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Climate change strongly affects future fire weather
danger in Indian forests
Anasuya Barik 1✉ & Somnath Baidya Roy 1✉

Changes in temperature, precipitation, wind speed, and relative humidity due to climate

change are likely to alter future fire regimes. We quantified the impact of such changes on the

fire weather of Indian forests using a fire weather index and high-resolution downscaled

climate projections. While conventional wisdom contends that future temperature increases

will increase fire weather indices, we find this to be true only in dry forests. In humid forests,

the fire weather index will decrease despite the warming due to future increases in pre-

cipitation and/or relative humidity. Days with severe fire weather danger will increase by up

to 60% in dry forests but will reduce by up to 40% in humid forests. The fire season will be

longer by 3–61 days across the country and the pre-monsoon fire season will become more

intense over 55% of forests. This study suggests for countries like India with fragmented

forests and diverse ecoclimates, standards and mitigation strategies must be developed at

regional instead of national level.
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C limate change is leading to severe fire regimes in the global
forests1–6. The intensities and frequencies of fire events are
likely to change in the future with changing climate6–11.

There is also evidence of the lengthening of fire seasons in the
future12–14. IPCC AR6 reports with high confidence that some
regions will be subjected to more severe fire weather conditions. It
also predicts that the mean fire season length will increase by
about 50 days in a 4° warmer climate compared to the 1981–2000
baseline15.

Almost 21% of India is covered by forests that are home to a
wide range of species making Indian forests a biodiversity
hotspot16. The forest types are extremely diverse ranging from
arid to alpine. Most forests are heavily fragmented due to high
human population density and intense land use practices17.
Forest fires occur throughout the year except for the peak mon-
soon period16. According to climate projections, India will
experience a warming of 4.4–4.8 °C by the end-century as com-
pared to the 1976–2005 period18,19. Such warming is expected to
affect forest fire occurrences and severity in India. However, other
factors like future changes in humidity and precipitation are also
likely to play pivotal roles in the future fire regime20,21. Fur-
thermore, climate change may affect the timing and intensity of
the monsoons. Despite the prevalence of forest fires, their
implications on biodiversity, and evidence of rapidly changing
climate patterns, there are no comprehensive country-scale stu-
dies that attempt to understand and quantify the fire-climate
interplay in India. Most regional fire-climate interaction studies
are from dry subtropical forests and we cannot draw meaningful
inferences from those studies about forest fires in India. Existing
global-scale studies simulate fire weather over the entire world,
including India, but they do not generally analyze the results over
India. Potentially, we could gain some information on the fire
danger over India by visually inspecting the global maps, but they
would be inadequate for three reasons. First, the typical 0.5–2°
spatial resolution of the global studies is too coarse to resolve the
fragmented forests of India. Second, the results are widely
divergent, from an overall homogenous increase2,22,23, an
increase in the northwestern part and a decrease in the rest of
India9,24, to a decrease in the mean FWI signal in all regions25, in
future fire danger. Such inconsistencies in findings are due to
differences in a host of factors including the resolution and
quality of climate inputs, the land cover data, and the structure of
the dynamic fire modules. The third limitation, as pointed out by
Liu et al.7 is the lack of forest masks leading to unrealistic results
such as high fire danger in the deserts of northwestern India. Our
study improves the state of science by simulating the fire weather
at high granularity along with a forest mask using a well-
calibrated and validated model to advance our understanding of
fire-climate interactions in this understudied region.

Forest fires are driven by many factors like weather, vegetation,
fuel loading, and local socioeconomic conditions. Among the
important factors, climate change has a direct and the largest
impact on fire weather. Fire weather is the state of meteorological
variables like temperature, relative humidity, precipitation, and
wind over a forest ecosystem that affects the fuel loading and
controls the start and spread of fires10,26–28. A warmer atmosphere
helps the available fuel reach its ignition temperature faster12,13.
Relative humidity (RH) impacts the fuel loading by regulating the
fuel moisture in surface vegetation13,29. Wind impacts the dryness
of the surface fuel and controls the fire spread by controlling the
combustion process10. Precipitation dampens the available surface
and subsurface fuel and decreases the probability of fire
occurrence30. The probability of fire occurrence becomes zero
beyond a certain threshold value of rainfall31. Climate change will
impact these meteorological variables and thus the future fire
weather32. This study uses a high-resolution climate projection

Downscaled CESM (DSCESM)31 to fire weather and estimates
these impacts over India.

FWI is a metric that systematically integrates the individual
and combined effects of the meteorological variables to represent
fire danger. The Canadian Forest Fire Danger Rating System–Fire
Weather Index (CFFDRS-FWI)33–35 is a widely used system for
computing FWI. It has been applied in many regional and global-
scale applications after appropriate calibration36–41. Here, we
used the CFFDRS-FWI driven by meteorological variables from
the DSCESM data (“Methods”) to compute FWI over a 3680 ×
3680 km study domain centered around India. The domain was
discretized with a 10 km grid, which is the same resolution as the
DSCESM data. The simulations were run with a daily timestep for
2 time slices which we termed as (1) baseline (2006–2015) and (2)
end-century (2091–2100) under the RCP8.5 climate change sce-
nario. We quantitatively estimated the relationship between the
simulated FWI for the baseline period and the observed MODIS
active fire data42 for every grid cell using three non-parametric
tests and a fire count per percentile of FWI analysis (“Methods”).
The simulated baseline FWI was also used in conjunction with
the observed fire count for each grid cell to estimate the threshold
FWI values for five fire danger classes based on an ensemble of
five different approaches (“Methods”). The FWI for the end-
century case was then compared with the baseline case to estimate
the changes in the mean annual FWI and identify the major
meteorological driver resulting in these changes. We also ana-
lyzed the changes in severe fire weather days, the fire weather
danger season, and the Seasonal Severity Rating (SSR) in the
future due to changing climate.

Results
Forest classification. India has very diverse forest types ranging
from arid, to tropical to alpine and different climatic zones43,44.
Hence, the impact of climate change on fire regimes is likely to
differ for different types of forests. To account for these varia-
tions, we classified the study area into five major FWI zones
(Fig. 1). This classification was done by combining Koppen’s
classification of climatic zones over India43 and a satellite-based
land use/land cover map44. The five zones are (1) the cold, dry
Himalayan mountainous region (HIM) covered by alpine and
subtropical pine forests, (2) the warm, humid North-east (NE)
with wet evergreen and deciduous forests, (3) the hot, dry Central
India (CEN) with mixed deciduous and tropical thorn forests, (4)
the hot, dry Deccan (DEC) thorn forest and (5) the warm, humid
Western Ghats (WG) with semi-evergreen forests. The CFFDRS-
FWI was calibrated, and the future fire projections were analyzed
separately for each zone.

Relationship between FWI and observed fire count. The base-
line FWI simulated by CFFDRS is strongly correlated with the
observed MODIS fire count over forested grid cells. We used
three non-parametric tests to statistically test if any non-random
relationship existed between fire count and FWI (“Methods”).
The Chi-square test of association/independence45 shows that the
two variables are correlated at p < 0.05. The Yule’s correlation46

between the two is 0.88 which is significant at p < 0.05. Fisher’s
exact test47 indicates a non-random relationship significant at
p < 0.05. The Fisher’s odds ratio is 16.74 at a 99% significance
level which implies that the odds are 16.74 times higher that fire
will occur at low FWI values compared to high FWI. Overall,
these tests show that FWI can be considered an appropriate
metric to represent fire occurrence.

The maps of the annual mean FWI percentile for the baseline
case and the observed MODIS fire count for the same period
(Fig. 2-i) show that there is a spatial correspondence between fire
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count and FWI. Grid cells with high fire counts have higher
(above the 40 percentile) FWI values. For example, NE has a high
FWI and extremely high fire count due to high anthropogenic
ignition from the prevalence of shifting cultivation practices48,49.
Bedia et al.50 also reported a high correlation between burned
area and FWI averaged over the fire season in this region. Similar
signatures of higher FWI and corresponding high fire occurrence
can be observed in HIM, southern CEN, northern WG, and DEC.

To further study the association between FWI and fire count,
we plotted a scatterplot of fire count vs. the FWI percentile values
corresponding to the fire events (Fig. 2-ii). This is slightly
different from the spatial map where we averaged over all FWI
values irrespective of whether fire has occurred or not. We
observe a strong relationship between FWI and fire count with
more (less) fire events at high (low) FWI values for all the forest
zones (Fig. 2). However, the nature of the relationship varies by
forest zones. The best-fit curves with the highest values of
coefficient of determination show that the relationship is
exponential in the case of the NE zone (Fig. 2b) but cubic in
the HIM, CEN, DEC, and WG zones (Fig. 2a, c–e). As discussed
later, this difference has implications for developing FWI
thresholds for fire severity classes for different forest zones.
Overall, both plots suggest that high FWI is an important
requirement for fire occurrence and hence confirm earlier
findings that FWI is a good metric to estimate fire danger36–40.

We estimated five threshold FWI values to represent five fire
danger classes: Low, Medium, High, Very High, and Extreme
(“Methods”). The most common approach33 considers a certain
percentage of days as extreme fire days and then uses geometric
progression to compute the other thresholds. When we used this
default approach using 3% of days as extreme fire days, we
observed that the conditional probability (Fig. 3a) in CEN, DEC,
and WG regions saturates at 1 from the Medium class of
the default approach. Ideally, the probabilities should increase
gradually for each class from Low to Extreme for a reliable
representation of increasing fire danger. If the maximum
probability occurs at Medium threshold itself, the classification
becomes less effective in conveying the gradation of fire danger.
Hence, we used an ensemble of five other approaches (“Meth-
ods”). We observe that the conditional probabilities of the
ensemble approach increase gradually for each class and saturate
at the Extreme class except for WG where it saturates at the Very
High class (Fig. 3a). Also, the threshold computation by default
approach considers only the distribution of FWI. The ensemble
approach additionally accounts for aspects like fire occurrence
probability, the percentage of fires occurring in each class, and

machine learning-based FWI clusters. This makes the resulting
thresholds for each danger class more robust.

Figure 3b shows the computed limiting values of the fire
danger classes for each zone. One interesting pattern that stands
out is that the NE zone has a lesser FWI threshold for all fire
danger classes compared to the other zones. For example,
Medium fire danger occurs at a FWI value of 2.5 for NE while the
corresponding range for the other forests is 3–3.3. Similarly, the
FWI thresholds for Extreme fire danger is 3.5 for NE but for other
forests, the thresholds are in the 4.3–4.8 range. This difference
between NE with the other forest zones is corroborated by
Fig. 2-ii which shows that the best-fit curve in this region is
different from the others.

This different behavior of NE can be attributed to factors
including terrain, biomass density, species composition, and
ignition factors. The higher fuel loading in the relatively denser
NE forests is one of the major reasons for higher fire activity even
in lower FWI49. In this zone, most of the open forests practice
shifting cultivation. This predominant source of anthropogenic
ignition makes this region fire-prone even at low FWI values48,49,
especially during the pre-monsoon season51,52. In the other
zones, the climates are drier than NE, leading to relatively high
FWI. In some parts of CEN and DEC, forests are scattered and
are dominated by mixed deciduous and tropical dry thorn forest
types. Fire events are usually ground fires scattered around the
periphery of core forest zones. Lack of combustible dry fuel due to
human interventions and less biomass density lead to compara-
tively fewer fires in these regions even sometimes with higher
FWI conditions53. In HIM, the high-altitude forests are cloaked
with snow for a few months in the year. This limits the fire
activity at high FWI conditions during those times.

Our analysis shows that it is not appropriate to use the same
FWI thresholds over the entire country. The fire danger classes
must be defined using different thresholds for different forest
zones of India. This clearly demonstrates the value of conducting
high-resolution analysis that allows us to capture the spatiotem-
poral variability of weather patterns and forest types across the
country.

Change in annual mean FWI. We analyzed the projected change
in annual mean FWI by comparing the end-century average FWI
with the baseline (Fig. 4a). The figure shows that fire weather is
projected to increase in northern CEN, southern WG, NE, and
most of the HIM zone. Western CEN and northern WG show a
decrease in mean projected FWI. To understand the reasons

Fig. 1 FWI zones over India. Study area depicting a topography and b classified FWI Zones over India.
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behind these changes, we plotted a map showing which variable
contributes most to the FWI change for each pixel (“Methods”;
Fig. 4-ib). We also compared the dominant contributor infor-
mation with a modified de Martonne’s aridity index54,55

(“Methods”) in each pixel. We observe that in the arid and
intermediate regions, temperature is the major contributor to the
projected change in FWI (Fig. 4-ic, d). However, in humid
regions, precipitation and/or relative humidity play a more
important role than temperature (Fig. 4-ie). For example, in the
humid NE zone, climatological FWI will decrease majorly due to
the increase in annual precipitation. However, the decrease in
climatological FWI in the humid region of northern WG is
majorly governed by the increase in relative humidity. Tem-
perature is the dominant factor causing the change in future FWI

in the arid and intermediate regions of CEN, southern WG, and
DEC.

To analyze the change in the mean annual shift in FWI
expected by the end-century, we computed the Kernel Density
Estimation (KDE) distribution of mean FWI for different forest
zones for both time slices. Figure 4-ii shows that the KDE
distribution curves in all zones are multimodal. The distribution
curve is skewed most toward higher FWI values in the CEN zone
where the hot and arid climate persists for most of the year43. In
the NE and HIM regions, the values are skewed mostly toward
the left indicating comparatively low overall FWI values. In HIM,
this can be attributed to relatively colder temperate temperatures.
However, in NE, it is majorly the wetter tropical monsoon climate
that causes lower FWI values. Even though NE has a distinct peak

Fig. 2 Relationship between FWI and fire count. Relationship between fire counts and percentiles of FWI. (i) Spatial map of a percentiles of annual mean
FWI and b MODIS observed annual fire count and (ii) scatterplot of fire count for each FWI percentile bin for a HIM, b NE, c CEN, d DEC, and e WG FWI
zones for the baseline period (2006–2015). R2 represents the coefficient of determination.
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in KDE at low FWI values, the frequency and severity of fires in
these regions remain high due to terrain, species composition,
and ignition factors48,56. This also justifies the requirement for a
lower danger threshold in this region. In WG, several peaks in
KDE are observed. The peaks in low FWI values can be attributed
to the humid climate prevailing in that zone during the southwest
monsoon season. The heavy precipitation during this period
prevents fire occurrences. Almost no fire activity during the low
FWI period maintains the fire danger threshold higher as
compared to NE (Fig. 3).

The KDE curves for the end-century shift toward the right
from baseline with p > 0.05 in all forest zones. This indicates
overall higher FWI values in the end-century than the baseline
corresponding to a particular value of probability density. To
quantify the extent of the shift in FWI by the end-century, we
computed the bootstrapped mean values of the kernel distribu-
tions at 95% significance. Results show an overall increase of
5–10% in mean FWI by the end-century. The CEN region shows
the maximum difference of about 0.54 while the least difference
was in the NE zone of about 0.09 FWI. We also observe some
parts of the KDE curve in NE and WG (Fig. 4-iia, c) where the
end-century curve shifts to the right indicating lower future FWI.

Spatial pattern of severe FWI days. We analyzed the spatial
pattern of expected changes in severe fire weather days by end-
century. For this, we plotted maps of the number of days per grid
cell when FWI values exceeded Medium, High, and Very High
thresholds under baseline climate conditions and also how the
number of days could change under future conditions (Fig. 5).
Results show that there is considerable diversity between, and
even within, different forest zones. Currently, large parts of the
CEN, NE, and WG forests are under threat of Medium, High, and
Very High fire weather for more than 150, 50, and 30 days a year,
respectively. The HIM forest experiences the lowest fire weather
danger.

Forest types most prevalent in these threatened regions are dry
deciduous forests in western CEN, moist deciduous forests in NE
and northern WG, and semi-evergreen forests in southern NE52.
Satellite and ground-based fire observations in India suggest that
tropical dry deciduous forests experience the highest fire events
closely followed by tropical evergreen forest class52,57–59. High
susceptibility of tropical evergreen forests toward fire events has
also been observed in Indonesia60.

By the end-century, large parts of forested areas are likely to
experience an increase in the days with severe fire weather. The
moist deciduous forests in the Himalayan foothills (HIM) and the
southern part of NE, the dry deciduous forests in eastern CEN

and DEC, and the tropical evergreen forests in the northern part
of WG will face increased hazards in all three danger classes.
These regions are likely to experience a 20–60% increase in severe
FWI days. Regions of maximum concern where extreme
fire weather danger days would increase by 30–50 days per year
are the Cachar semi-evergreen and mixed moist deciduous forests
in the states of Tripura and Mizoram, Chir pine and Sal forests in
the Himalayan foothills, the northern moist evergreen forests
in the Western Ghats, and the southern mixed deciduous forests
in the states of Orissa and Andhra Pradesh. Similar increases in
fire disturbance due to climate change have also been observed in
Northwestern USA61, projected in Canada62 and various other
parts of the globe7,24,25,50.

Some forest areas can experience a decrease in severe fire
weather days. It is interesting to note that opposite signals can
occur within the same forest zones such as in NE, CEN, and WG.
The western part of CEN is likely to show a decrease in the
number of High and Very High FWI days by the end-century
whereas the eastern part shows an increase. This is different from
the signal of climatological change in FWI (Fig. 4-ia). In the
northern CEN, though the mean FWI is expected to increase in
the future, the number of days having severe days will decrease.
This is because the mean FWI increase is driven by the increase in
temperature over that region (Fig. 4-ib). However, the DSCESM
precipitation projections show that the daily rainfall amounts
would increase in 70% of the days in the future. More number of
wetter days in an extended monsoon season would result in
higher fuel moisture content and hence, fewer days with severe
FWI in the future. In another example, the northern part of WG
shows an increase in high FWI days but the signal of change is
negative in the central and southern parts. This difference also
can be attributed to the different variables playing the key role in
causing the change. In the southern WG, the mean FWI change
signal is majorly governed by DSCESM projected ~2.1 °C increase
in mean annual temperature whereas in the southern WG, a 40%
increase in the mean relative humidity lowers the future FWI.
However, the number of high FWI days signal is governed by the
projected increase in precipitation events, which is stronger in the
south than in the northern WG. In the central NE region, days
exceeding all three thresholds would decrease in the future. This
is also due to increased mean annual rainfall, which is the key
contributor variable identified in that region (Fig. 4-ib).

Seasonal pattern of fire weather severity. We used the Seasonal
Severity Rating (SSR) to study the seasonal pattern of fire weather
severity and how it may change due to changing climate. SSR is a
numeric index derived from FWI and is a metric representing the

Fig. 3 Fire danger classes using ensemble approach. Thresholds defined for fire danger classes. a Conditional probability distribution of fire counts
corresponding to the limiting FWI values of fire danger classes for the default and ensemble approach and b upper threshold values of FWI defining 5 fire
danger classes for different forest zones using the ensemble approach.
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difficulty in controlling fire events on a seasonal scale (“Meth-
ods”). Figure 6-i shows that the most severe fire weather occurs in
MAM. Satellite and ground-based observation studies also report
that most forest fires in the country occur during this season52.
The SSR in regions like the foothills of western Himalaya in HIM,
western CEN, and northern parts of DEC and WG zones are
higher than the 90th percentile severity thresholds (“Methods”) in

this season. It is interesting to note that western CEN and DEC
regions have high fire weather severity even in the monsoon
season JJA. This is because most of the high SSR occurs in the
month of June before the southwesterly monsoon can reach these
inland regions. The fire weather severity abates considerably in
July–August with the advent of the monsoon precipitation. The
post-monsoon season SON has the lowest SSR. In the DJF winter

Fig. 4 Change in mean FWI signal between baseline and end-century. Future change in mean FWI signal. (i) a Spatial map of the change in mean annual
FWI between baseline and end-century, b variable contribution resulting in this change, pie charts of dominant contributor in c arid, d intermediate, and
e humid regions and (ii) Kernel density estimation (KDE) for baseline and future daily FWI for a HIM, b NE, c CEN, d DEC, and e WG FWI zones.
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Fig. 5 Future changes in the number of days with severe fire weather. Number of days per year exceeding aMedium, b High, and c Very High thresholds
of FWI for (i) the baseline period and (ii) change in these numbers of days expected by end-century.

Fig. 6 Future changes in seasonal severity rating (SSR). Spatial Seasonal Severity Rating (SSR) of the (i) baseline and (ii) the difference between the end-
century and baseline SSR for a DJF, b MAM, c JJA, and d SON seasons.
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season, SSR is high in the WG, DEC, and southwestern CEN
forest zones of southern India.

The pattern of changes in SSR in the end-century is mixed.
Eastern CEN shows a consistent increase in all seasons but with
varying intensity (Fig. 6-ii). WG zone shows an increasing signal
only in the MAM season and a decreasing signal in other seasons.
Some parts in the western CEN show a decrease in the SSR in
MAM, JJA, and DJF seasons which is consistent with the
reduction in the number of High and Very High fire weather days
(Fig. 5-ii).

The most severe fire weather season of MAM is projected to
intensify the most by the end-century (Fig. 6-iib). Relative to the
baseline, the forest area, where SSR exceeds the 90th percentile
threshold, is likely to increase by about 34.5%. In western CEN, a
3–5 °C warming will cause the SSR to increase by about 30%. The
HIM zone is projected to become hotter by >5 °C and drier by
about 8%. The SSR in this zone will also increase as a combined
effect of future changes in temperature and relative humidity. In
WG, SSR is projected to increase because of the ~3 °C projected
warming. In contrast to this, even as MAM is projected to become
~3 °C hotter by end-century in NE, about a 15% increase in RH
and pre-monsoon precipitation will decrease the future SSR.

We observe some interesting patterns in other seasons as well.
In the JJA monsoon season, we see about a 50% increase in future
SSR in HIM and eastern CEN regions and a 30% increase in DEC
(Fig. 6-iic). This is majorly because the increase in future
temperature will be greater in these regions as compared to other
regions. Some monsoon deficit points in CEN are likely to
experience an increase in SSR by the end-century. The high SSR
regions of western CEN will experience a decrease in the future.
In the post-monsoon season of SON, southern parts of CEN show
a high increase in SSR (Fig. 6-iid). This is because the southern
part is projected to be drier as well as hotter than the northern
CEN. SSR would moderately increase by about 20–30% in some
parts of HIM and NE and decrease moderately in the rest of the
regions.

Although in DJF, SSR is projected to mostly decrease by
20–50% across the zones, forested areas exceeding the 90th
percentile threshold would still increase by 26.5% in the end-
century. The decrease in SSR is prominent in western CEN,
northern WG, and NE zones. These regions are also projected to
become wetter by 5-10%. SSR is projected to increase in eastern
CEN, the northernmost tip of WG, and some parts of northern
NE. These are the regions where projected future temperatures
are higher than other regions. Overall, the decrease in SSR in all
the seasons is governed by precipitation and relative humidity
and the increase is governed by temperature. This finding is
similar to the annual change signal in FWI discussed in the
previous section (Fig. 4-i).

Fire weather danger season. We used the daily climatology of
FWI to identify a fire weather danger season. We define this as a
continuous period in which the daily climatology signal of FWI
crosses the Medium threshold. It is important to note that the fire
weather danger season is different from the fire season. Fire
season is the period wherein fire occurrences are high while the
fire weather danger season is the period where the fire occurrence
probability is high in the presence of ignition factors.

Figure 7 depicts the daily climatology signal of FWI for both
baseline and end-century periods with the shaded region
depicting the uncertainty in this estimation at a p < 0.05 level.
Results show that there is a strong periodicity in FWI in all forest
zones. In general, the FWI peak is in the pre-monsoon season due
to high temperatures and low humidity. This is also corroborated
by SSR maps (Fig. 6-i) and observational studies56. The FWI dips

in the post-monsoon season because of an increase in humidity.
Despite the similarity in patterns, there is considerable variability
in the timings of the peaks and troughs in FWI making it very
challenging to define a uniform fire weather danger season across
all forests of the country. If the Medium FWI threshold is
considered as the fire weather danger season, then the start of the
season is around December-February and the end of the season is
June–September, depending on the forest type. In the HIM
forests, the dry atmosphere in the pre-monsoon and winter
seasons causes two distinct periods of consistently high FWI
(Fig. 7a). In the DEC thorn forests the FWI peaks from the
monsoon season and begins to sharply decrease by late February
(Fig. 7d).

The fire weather danger season is likely to change in the future.
As is evident from Fig. 7, the FWI values in the end-century
period are higher during the pre-monsoon months than the
baseline and lower in the winter months. This pattern is
consistent with the increase in SSR in MAM discussed earlier.
Figure 5 shows that in some regions, there is likely to be an
increase in Medium, High, and Very High FWI days in the future
that may lead to an increase in the fire weather danger season. To
quantify this change, we identified the start and end days of the
fire weather danger season from the FWI climatology (“Meth-
ods”, Table 1). The results show that the length of the fire weather
danger season will increase up to 61 days. The highest increase is
in the CEN forest zone followed by the HIM and NE zones. We
also identified the nature of this change in fire weather danger
season. For example, the increase in the extent of this season is
mainly due to the early start of the season in the CEN, HIM, and
DEC zones. In NE, the season would end later by about 15 days in
April. In WG the season will slightly shift by 5 days, keeping the
length of the season almost the same as the baseline.

Conclusions and discussions
We used the CFFDRS with the DSCESM high-resolution climate
projections to estimate the FWI over Indian forest zones for
baseline and end-century periods. We used high-quality data
including the DSCESM projections and high-resolution land
cover maps along with state-of-the-art tools like the WRF
mesoscale model and the CFFDRS to estimate FWI. The esti-
mates were evaluated against MODIS observations to ensure that
our results are robust. We developed fire weather danger classes
using an ensemble method that reduces the uncertainty in the
threshold estimates. We compared the distribution of daily FWI,
spatiotemporal patterns of fire weather severity, and fire weather
season for the baseline and future scenarios to study the effect of
climate change on fire danger. The main conclusions of the study
are as follows:

● There is considerable heterogeneity in fire weather danger
across the different forests of India. Forest fires can occur at
considerably lower FWI values in NE forests than in the
CEN, DEC, HIM, and WG forests. The FWI severity
threshold is also lower in the NE zone.

● Climate change will have a strong effect on fire weather in
Indian forests. The overall change in mean FWI will be
about 5%. However, this change will result in the days
exceeding Medium, High, and Very High severity thresh-
olds to change by up to 60%.

● The impacts will vary between and even within forest
zones. In arid and intermediate regions, temperature
change will play a key role in increasing the FWI in the
future. In these regions, the days with severe FWI will
increase by up to 60%. However, in humid regions, fire
weather danger will decrease in the future due to the more
dominant effect of increased precipitation and humidity
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despite any warming. Here, the days with severe FWI will
decrease by up to 40%.

● In some regions, changes in extreme rainfall events will
affect fire danger where the future mean FWI change signal
can be the opposite of the days with severe FWI signal.

● The pre-monsoon MAM season experiences the maximum
fire weather danger. By the end-century, the seasonal
severity will increase in the HIM, eastern CEN, and DEC
regions covering about 55% of India’s forests during this
season.

● Severe fire weather season is expected to become longer
across all FWI zones with a maximum increase of about
2 months in the CEN zone.

Our study is an important advancement of the state of science.
Foremost, our findings highlight that the fire weather in India is
governed by the interplay between different meteorological dri-
vers including temperature, precipitation, and humidity. We find
that if precipitation and/or relative humidity increases in humid
forests due to climate change, they are likely to experience a
reduction in fire weather danger, despite rising temperatures.
Second, our study also advances the state-of-practice by using a

very high spatial resolution that is about an order of magnitude
higher than typical global-scale studies9,23,25,50,63. This provides
us with three distinct advantages. First, it allows us to simulate the
fire weather with a high degree of granularity which is essential
for the fragmented forests of India17. Second, we are able to
represent the mesoscale variability in spatial patterns of pre-
cipitation that is absent in typical ESMs7,64. Third, we could get a
more robust estimate of forest fire events by eliminating the non-
forest fires from crop residue burning by using a high-resolution
forest mask. Because of this methodological improvement, we
consider this work to be a useful contribution to understanding
the fire-climate relationship in tropical fragmented forest systems
similar to that of India.

It is important to note that fire weather is just one aspect of fire
risk. Forest fire risk depends on other factors such as natural and
anthropogenic ignitions, fire vulnerability of the forest type, etc. A
comprehensive analysis of forest fire risk and how it will change
in the future will require information on ignition and vulner-
ability. This information must be integrated into modeling sys-
tems to accurately predict future forest fire risk. However, fire
weather is the main driver of forest fires in India. Even in the NE
where anthropogenic ignition plays an important role, fire

Fig. 7 Change in fire weather danger season. Fire weather danger season as derived from the daily FWI climatology for baseline (blue) and end-century
(red) for a HIM, b NE, c CEN, d DEC, and e WG. The shaded region denotes the bootstrap uncertainty computed at 95% significance.

Table 1 Zone-wise severe fire weather danger season for baseline and end-century.

Zones Baseline severe season Future severe season Diff. in days Remarks

HIM 15th April–25th June
15th October–28th January

15th April–24th June
20th September–10th February

33 Early start and extended end

NE 15th October–1st April 15th October–15th April 15 Extension of end
CEN 10th October–1st August 20th August–20th July 61 Early start
DEC 20th June–2nd February 8th June–2nd February 12 Early start
WG 15th October–8th June 20th October–10th June 3 Shift
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weather is the dominant forcing that governs fire occurrence.
That is why FWI is an appropriate metric that can be used to
study fire risk. Indeed, various global fire management agencies
rely on fire danger estimates based on weather to develop miti-
gation actions. Also, our future projections are just one realization
of the future. For a more comprehensive assessment, multiple
models and projections could be considered. However, that will
be a long-term and computationally expensive endeavor.

This study has broad implications for theoretical and practical
applications. This is the first attempt to explore fire weather and
how it will be affected by climate change in different forest zones
of India. India is a known biodiversity hotspot, and this biodi-
versity is affected by forest fires that play a critical role in eco-
system dynamics. Understanding the changing patterns of forest
fires will advance our understanding of the effects of climate
change on biodiversity and ecology. Our study also has notable
ramifications for forestry practitioners. First, it identifies fire
danger hotspots that need priority attention for mitigation. Sec-
ond, this study clearly demonstrates that there is considerable
heterogeneity in the fire danger between and even within forest
zones. Hence, a national uniform threshold for fire danger is not
advisable. Fire management and mitigation policies must be
based on local-regional level metrics. Third, the system and the
modeling framework developed in this study can be used for site-
scale analysis in hotspots like national parks and other protected
areas. Finally, this CFFDRS-FWI framework can also be used for
fire danger forecasting provided appropriate meteorological
forecasts are available.

Methods
Data. For forcing the CFFDRS-FWI for the baseline and end-
century, we used high-resolution (10 km) gridded Downscaled
CESM (DSCESM) data. This dataset was developed by dynami-
cally downscaling the bias-corrected Community Earth System
Model (CESMv1) climate projection under emission scenario
RCP8.5 using the Weather Research and Forecasting (WRF)
model over India65,66. We extensively analyzed the performance
of CESMv1 for the baseline period and found that it works well in
India. We observed a consistent bias in the DSCESM wind speed
when compared with reanalyses and ground observations. Thus,
we adopted a linear scaling approach66 to correct this bias with
respect to Global Summary of the Day (GSOD) observations. The
details of the bias correction are in Appendix 1 of the Supple-
mentary Information. GSOD contains daily 24-h averages cal-
culated from hourly station observations collected from over 9000
locations around the world. Within our forest zones, 35 GSOD
stations have complete daily averages of wind speed from 2006 to
2015. We extracted the daily values from DSCESM wind speed
for the grid corresponding to the GSOD station location and
computed the linear and variance scaling factors. These factors
were added to every grid of baseline and end-century DSCESM
wind speed to correct the bias. We found the performance of the
linear scaling method to be better than the variance scaling using
quantile-quantile mapping against reanalysis wind data (Supple-
mentary Fig. 1). This improved the quality of daily wind speed
data (Supplementary Figs. S2 and S3). We also checked the other
variables against GSOD observations and found the biases to be
within acceptable ranges.

We used the Moderate Resolution Imaging Spectroradiometer
(MODIS) daily active fire data to identify forest fires and evaluate
the relationship between FWI and fire occurrence. The MODIS
instrument aboard the Aqua and Terra satellites detects thermal
anomalies and provides global information regarding the spatial
distribution of forest fires and the timing of occurrence at a
resolution of 1 × 1 km42. We used this dataset to evaluate the

simulated FWI and compute FWI danger thresholds specific to
FWI zones. For these purposes, we filtered the MODIS fire data
locations from 1st January 2006 to 31st December 2015 using the
forest class pixels from a land use land cover map of India44. We
then converted this filtered forest fire data to a gridded daily fire
count dataset at 10 km spatial resolution, which is the same as the
DSCESM meteorological dataset and the simulated FWI dataset.

CFFDRS-FWI description. The CFFDRS computes the FWI33,34

which is a meteorologically based numerical index used by
researchers worldwide to account for the effects of weather
variables on forest fuels and fires and study fire severity
patterns35,67. It consists of three moisture codes, namely, the Fine
Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC),
and the Drought Code (DC) that quantify the moisture contents
at 0–1 inch, 2–4 inches, and 4–8 inches depths, respectively. Then
the system computes two intermediate indices, namely, the Initial
Spread Index (ISI) and the Buildup Index (BUI). The ISI com-
bines the effect of wind speed and top layer moisture from FFMC
to compute the rate of spread of fire. BUI is computed from DMC
and DC representing the fuel available for combustion. FWI is
calculated from ISI and BUI. We wrote a MATLAB code which is
available on GitHub to compute the indices based on the equa-
tions provided in Wagner33. The input provided to this code is
derived from DSCESM. The variables are 12 noon IST values of
2 m temperature, relative humidity, bias-corrected wind speed,
and 12 noon IST—12 noon IST accumulated precipitation.

System calibration and initialization. The equations of the
CFFDRS-FWI system and the danger thresholds33 were designed
primarily for use in the Canadian climate. We applied the fol-
lowing calibration steps to implement this system in India.

Latitude adjustment. The FFMC index, which represents the fuel
load of the topmost layer directly in contact with the near-surface
atmosphere, depends heavily on meteorological variations67, and
hence it does not need any adjustment. However, DMC and DC
need adjustment because these computations are influenced by
the daylight factor that depends upon the latitude of the region
and the date-of-year values33. For our simulations, we considered
the latitude value at every grid point to compute the corre-
sponding day lengths. In potential evapotranspiration (PET)
computation for DC, we make 2 assumptions: (1) The latitudes
close to the equator (<20 in the northern hemisphere) receive
consistent heating throughout the year41 and (2) the PET in the
higher latitudes is dependent on the month of calculation.

Spin-up simulations. Computation of FWI requires initialization
of FFMC, DMC, and DC values from the previous day. A 5-year
long spin-up simulation was conducted for each scenario by
initializing the system with default FFMC, DMC, and DC values
of 85, 6, and 15, respectively, for every forested grid cell. The
FFMC, DMC, and DC values for each forest grid cell at the end of
the spin-up were used to initialize that grid cell for the simula-
tions for the baseline and future scenarios. We observed that the
values at the end of the spin-up varied across different forest
zones and they were quite different from the default values. A
similar finding has been reported by other studies38,41,68. Another
interesting feature was that the parameters appeared to stabilize
in about 1 year (Fig. 8). The figure shows that the annual cycles in
years 2–5 are similar while year 1 is quite different. This suggests
that a 1-year spin-up might be sufficient in this region.

Statistical methods. To quantitatively understand the relation-
ship between FWI and fire occurrence, we compared the daily
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FWI simulated for the baseline period with MODIS active fire
data. For this, we converted the MODIS data into daily fire count
per 10 Km pixel data. First, we applied three non-parametric
statistical tests namely The Chi-square test of association/
independence45, Yule’s correlation46 and Fisher’s exact test47. All
three tests first specify if there exists any non-random relation-
ship between the two datasets. The extent of this relationship is
specified further by Yule’s correlation coefficient and Fisher’s
odds ratio. Yule’s coefficient gives a correlation parameter
between 0 and 1 with higher values signifying a stronger rela-
tionship. Fisher’s odds ratio is a measure of the relative odds of
the occurrence of the outcome of interest which in our case is
more fire count associated with higher FWI values. Second, we
plotted a scatterplot of FWI percentile bins vs. the count of fire
events corresponding to those percentile values. The percentile
bins were computed from the daily FWI dataset at all grid cells
within a particular zone. Even the fire count is aggregated daily
fire count for 10 years between the percentile bins. These curves
showed us how the fire counts are spread across various per-
centile levels of FWI. We also determined the best-fit curves to
determine the nature of the curve and the coefficient of
determination.

Fire danger classification. We classified the FWI values into five
fire danger classes namely Low, Medium, High, Very High, and
Extreme. The default approach to calculate the fire danger class
thresholds is to define the lower limit for the Extreme class using
the FWI dataset33. We selected this value to be the 99th percentile
of FWI in each zone. Then we used geometric progression to
define the limits of other danger classes. However, using this
approach, the conditional probability69 of fires occurring beyond
High and Very High classes in few zones saturated at 1. Thus, we
used an ensemble of five different methods by using the fire count
information in addition to the FWI dataset to characterize lim-
iting FWI for each danger class.

1. Logistic regression approach70 is a predictive technique
involving a binary outcome. The basic equation is

y ¼ 1=ð1þ expðβ0þ β1xÞÞ ð1Þ

where y is the predictand and x is the predictor variable and
β0 and β1 are the regression coefficients. We provided the
fire data converted into a nominal variable along with the
FWI value of the corresponding grid cell as inputs and fire
occurrence probability was computed as a function of both.
Then, we considered the FWI values corresponding to 0.2,
0.5, 0.7, and 0.9 fire probability38 as the thresholds for Low,
Moderate, High, and Very High danger classes respectively.

2. A percentile-based method71,72 classifies the Low, Moder-
ate, High, and Very High danger classes by the 97th, 90th,
45th, and 22nd percentile values of FWI from each region,
respectively.

3. A geometric progression method33 limits the extreme fire
danger days in a fire season to not more than 3%. Danger
classes were based on FWI values corresponding to when
the percentage of days throughout the fire seasons are 43,
26, 13, and 3% for each class respectively39.

4. A system based on percentages of fires occurring beyond a
particular threshold was introduced by ref. 73. FWI values
beyond which 40%, 65%, 87%, and 96% of all fires occurred
defined the danger class thresholds respectively.

5. K-means clustering74 is a machine learning-based cluster-
ing technique. Based on MODIS fire occurrence data
converted to values of 1 for presence and 0 for absence
(absence data was randomly sampled) and their corre-
sponding FWI values, we applied K-means clustering (10
years—all grid points) and separated the FWI dataset into 5
danger class clusters. It took 106 iterations to get the results
to converge.

We averaged the highest value in each threshold class
computed from the above five methods. These characterized the
limiting values of each fire danger class. We also evaluated the
conditional probability distribution69 of this ensemble approach.

Future FWI projections. We computed all the components of
the FWI system using the DSCESM meteorological input for the
baseline (2006–2015) and the end-century (2091–2100) period.
Then, we created the final output FWI dataset at a daily temporal
resolution and spatial resolution of 10 × 10 km for both periods.

Fig. 8 Spin-up for stable values of intermediate indices. FFMC, DMC, DC and FWI values for the 5-year spin-up simulation averaged over all forest
grid cells.
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First, we computed the climatological change in FWI by sub-
tracting the baseline 10-year average from the end-century 10-
year average of FWI. Then, to understand the major contributor
variable causing the climatological change in FWI, we performed
4 sensitivity experiments. In each sensitivity experiment, we
simulated end-century FWI by using end-century values of one
variable and retaining the baseline values of other variables. This
separated the individual impacts of expected future change in
each variable over the future change in FWI. For each spatial
pixel, we identified the variable whose sensitivity was maximum
with respect to baseline FWI and considered that variable as the
major contributor to future FWI change. We also used a modified
scale based on De Martonne’s aridity index54,55 to classify the
pixels into arid, intermediate, and humid. We classified the pixels
with index values less than 20 as arid, 20–35 as intermediate and
greater than 35 as humid. We then analyzed the contributor
variables against this modified aridity index.

Then, we computed a non-parametric probability density
estimation of daily FWI within a particular FWI zone using
Epanechnikov Kernel density estimation (KDE) with an optimally
computed bandwidth for the baseline and end-century
periods75,76. From this, we calculated the shift in average daily
FWI for each zone using the Bootstrap confidence interval for the
mean parameter at a p < 0.05. This method of bootstrapping the
confidence interval is majorly used to optimize the length of the
confidence interval and adopts a less conservative approach as
compared to the asymptotic method77–79. Thus, this method was
most suitable for our application as it ensured that the changes in
fire weather danger by the end-century were not undermined. We
also computed the number of days exceeding a certain threshold
like Medium, High, and Very High fire dangers for both periods.
We then plotted the baseline values spatially as a reference along
with the difference between the end-century and baseline severe
fire weather days.

Daily Severity Rating (DSR), an additional component of the
FWI system, is a numeric measure of the difficulty of controlling
fires33. Based on the FWI, it represents the expected effort
required for fire suppression. Other studies80 have established the
relationship between DSR and fire occurrences.

DSR ¼ 0:0272 � FWI1:77 ð2Þ
Higher FWI values are emphasized through the power relation.

The DSR can be accumulated over time as the cumulative DSR, or
it may be averaged over time as the Seasonal Severity Rating
(SSR) as in Eq. 3

SSR ¼ ∑
n

i¼1
DSRi=n ð3Þ

where DSRi is the DSR value for day i, and n is the total number
of days. We computed SSR for the baseline and future periods to
analyze the seasonal changes in fire danger. These parameters
were also filtered with the forest layer shapefiles and divided into
zones. We considered a value of 90th percentile SSR in the
baseline scenario as a threshold beyond which the fire potential
becomes severe. These SSR thresholds for HIM, NE, CEN, DEC,
and WG zones are 0.52, 0.3, 0.59, 0.8, and 0.62 respectively.

We defined a ‘fire weather danger season’ as a period in which
the fire occurrence probability is high. We considered the part of
the daily climatology curve beyond the Medium fire danger
threshold of FWI as this fire weather danger season.

Data availability
The DSCESM meteorological dataset65 is archived with the World Data Centre for
Climate which can be accessed from https://doi.org/10.26050/WDCC/WRF10km_wbc_
C5_forc_oIndia. The National Centers for Environmental Information (NCEI) provides

the GSOD dataset at various stations which can be accessed from https://www.ncei.noaa.
gov/access/search/data-search/global-summary-of-the-day. The MODIS active fire data
is distributed by Fire Information for Resource Management System (FIRMS) and
archived data from 2003 to the present can be accessed from https://firms.modaps.eosdis.
nasa.gov/active_fire/. The computed FWI daily dataset for both the baseline and end-
century time slices are publicly available in a Zenodo archive and can be accessed from
https://doi.org/10.5281/zenodo.10126266.

Code availability
The modifiable MATLAB code to compute FWI is available on the GitHub repository
(https://github.com/anasuya993/CFFDRS-FWI_India/blob/main/CFFDRS_FWI_year_
ABiitd.m, last access: 28 August 2023) and the frozen version 1 is available in a Zenodo
archive (https://doi.org/10.5281/zenodo.10047237).
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