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Ecosystems in China have become more sensitive
to changes in water demand since 2001
Ying Hu 1,2, Fangli Wei 1, Bojie Fu 1,2✉, Wenmin Zhang 3 & Chuanlian Sun 1,2

Changes in heat and moisture significantly co-alter ecosystem functioning. However,

knowledge on dynamics of ecosystem responses to climate change is limited. Here, we

quantify long-term ecosystem sensitivity based on weighted ratios of vegetation productivity

variability and multiple climate variables from satellite observations, greater values of which

indicate more yields per hydrothermal condition change. Our results show ecosystem sen-

sitivity exhibits large spatial variability and increases with the aridity index. A positive tem-

poral trend of ecosystem sensitivity is found in 61.28% of the study area from 2001 to 2021,

which is largely attributed to declining vapor pressure deficit and constrained by solar

radiation. Moreover, carbon dioxide plays a dual role; which in moderation promotes ferti-

lization effects, whereas in excess may suppress vegetation growth by triggering droughts.

Our findings highlight moisture stress between land and atmosphere is one of the key

prerequisites for ecosystem stability, offsetting part of the negative effects of heat.
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G lobal-scale warming has led to distinct changes in regional
climate patterns, including increasing temperature,
increasing intra- and inter-annual precipitation variability,

dry spells and extreme climate events1. These unprecedented cli-
mate changes are projected to alter vegetation-atmosphere feedback
and ecosystem structure (e.g., spatial configuration of species)2, thus
threatening ecosystem functioning3,4. Consequently, characterizing
terrestrial ecosystem responses to climate change is critical to
support a broad suite of Sustainable Development Goals (SDGs),
including taking urgent action to combat climate change, sustain-
ably managing forests, halting and reversing land degradation, and
halting biodiversity loss2,5.

Quantifying aggregated biophysical responses of vegetation to
climate change is key for understanding how ecosystem functions
adapt to global warming6–8. Terrestrial vegetation serves as an
important link between the land and atmosphere9 through the
coupled water-energy-carbon cycle10. Progress has recently been
made in quantifying the vegetation response to climate stresses,
but the focus has been on a single meteorological parameter11–14.
Increased annual rainfall in tropical savannas has been confirmed
to change the ecosystem structure by favoring woody species over
herbaceous vegetation15. Studies also observed high ecosystem
sensitivity to soil moisture in many semi-arid and arid regions5

and reported that the sensitivity to precipitation in drylands was
closely related to CO2

16,17. However, separate consideration of
climate metrics can impede our full understanding of ecosystem
functions under interrelated factors because of the mutual
dependence of vegetation growth on water and energy
availability18, as well as flexible physio-ecological regimes19.
Therefore, there is an urgent need to generate ecosystem
responses to compound climate changes to cope with big-picture
adaptive strategies20,21.

Many statistical methods have been used to model the mean
ecosystem sensitivity to periodical climatic conditions at spatial or
space-for-time substitution patterns22. However, there is no clear
strategic and mechanic consensus of temporal patterns of eco-
system sensitivity23. Recently, an approach based on the auto-
regression model has identified areas sensitive to climate
variability and quantified the relative importance of climate
variables in driving local productivity patterns11,22. The state-of-
the-art earth observations enable better monitoring of ecosystem
changes24. The enhanced vegetation index (EVI) from Moderate
Resolution Imaging Spectroradiometer (MODIS) sensors
improves sensitivity to densely vegetated areas by correcting for
canopy background noise and atmospheric conditions25. In
addition, advances in machine learning applications with
increasing availability of earth observations are facilitating the
study of ecosystem feedback mechanisms without any premise of
explicit functional relationships, e.g., extreme sklearn random
forest (RF) models and eXtreme gradient boosting (XGBoost)
models. These optimized eco-climate indicators and methodolo-
gies allow us to more precisely establish and attribute ecosystem
responses to environments, yet they have not been addressed
directly from observations.

Terrestrial ecosystems in China have a strong potential for
carbon sequestration and are critical for the world’s carbon
pool26. However, the dynamics of ecosystems functioning as
current carbon sinks under global warming in the future are
uncertain, especially in relation to vegetation responses27,28. The
objectives of our study are to provide evidence of changes and
drivers of the overall ecosystem sensitivity to land‒atmosphere
coupling, hereafter referred to as ecosystem sensitivity, ESI. We
first calculated ESI according to Seddon’s approach22 at the pixel
level. Specifically, by sliding moving windows of years, we derived
the long-term series of ecosystem (productivity) sensitivity to
climate changes (here, larger ESI indicates more yields per

hydrothermal condition change). ESI contained separate mea-
sures of vegetation sensitivity to water (SI_wua)29, solar radiation
(represented by cloudiness, SI_cld) and temperature (SI_tmp) by
integrating various satellite-based products from 2001 to 202130.
Next, we examined the spatiotemporal changes in ESI based on a
bootstrap algorithm across different climate zones and vegetation
types. Finally, we explored the relative importance of a set of
biotic and abiotic factors in controlling ESI changes in China
using the machine learning and the Shapley Additive exPlana-
tions (SHAP) model.

Results
Ecosystem sensitivity to climate change. Normalized values of
ESI can be compared in space and time and thereby provide the
quantitative magnitude of vegetation changes per unit of climate
change. The distributions of annual mean ESI showed significant
variations over different ecoclimatic zones (Fig. 1a). Among the
five forest biomes, the highest sensitivity values were identified in
southern tropical monsoon rainforests, followed by northeastern
temperate mixed coniferous forests, cold temperate coniferous
forests and subtropical broad-leaved evergreen forests, and the
lowest sensitivity was observed in warm temperate deciduous
broad-leaved forests (Fig. 1b). Overall, non-forest biomes (mainly
related to northern herbaceous vegetation) had relatively lower
sensitivity (temperate deserts, grasses, and shrubs) than forests.

Due to complex hydrothermal combinations in space, vegeta-
tion responses to meteorological factors in China are also
expected to vary with aridity gradients. In drylands, ecosystem
sensitivity to the availability of water, solar radiant energy, and
temperature all monotonically increased as the aridity index
increased. Nevertheless, in humid regions, we found that
vegetation sensitivity to cloudiness and temperature was prone
to less fluctuation (Fig. 1c), as well as a decline in ecosystem
sensitivity to available water because of the sufficient supply of
precipitation and soil moisture (Fig. 1c and Supplementary
Fig. 1). Our results suggest that dryness affects ecosystem
sensitivity to different climatic elements in a nonlinear manner
(Fig. 1c).

Changes in sensitivity. We hypothesized that vegetation may
gradually become more adaptable to climate change over time or
become more responsive to moisture or heat. Integrating the
changes at the pixel level, approximately three-fifths of the study
area showed significant positive trends (Kendall test, p < 0.05) in
ESI during the past two decades (Fig. 2a), which was further
evidenced by robust uptrends when sliding the regression win-
dows from 7 to 13 years and mean-aggregating the ESI in space,
despite with different relative value sizes (Fig. 2a). ESI trends
displayed obvious heterogeneity in the distribution and direction
(Fig. 2b), with the humid and dry subhumid regions having the
highest proportions of positive trends and semi-arid and arid
regions sharing slightly lower proportions. Considering drylands
and humid regions exhibited uniformly wider coverage in sensi-
tivity to temperature and water than to solar radiation (Fig. 2c),
we inferred an enhanced dominant effect of the water-energy
balance on ecosystem dynamics in the future (Supplementary
Fig. 2).

Attribution of sensitivity trends. We performed the SHAP
algorithm in the RF and XGBoost models over undisturbed areas
to identify the relative importance of multiple factors contributing
to observed trends in ESI. After excluding predictors that con-
tained similar information, the high forecast accuracy (over 84%)
and low mean squared error (less than 0.1) shown in Supple-
mentary Table 3 for both models were supposed to provide
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compelling evidence that ESI trends could be almost entirely
explained by an optimal combination of meteorological, hydro-
logical, and anthropogenic predictors31. More specifically, rank-
ings of the relative importance of multiple drivers in the two
models were almost the same (Fig. 3), further signifying the
reliability of the attribution results. The outputs demonstrated
that the observed spatial patterns of ESI trends were strongly
correlated with changes in (1) vapor pressure deficit (defined as
the difference between saturated water vapor pressure and actual
water vapor pressure), (2) inter-annual solar radiation and (3)
atmospheric CO2 concentration. Precipitation was the primary
water supply that regulated the vegetation response to climate
change (Supplementary Fig. 3).

To obtain an in-depth understanding of how ecosystems cope
with interconnected climate change and human activities, we
further calculated ESI trends under various interactions of
drivers. We grouped the results from Fig. 3 with respect to the
identified main controls and discovered that positive ESI trends

were strongest in regions with the most substantial decrease in
vapor pressure deficit and the greatest amount of solar radiation.
Carbon dioxide changes played a dual role in ESI variability
(Fig. 4a), with moderate increasing trends benefiting ESI and
overdose having a negative effect. Moreover, downward trends of
the points in Fig. 4b illustrated that ESI trends were also restricted
by the energy supply system (such as downwelling solar radiation
and evapotranspiration) at the time when atmospheric water
demand was relatively low. Our results indicated that factors
could exhibit synergistic or antagonistic interactions. Overall, we
suggest that the major increasing ESI trends under diverse
perturbations imply that declining water pressure and appro-
priately increasing photosynthesis may surpass the negative effect
of declining solar energy.

Discussion
We applied comprehensive ESI metrics and principal regression
analysis to identify sensitive ecological hotspots from a more
realistic perspective. This is an improved method to quantify
ecosystem functions that simultaneously considers the total
absolute effect of multiple climatic elements on primary pro-
duction after reducing covariance.

Fig. 1 Spatial patterns of multiyear average ecosystem sensitivity (ESI).
a Distributions of mean ESI. b ESI in various biomes (Supplementary
Table 1). c ESI changes along the aridity index. TDS temperate desert zone,
TGR temperate grassland zone, CCF cold temperate coniferous forest zone,
MCF temperate mixed coniferous forest zone, QTP Qinghai–Tibet Plateau
alpine vegetation zone, DBF warm temperate deciduous broad-leaved
forest zone, EBF subtropical broad-leaved evergreen forest zone, and TRF
tropical monsoon rainforest and rainforest zone. Lines in (b) at the top and
bottom represent the maximum and minimum values, respectively. The
extents of the colored boxes indicate the 25th and 75th percentiles. SI_wua,
SI_cld, and SI_tmp refer to vegetation sensitivity to water availability, cloud
and temperature, respectively (Supplementary Table 2). Shades indicate
the 95% confidence interval calculated in each aridity bin through
bootstrapping (N= 3000). The orange, yellow, green, and blue ranges
represent the arid (0.05≤AI < 0.2), semi-arid (0.2≤AI < 0.5), dry sub-
humid (0.5≤AI < 0.65) and humid regions (AI≥ 0.65), respectively.

Fig. 2 Changes in ecosystem sensitivity index (ESI). a Distribution of ESI
trends. We changed the windows from 7 years to 13 years to test the
robustness of ESI trends to the choice of window length. b ESI trends for
different biomes. The trend was calculated from the Kendall coefficient
between the ESI and time series. Positive values represent increasing
trends, and negative values represent decreasing trends. A total of 61.28%
of the areas of interest showed a significant increasing trend (p < 0.05).
The red points refer to the mean values. c Proportions of positive trends in
vegetation sensitivity (Kendall test, p < 0.05) across drylands and humid
regions. Abbreviations of biomes and sensitivity please see Fig. 1.
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We observed that woody vegetation was more sensitive than
herbaceous vegetation to climate change (Fig. 1), contrary to the
findings of sensitivity of primary production to precipitation
across the United States16. We acknowledge that the literature is
messy regarding sensitivity metrics, in which a popular calcula-
tion is the coefficient from regression, linear mixed-effects models
and other slopes. Here, we are interested in the variance ratios of
vegetation productivity variability and each of the climate vari-
ables, but it would not make much sense to determine the var-
iance ratios of a location for a climate variable that was not very
important in driving productivity patterns; thus, we scaled the
ratios by the coefficients. This study practiced another definition
of sensitivity and may provide complementarity for the precise
assessment of the relative changes in ecosystems to climate
variability. Our results also revealed that forests of different
shapes and physiologies respond differently to environmental
elements. Needle-leaved forests in northern China were most
sensitive to variations in water availability, while broad-leaved
forests in mild temperate and tropical zones shared the greatest
sensitivity to cloudiness (Supplementary Fig. 4), which was con-
sistent with recent satellite observations of forest-cloud cover
interactions32. Compared to clear-sky conditions, moderate
radiation conditions with a certain amount of increased cloud
cover in Supplementary Fig. 5 led to a decrease in total solar
radiation (Supplementary Fig. 6). The increase in scattered
radiation was most beneficial to the net carbon uptake of forest
ecosystems, especially for the forests in southern China during
the last two decades (Supplementary Fig. 6)33. In contrast,
angiosperm plants with flatter, broader leaves exhibited high

evapotranspiration, which supplied abundant water vapor for
cloud formation and maintained large-scale water circulation
(Supplementary Fig. 6)34. The low albedo and high roughness of
broad-leaved forests promote the partitioning of more solar
energy into turbulent heat flows, which heightens the turbulent
mixing and convective instability in the boundary layer32,35. The
present research determined that cloudiness in the last decade has
promoted the growth of subtropical broadleaf evergreen forests in
the Northern Hemisphere36–38. Our work has obtained a more
comprehensive picture of the compound climate effects on eco-
system productivity, enabling a better understanding of the
underlying drivers and potential mechanisms by encompassing
water and energy variables. Of note, our identified possible sen-
sitive hotspots are instructive for ecological protection and carbon
emission reduction strategies worldwide.

We discovered a robustly increasing ecosystem sensitivity to
water, cloudiness, and temperature changes since 2001 (Fig. 2),
which was mainly attributed to water demand (i.e., vapor pres-
sure deficit) and modulated by CO2 concentration and solar
radiation changes (Supplementary Fig. 3). We indicated that
climatic factors greatly influenced vegetation sensitivity in three
main ways: by determining the water requirements, by regulating
photosynthesis and by supplying solar energy. Recognizing these
dominant processes greatly helps safeguard sensitive regions
under water limitations in the changing environment.

The increasing sensitivity to water availability in China facili-
tated vegetation greenness (Supplementary Fig. 2), which cooc-
curred in global vegetation resilience linked to water availability
and variability39. Sensitivity to cloudiness increased in most forests

Fig. 3 Relative importance of multiple factors controlling trends in ESI based on SHAP values. a Output of the random forest (RF) model. b Output of the
eXtreme Gradient Boosting (XGBoost) model. Abbreviations of influencing factors please see Methods. Changes of variables refer to the Kendall’s tau
coefficient.

Fig. 4 ESI trends grouped by vapor pressure deficit (VPD) trends, solar radiation (SOLAR) trends and carbon dioxide trends. a Colors indicate mean
values of trends in ESI, integrated by changes in VPD and carbon dioxide; the numbers of grid cells in each group are represented by the size of the “+”.
b Similar to (a) but grouped by VPD and SOLAR trends.
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and decreased in grasslands (Supplementary Fig. 2). The tem-
perature increased in 44.20% of China and decreased in 31.89% of
China (Supplementary Fig. 6). Our findings emphasized the
amplified, either degradative or facilitated, compound effects of
climate change on greenness over the last two decades. To better
anticipate carbon stocks in terrestrial ecosystems, dynamic vege-
tation modeling should consider changes in nonlinear feedback.

VPD substantially controlled the increasing trend of ESI by
offsetting the detrimental effects of the excessive CO2 con-
centration trend and solar radiation trend. The declining VPD
improved plant stomatal conductance and photosynthetic effi-
ciency, leading to gains in their biomes (Supplementary Fig. 6)40.
Numerous forests with adaptable stomatal closure strategies were
present where there displayed low vapor pressure deficit. The
woody vegetation of wetter habitats was more inclined to open
their stomata when atmospheric CO2 levels declined and
humidity increased41, which resulted in extensive exposure and a
high sensitivity to environmental changes (Fig. 4a). In pivotal
biographical zones, such as China’s Loess Plateau and the Qinling
Mountains, the change in vegetation sensitivity was highly sus-
ceptible to the SPEI and VPD42. The growth rate of sensitivity
increased with the slowing rate of VPD, implying that there will
be a factorial amplification of the moisture effect on vegetation
response mechanisms in the future, in accordance with the recent
observed increase in the vegetation water constraint of vegetation
growth7,43. Our results offer empirical evidence of an accelerated
ecosystem productivity adaptation regime under global warming
and urge specific water allocation and management efforts.

In addition, the ESI trend was greatly influenced by the con-
tinued increase in CO2. The positive ESI trend in Fig. 4a indicates
that an appropriate increase in atmospheric carbon dioxide can
increase vegetation sensitivity by increasing photosynthesis and
increasing leaf area44. However, we also found that a Kendall
trend of CO2 greater than or equal to 0.09 may reduce vegetation
sensitivity, implying a declining CO2 fertilization effect, perhaps
by reducing stomatal conductance and resulting in warming,
eventually altering precipitation regimes, more extreme weather
events and so on (Fig. 4a)45. Efficient photosynthesis may be
saturated if the CO2 concentration exceeds a certain threshold,
and long-term warming can even disrupt the stability of ecosys-
tems. Some recent work has indeed declared that the global CO2

fertilization impact decreased between 1982 and 2015, and CO2-
induced vegetation browning is projected to occur in future
decades46,47.

In this study, we observed a pronounced increase in vegetation
sensitivity to climate change in China (Fig. 2), as well as overall
greening since 2001 (Supplementary Fig. 5a). However, there may
inevitably be some biases in this study because we incorporated
multiple satellite-based and reanalysis outputs. We have endea-
vored to eliminate errors by calculating all the sensitivity indi-
cators from MODIS sensors and comparing hydrometeorological
data from different station observations and remote datasets.
Moreover, we tested the increasing sensitivity trend by using
different sliding time windows (from 7 to 13 years) to perform the
principal regression analysis and produced similar results
(Fig. 2a). To categorize sensitivity trends, we used boosting and
bagging algorithms together. The high accuracy and extremely
low mean squared error indicated the strong predictive power of
machine learning models in capturing the dynamics of vegetation
sensitivity (Supplementary Table 3). Moreover, ecosystem sensi-
tivity has broader response characteristics in addition to pre-
cipitation, temperature and solar radiation, such as ecosystem in
the face of pests and diseases48, or under extreme climate
events49. We should also apply system dynamic sciences and
causal diagnosis methods to digest the mechanisms of changes in
ecosystem sensitivity. Further in-depth work is still urgently

needed to quantitatively portray the direction and magnitude of
the ecosystem response to each climate factor in the light of the
trade-offs between water-energy limitations and ecosystem
functionings.

Conclusions
In summary, this study showed a broad increase in ESI over the
last two decades in China, which was primarily driven by
decreasing water demand (i.e., vapor pressure deficit) and
modulated by CO2 and solar radiation changes. These findings
demonstrated that woody plants with greater latent heat display
higher sensitivity to cloudiness than herbaceous plants, and
needle-leaved forests have the highest ESI due to their amplified
response to the available water. Our results were derived via
explainable machine learning, which goes beyond purely
correlation-based analyses by effectively isolating the influence of
diverse climatic and anthropogenic factors. Overall, the detected
increase in ESI reflects an enhanced ecosystem productivity
response regime to climate variations under global warming. By
identifying regions of strong and increasing ESI, our study
highlights hotspots where water constraints can have severe
impacts on vegetation growth and thus alter carbon-climate
feedback.

Methods
Study area. China comprises a rich variety of terrestrial ecosys-
tems from deserts and grasslands to forests, which share allocated
water-heat resources, thereby retaining the spatial structure and
functioning of ecosystems50. Chinese ecosystems are facing
increased threats from natural and anthropogenic disturbances.
In this study, human land use, including cropland areas, areas
with urban and crop/rainfed/natural vegetation mosaic, and
unvegetated areas, such as deserts, permanent snow, and ice cover
were masked. To reduce the impacts of classification error and
land cover change on ecosystem sensitivity, only stable pixels—
defined as areas with no change in the dominant land cover class
during 2001–2021 were considered. We also excluded areas with
flooded tree cover, fresh, saline or brackish water (Supplementary
Fig. 7). According to the Land Cover Classification System
(LCCS) developed by the United Nations (UN) Food and Agri-
culture Organization (FAO) (Supplementary Table 1)51, we
categorized the study area into eight dominant eco-climatic
zones: temperate desert, temperate grassland, cold temperate
coniferous forest, temperate mixed coniferous forest,
Qinghai–Tibet Plateau alpine vegetation, warm temperate
deciduous broad-leaved forest, subtropical broad-leaved ever-
green forest, tropical monsoon rainforest and tropical rainforest.

MODIS data. Considering that remote sensing has trade-offs
among temporal-spatial-spectral resolution, we retrieved four
monthly time series of key climatic and ecosystem variables that
covered the period of 2001–2021 from the Terra Moderate
Resolution Imaging Spectroradiometer (MODIS) sensors (Sup-
plementary Table 2). We used the monthly MOD13C2 Version
6.1 product, providing EVI values at a 0.05° resolution (https://
lpdaac.usgs.gov/products/mod13c2v061/). The EVI is an “opti-
mized” vegetation index with improved sensitivity over high
biomass regions and reduced atmospheric aerosol effects52. Water
availability, defined as the ratio of actual evapotranspiration to
potential evapotranspiration (ET/PET), was calculated using
Google Earth Engine from the 8-day composite MOD16A2
Version 6.1 dataset at a 500-m pixel resolution (https://lpdaac.
usgs.gov/products/mod16a2v061/)22. The original 8-day products
were mean-composited to monthly values, and then from
monthly to yearly values. To match water availability data with

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-01105-9 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:444 | https://doi.org/10.1038/s43247-023-01105-9 | www.nature.com/commsenv 5

https://lpdaac.usgs.gov/products/mod13c2v061/
https://lpdaac.usgs.gov/products/mod13c2v061/
https://lpdaac.usgs.gov/products/mod16a2v061/
https://lpdaac.usgs.gov/products/mod16a2v061/
www.nature.com/commsenv
www.nature.com/commsenv


EVI data, we resampled ET/PET to a resolution of 0.05° × 0.05°
using the nearest neighbor method. We employed the clear-sky
days from the MOD13C2 version 6.1 product to obtain a clou-
diness measure (the proportion of cloudy to clear-sky days)
(https://lpdaac.usgs.gov/products/mod13c2v061/)53. The tem-
perature was acquired from MOD13C254. These data were also
aggregated to a resolution of 0.05°.

Hydrometeorological data. We extracted gridded meteorological and
water balance variables during 2001–2021 from the TerraClimate
dataset (https://climatedataguide.ucar.edu/climate-data/terraclimate-
global-high-resolution-gridded-temperature-precipitation-and-other-
water), which is suitable for climate-impact analyses in ecological and
hydrological systems. Explanatory variables include precipitation,
potential evapotranspiration (Penman‒Monteith)55, shortwave solar
radiation, vapor pressure deficit and near surface soil moisture
(0~10 cm)56,57. These data were mean-composited from monthly to
yearly values and were aggregated to 0.05° using the nearest neighbor
resampling.

Vegetation continuous fields (VCF). The yearly percent tree cover
at 250-m grid cells was acquired from the MOD44B MODIS
Vegetation Continuous Fields dataset (https://ladsweb.modaps.
eosdis.nasa.gov/archive/allData/6/MOD44B/). VCF products give
a continuous, quantitative portrayal of land surface cover with
improved spatial detail and hence are widely used in environ-
mental modeling and monitoring applications58.

Aridity index (AI). We used meteorological data from the China
Meteorological Data Network (https://data.cma.cn/) to calculate
the AI, which was defined as the ratio of precipitation to potential
evapotranspiration59. Temperature and precipitation data were
obtained by spatial interpolation of relevant records at meteor-
ological stations from 2001 to 2021 using Anusplin software ver-
sion 4.460. Potential evapotranspiration was calculated based on the
Penman‒Monteith evapotranspiration equation61. We also com-
pared the calculated AI with the China Meteorological Data Net-
work from the TerraClimate datasets. According to the consistent
patterns of AI values, China was grouped into five aridity classes
(Supplementary Fig. 8a): (1) hyper-arid (HD, AI < 0.05), (2) arid
(AD, 0.05 ≤AI < 0.2), (3) semi-arid (SD, 0.2 ≤AI < 0.5), (4) dry
sub-humid (SH, 0.5 ≤AI < 0.65), and (5) humid regions (HM,
AI ≥ 0.65). HD regions were excluded from the analysis because of
the relatively low vegetation cover and data nonavailability.

Land cover types. Constant vegetation maps were downloaded
from the United Nations (UN) Food and Agriculture Organiza-
tion (FAO)51. In this work, we focused on tree cover, mosaic tree
cover, shrub cover, mosaic herbaceous cover, shrubland cover, and
grassland cover to investigate the vegetation response to climate
change. Combined with the distribution of climate zones in China
from a 1:1,000,000 vegetation map (https://www.resdc.cn), we
further divided China into eight biome zones (Supplementary
Fig. 8b): temperate desert zone (TDS); temperate grassland zone
(TGR); cold temperate coniferous forest zone (CCF); temperate
mixed coniferous forest zone (MCF); Qinghai–Tibet Plateau
alpine vegetation zone (QTP); warm temperate deciduous broad-
leaved forest zone (DBF); subtropical broad-leaved evergreen
forest zone (EBF); and tropical monsoon rainforest zone (TRF).

CO2 emissions data. We extracted monthly anthropogenic CO2

emissions from the CarbonTracker modeling system developed
by the National Oceanic and Atmospheric Administration
(NOAA) to keep track of sources (emissions to the atmosphere)
and sinks (removal from the atmosphere) of carbon dioxide
worldwide (https://gml.noaa.gov/ccgg/carbontracker/).

Population maps. The total number of people per grid cell was
collected from the statistics of the census and administrative units
of WorldPop (https://www.worldpop.org/) and the Center for
International Earth Science Information Network (CIESIN) in
~2010 and then extrapolated to other years. The improved spatial
demographic database was prepared for high-quality applied
research. We used yearly population density maps to examine the
continuous social pressure on ESI.

Ecosystem sensitivity to climate variability. We constructed a
flow chart (Supplementary Fig. 9) to illustrate the data pre-
processing and sensitivity analysis. ESI in this study was a proxy
of the sum of the response magnitude of vegetation to water
availability (the ratio of actual evapotranspiration to potential
evapotranspiration, WATER), cloudiness (the proportion of
cloudy to clear-sky days, SOLAR), and temperature (TMP). To
improve data comparability and accuracy, we performed zero-
mean normalization of the long-term MODIS datasets62 and
filtered out growing season months with mean EVI below 0.1 and
mean monthly temperature less than 0 °C. To reduce any impact
of collinearity between variables, we first implemented a principal
component analysis (PCA) on the data from all years, including
EVI, WATER, SOLAR, TMP and 1-month lagged EVI (EVIt−1).
We obtained the corresponding principal components (PCs).
Then, we calculated the sensitivity proxy according to Seddon22

by regressing PCs and established spatiotemporal patterns by
sliding 7-year blocks at the pixel level (2001–2007, 2002–2008,…,
2015–2021). The variance ratios between the ecosystem and each
principal climate component were used as proxies for ecosystem
sensitivity by Eq. (1):

RI ¼ logððclimate anomþ 1Þ=ðEVI anomþ 1ÞÞ ð1Þ
where climate_anom and EVI_anom referred to anomalies of
variables by subtracting long-term mean values of climatic factors
and EVI, respectively. Ecosystem sensitivity index is defined as
the log10-transformed ratio of climate variables and EVI (e.g.,
climate_anom, EVI_anom). Next, we quantified the relative
weights of climatic factors from the significant coefficients
(p < 0.05) of multiple regression of PCs (principal component
regression, PCR) using Eq. (2):

EVI ¼ α � PC1þ β � PC2þ γ � PC3 ð2Þ
where the slopes of different components α, β, and γ are the
corresponding climate weights of the three principal components
(PC1, PC2, and PC3). ESI was further modified by scaling the
ratios by climate weights, as evidenced by correctly reproducing
the response of the carbon cycle to essential local climate varia-
bility using Eq. (3):

ESI ¼ α � RI wuaþ β � RI cldþ γ � RI tmp ð3Þ
where RI wua, RI cld and RI tmp are the original sensitivity
index of ecosystem response to water availability, solar radiation
and temperature. ESI is the sum of the weighted vegetation
sensitivity to water, temperature and solar radiation (SI_tmp,
SI_wua, SI_cld). To verify the robustness, we also compared ESI
patterns against different time windows (W= 7, 9, 11, 13 years).
All the calculation was finished in R and MATLAB.

Changes in sensitivity. We assessed the trends of annual ESI for
the two-decade study period using Kendall τ ranging from −1 to
1, which is a ranked correlation coefficient with nonparametric
hypothesis testing63. A positive Kendall τ value indicates an
enhanced response of the ecosystem to environmental variables,
and vice versa. Kendall τ is a comparable and robust index owing
to temporal dependence and represents the changing rate of ESI.
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Drivers of changes in sensitivity. To estimate the relative
importance of various climatic and anthropogenic variables
(predictors) potentially driving long-term changes in ESI (targets),
we implemented both the bagging and boosting models in
machine learning5, which can isolate marginal contributions of
each predictor on the target variable64. The technical scheme in
Supplementary Fig. 10 shows the execution process of the two
algorithms. The RF model reduces variance by constructing
multiple mutually independent learners based on a bootstrap
aggregating strategy65. The XGBoost model also reduces bias by
constructing strong, interlinked evaluators based on a boosting
tree strategy66. For both models, we used RandomizedSearch to
evaluate the results for different combinations of hyperparameters
and thus determined the optimal parameters (for RF: number of
estimators: 2500, maximum features: 30%, random state: 42; for
XGBoost: training size: 30%, learning rate: 0.015, number of
estimators: 400, maximum depth of tree: 8, minimum value of loss
function: 0, sum of weights of the smallest leaf node samples: 10).
In particular, we applied the out-of-bag error (OOB error) to
measure the performance of the random forest and directly
modeled all the predictors and target variables67. For XGBoost, we
split the data into testing and training parts. To avoid overfitting,
we additionally performed fivefold cross-validation.

Moreover, we quantified the marginal contributions of
predictors to ESI trends in each model by employing the SHAP
method originating from the coalitional game theory68, which has
been widely used to reflect the influence of features in each sample
in explainable machine learning. All the processes were conducted
using the packages of “xgboost”, “RandomForestRegressor”,
“shap”, “sklearn.model_selection” and “sklearn.metrics” in Python
software (version: 3.8)69,70.

Climate changes are likely to have profound impacts on the
structure and functioning of Earth’s ecosystems. Here we selected
climatic factors related to water, heat, and energy to identify the
potential drivers of ecosystem sensitivity trends, including incoming
shortwave solar radiation (SOLAR), temperature (TMP), precipita-
tion (PRE)71, vapor pressure deficit (VPD) and soil moisture (SM)48,
potential evapotranspiration (PET)72, and aridity index (AI)73. The
elevated CO2 has been demonstrated to promote vegetation growth
and thus affects ecosystem structure and functioning74. We also
included the vegetation cover fraction (VCF) to provide the
information of vegetation structure. Additionally, we used popula-
tion (POP) as a proxy of human activities.

Data availability
All the data supporting the findings of this study can be downloaded from the following:
MODIS data: https://modis.gsfc.nasa.gov/data/dataprod/. TerraClimate data: https://
climatedataguide.ucar.edu/climate-data/terraclimate-global-high-resolution-gridded-
temperature-precipitation-and-other-water. Vegetation continuous fields: https://
ladsweb.modaps.eosdis.nasa.gov/archive/allData/6/MOD44B/. China Meteorological
Data: https://data.cma.cn/. Land cover classification gridded maps: https://cds.climate.
copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview. The distribution of
climate zones in China from a 1:1,000,000 vegetation map https://www.resdc.cn.
Anthropogenic CO2 emissions data: https://gml.noaa.gov/ccgg/carbontracker/.
Population density maps from WorldPop: https://www.worldpop.org/. The data that
support the figures of this study are available in “figshare” with the identifier https://
figshare.com/s/05943407d7f658eedd7f.

Code availability
All computer codes for the analysis of the data are available from the author on request.
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