
captured at the same time are not double-counted. We only
consider revisits between 82.5 N and 55 S of land grid points;
Antarctica is omitted from analysis.

Average revisit time for a grid point

¼ Number of days between 01 Jan 2016 and 31Dec 2020 ð1827Þ
Total Number of Images captured

ð1Þ
For satellite missions that consist of two spacecrafts orbiting

simultaneously (Sentinel-1 A/B, and Sentinel-2 A/B), images
acquired by both satellites were used in the average revisit period
calculation for a given grid point. Sum totals of image tiles of all
three missions are used to calculate composite point-based revisit
times. These point-based revisit times are later converted to
rasters for better visualization purposes (Fig. 1a1–a4).

We use a global flood database (Dartmouth Flood Observatory
(DFO) database) as the source of flood locations, duration of
floods, causes of floods and the socioeconomic impact of floods to
demonstrate the strength of combination of satellites for remote
sensing-based flood assessments.

The DFO database. The DFO database is a manually curated
repository published by the Dartmouth Flood Observatory, Col-
orado USA21, containing 5130 global floods between 1985 and 10
Sep 2021. It contains flood information (i.e., Latitude/Longitude
of centroid of flood polygon, number of people displaced, cause of
flood, start/end day of flood). We use this database to:

Extract durations of floods to facilitate comparison between
average satellite revisit periods. For each flood in the database,
image tiles falling within the duration of the flood were enum-
erated (and consequently subjected to statistical analyses) for the
Landsat (Landsat TM, ETM+ and OLI), Sentinel-2 and Sentinel-
1 archives separately, by intersecting the centroid of the flood
polygon and the satellite image tiles collected within the duration
of each flood to detect presence/absence of imagery. Results are
presented in Fig. 1b1–b4.

The calculation of average revisit times in the section above has
implications when comparing with individual duration of flood
events. Individual events in Fig. 1b1–b4 that are guaranteed to be
seen might not be seen due to potential clustering. However, on
aggregate, when considering a large number of floods on a global
scale, individual floods that might be labeled as observed could be
missed, or floods that are labeled as missed could be observed
because of this clustering effect. Therefore, this is unlikely to
change the magnitude of the fraction of floods detected by any
individual sensor. We emphasize that the goal of Fig. 1 is to
represent the utility of multi-sensor combination in observing
global floods over any individual sensor and visualize how the
fraction of floods with a guaranteed image increases as sensors are
combined.

Comparison between the difference in the detectable drivers of
floods during different satellite eras. One of the attributes in the
DFO database is the cause of each flood event. Following the
literature14 we break the main cause of flooding recorded in the
database into the following 11 unique categories: Extra-Tropical
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Cyclones, Torrential Rains, Other (Avalanche Related, Tsunami-
related, Glacial Lake Outbursts), Dam Break or Levee Break,
Tropical Storm, Heavy Rain, Monsoonal Rain, Snowmelt, Ice jam
or ice break-up, Tidal Surge, Tropical Cyclone. A comparison in
flood detectability is made for each of the drivers between the pre
−2014 era (when only Landsat existed) and post- 2014 (when
Landsat and Sentinel missions exist).

We calculate the presence or absence of viable images (<20%
cloud cover) that existed for the duration of each of these flood
events and break them down by the cause of the flood. We used
a maximum cloud cover threshold of 20% as a criterion to
identify viable imagery for flood mapping45. We compare two
distinct time periods; (a) When only Landsat satellites existed,
and (b) when other satellites are operational in addition to
Landsat. We contrast the differences in the events that are
detectable by the combination of these sensors. Note that a
flood detected by a satellite could mean that in addition to being
detected by that particular satellite there is a possibility for it to
be observed by other satellite platforms as well. Results are
presented in Fig. 3a/b.

Understanding the societal impact of combination of sensors. The
number of people displaced by each flood event is used as a proxy
for the socioeconomic impact of flooding. We calculate the pre-
sence/absence of viable images (<20% clouds) that existed for the
duration of each flood for the different satellite platforms and
their combination. We then select floods that had at least 1 viable
image and quantify the number of people displaced by each flood
according to world’s continents. The analysis is performed for
two eras; before and after the year 2014 (which roughly coincides
with the operationalization of the Sentinel suite of satellites. S1-A
and S2-A data acquisition began in April 2014 and July 2015,
respectively38. Results are presented in Fig. 3c/d.

Data availability
The satellite imagery of Landsat 5 TM, 7 ETM+ , 8 OLI, Sentinel-1, and Sentinel-2 used
in the analyses can be found in the Google Earth Engine data catalog via the following
links respectively: https://developers.google.com/earth-engine/datasets/catalog/
LANDSAT_LT05_C02_T1_TOA, https://developers.google.com/earth-engine/datasets/
catalog/LANDSAT_LE07_C02_T1_TOA, https://developers.google.com/earth-engine/
datasets/catalog/LANDSAT_LC08_C02_T1_TOA, https://developers.google.com/earth-
engine/datasets/catalog/COPERNICUS_S1_GRD, https://developers.google.com/earth-
engine/datasets/catalog/COPERNICUS_S2. The version of DFO Flood Database used in
this study, and the shapefile containing global revisit periods of individual satellites and
their combination is available at: https://zenodo.org/records/816450346. All data used to
create charts and graphs in the article are available at: https://figshare.com/articles/
dataset/Satellite_Detection_of_Floods_Data_supporting_figures_in_manuscript_titled_
A_multi-sensor_approach_for_increased_measurements_of_floods_and_their_societal_
impacts_from_space_/2445457947.

Code availability
The Google Earth Engine code that was used to enumerate imagery for the creation of
global revisit periods is available from the corresponding author [D.M.] upon request.
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