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Spatiotemporal high-resolution mapping of
biological production in the Southern Ocean
Xianliang L. Pan1✉, Xiangxing Lai1, Ryosuke Makabe 2, Daisuke Hirano 2 & Yutaka W. Watanabe3

The Southern Ocean is considered to play an important role in the global biogeochemical

cycles of carbon and nutrients. It is still unclear how biological production there impacts

climate change owing to the remarkable gap between the current and the ideal state of

research. Here, we proposed a new concept of combining Neural Network based para-

meterization of dissolved inorganic carbon with Biogeochemical Argo floats, showing

simultaneously spatiotemporal distributions of net community production and resupply of

carbon from the deep ocean based on the dissolved inorganic carbon change. It indicated

a total net community production of 4.1 ± 0.3 Pg-C year−1 over the Southern Ocean,

which accounts for 45% of global annual oceanic carbon export and is 20% higher than

the previous estimates. Furthermore, net community production in the Southern Ocean has

decreased by 0.8% year−1 since the 2010s, indicating that it may be contributing as positive

feedback to global warming.
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Model simulations predict that the Southern Ocean (SO,
south of 30°S) accounts for more than 40% of the total
anthropogenic carbon dioxide (CO2) uptake into the

ocean, despite accounting for approximately 30% of the total
ocean surface area1. The SO is currently considered an important
region in the global biogeochemical cycles of carbon and nutri-
ents due to the formation of intermediate & deep water and the
sea ice carbon pump2–4. Most of it is recognized as one of the
largest high-nutrient low-chlorophyll (HNLC) regions with low
biological productivity despite nutrient abundance in the ocean5.
However, during the Last Glacial Maximum (LGM, ~25,000 years
ago), an increase in biological production due to the supply of
dust-derived iron in the SO may have reduced the atmospheric
CO2 concentration and contributed to global cooling, while the
opposite may have occurred during interglacial periods6.. Thus, it
is important to clarify the net community production (NCP) in
the SO for understanding the impact of ocean biological pro-
duction on the Earth climate system.

Recently, in the SO, accelerated mass loss of the Antarctic ice
sheet may have promoted ocean surface stratification, providing a
suitable environment for biological production7,8. The strength-
ening of ice sheet melting and calving of the Antarctic ice sheet may
bring iron and increase biological production in SO9. Biological
production in the SO may increase due to the combined effect of
enhanced stratification and increased iron input, and consequently
drawdown atmospheric CO2 concentration6,10. Therefore, to
understand the future climate change, it is also essential to elucidate
the spatiotemporal distribution of NCP in the SO, and anthro-
pogenic CO2 uptake in the ocean.

The ideal approach to estimate NCP is to (i) directly estimate the
uptake and remineralization of dissolved inorganic carbon (DIC) in
the ocean since the change in DIC is the most straightforward
result of biological production and (ii) estimate it throughout the
year since the uptake and remineralization of DIC are repeated on a
yearly cycle due to the revolution of the Earth2. On the other hand,
climate change has had a great impact on the marine environment
in recent decades1,2,7. Therefore, it is furthermore necessary to (iii)
clarify the change of NCP on a decadal scale to understand the
changes in ocean biological production and its impact on climate.
The existing mainstream approach for estimating the NCP is based
on satellite and shipboard observations. Satellite observations
estimate the detailed spatiotemporal distribution of biological
production from sea surface chlorophyll-a concentrations with a
constant carbon to chlorophyll-a ratio11,12. However, satellite-
based estimation of the NCP in the SO may be underestimated as
satellites can only observe a depth of a few meters from the sea
surface and cannot observe the subsurface chlorophyll-a maximum
at a depth of tens of meters in the SO13. The shipboard observation
of the NCP is based on methods that require stoichiometric ratios
that are assumed to be constant over the entire ocean termed as the
Redfield ratio14, including on-deck incubation oxygen15, nitrate
distribution time-series16, and the carbon isotope mass balance
method17. The advantage of shipboard observation is that it enables
us to observe the subsurface chlorophyll-a maximum and estimate
the NCP accurately18. However, there is a gap between the current
state of research and the ideal state. Regarding (i) direct estimation
of DIC, this is because of the lack of sensor technology for
DIC, which makes continuous spatiotemporal observation of DIC
difficult. Previous estimates of NCP have been based indirectly on
continuous DIC data obtained by combining sensor-measured
dissolved oxygen (DO) continuous data with a constant ratio of DO
to DIC. This ratio is known to vary widely with NCP and remi-
neralization, as well as with different values spatiotemporally. This
introduces great uncertainty into the current method of estimating
NCP. Furthermore, the severe climatic conditions and the impact
of sea ice coverage on CO2 outgassing in the SOmake accurate DIC

observation more difficult. Regarding (ii) estimation through a
year, the current situation in (i) makes it difficult to estimate
the NCP throughout the year, when the uptake and remineraliza-
tion periods are mixed because the ratio of DO to DIC for NCP
and remineralization are different. For (iii) long-term estimation
of NCP, it is currently difficult to estimate long-term NCP
over the entire SO because of the spatiotemporal sparseness of
observational data.

To break through the current situation, we attempted to utilize
the parameterization technique to expand the data required
to estimate the NCP and to reconstruct the DIC spatiotemporal
distribution to estimate the NCP in the SO without using the
stoichiometric ratio. Currently, several studies have been con-
ducted using neural network models to predict DIC in the ocean
and to estimate NCP from the predicted data19–22. However, these
neural network models are black boxes because they are difficult to
show as equations, and it is hard to reproduce their estimates.
Moreover, the selection of the input parameters in these previous
studies is subjective and there are covariances between parameters,
which brings uncertainties to these estimates. To overcome these
shortcomings of the neural network model, we first developed
a hybrid parameterization, which combines Multiple Linear
Regression (MLR) and Neural Network (NN), for predicting DIC
based on the high-accuracy hydrographic parameters of seawater
temperature (T), salinity (S), DO, and water pressure (Pr) from the
Global Ocean Data Analysis Project version 2 (GLODAPv2.2020)
dataset23 (see Method section “DIC Parameterization methods” for
details). We then applied the MLR-NN hybrid parameterization to
T, S, DO, and Pr measured by a large number of Biogeochemical
Argo floats (BGC-Argo), which has a continuous 10–14 days cycle
for approximately 6 years24. Based on the change in reconstructed
DIC above, we attempted to estimate the spatiotemporal high-
resolution distribution of NCP along with an upward supply of
remineralized carbon in the SO, wherein the seasonal decrease in
DIC in the ocean surface water column was defined as NCP and the
seasonal increase was defined as Restoration (RES) (see Method
section “Estimation of NCP and RES” for details).

Results and discussion
DIC reconstruction in the SO. As described above, to obtain a
spatiotemporal high-resolution distribution of DIC in the SO, it is
essential to develop a DIC parameterization that can reconstruct
the DIC concentration. We utilized our hybrid parameterization
of DIC from T, S, DO, and Pr based on a back-propagation neural
network model (see Fig. S2; also see Method section “DIC
Parameterization methods”).

We used BGC-Argo data to obtain large amounts of T, S, DO,
and Pr. Applying our hybrid parameterization of DIC to the T, S,
DO, and Prmeasured in 27,039 cycles of 154 BGC-Argos from 2004
to 2019, we obtained the spatiotemporal distribution of DIC over
the SO (see Method section “Data used in this study” for details).

NCP and RES mapping in the SO. We obtained the spatio-
temporal distributions of NCP and RES (upward supply of
remineralized DIC from the deep to surface ocean) for the first
time, encompassing the entire SO by combining the NN-based
parameterization of DIC with BGC-Argo data (Fig. 1; see Method
section “Estimation of NCP and RES” for details). We found that
NCP is higher in the western parts of all sectors ( > 4 mol C m-2

year-1, Fig. 1), including the western boundary of the Atlantic and
Indian Oceans, as the upwelling caused by westerly winds may
bring micronutrients such as iron from Patagonia, southern
Australia, New Zealand, and some islands located in the westside
of each sector to the surface ocean and fertilize the phytoplankton
blooms in the SO25–27. By extending the BGC-Argo data in Fig. 1
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to represent the entire SO (see Supplementary Note “3: Gridding of
NCP and RES data” for details), we found that over the SO, the
total NCP (tNCP, NCP multiplied by ocean surface area) reached
4.1 ± 0.3 Pg-C year-1 (remark: this value is equivalent to
341.2 ± 22.2 Tmol-C year-1; Tmol= 1012 mol), which accounts for
about 45% of the global ocean organic carbon export given by the
previous study (9.1 ± 0.2 Pg-C year-1)28, and the total Restoration
(tRES, RES multiplied by ocean surface area) reached 3.5 ± 0.2
Pg-C year-1 (293.2 ± 19.1 Tmol-C year-1) (Fig. 2, Fig. S6). The
uncertainties are estimated as 6.5% (see Supplementary Note “4:

Uncertainties of NCP, RES and CS” for details). The value of the
NCP over the SO from 2004 to 2019 was generally ~20% larger
than that of the NCPmodel simulations and primary production of
the SO13,29,30 (Table 1). This difference may be derived from the
consideration of subsurface chlorophyll-a maximum in our study
using critical depth as the NCP integral depth and the application
of DIC parameterization.

Contrastingly, the difference between tNCP and tRES (0.6 ± 0.3
Pg-C year-1; generally, it is termed as “Removal,” which in this
study, we also refer to as “carbon sink”(CS)) can be considered as

Fig. 1 Distribution of NCP (mol-C m-2 year-1) and RES (mol-C m-2 year-1) data of 154 BGC-Argo during 2004 – 2019. a Distribution of NCP.
b Distribution of RES. Color dots indicate the observed data points through the BGC-Argo trajectories. These figures were drawn using Ocean Data View49.

Fig. 2 Total NCP (tNCP, Tmol-C year−1) and total Restoration (tRES, Tmol-C year−1) for each front and sector in the SO. Blue and orange bars indicate
tNCP and tRES, respectively. Note that the unit of carbon is Tmol-C (= 0.012 Pg-C) in this figure. a Map of the SO is divided by the Subtropical (STF) and
the Polar Front (PF). b Map of the SO is divided into three sectors: the Indian, Pacific, and Atlantic. c tNCP and tRES in the south of PF (Region 1, which is
strongly affected by the sea ice7), the zone between PF and STF (Region 2), and the zone north of STF (Region 3) along with the entire SO. d tNCP and
tRES in the Indian (20° E –150° E), Pacific (150° E–60° W), and the Atlantic sector (60° W–20° E) along with the entire SO. The boxed numbers in the
upper parts of Figs. 2c and 2d and the gray bars indicate the amount of Carbon Sink (CS, tNCP minus tRES) (Tmol-C year-1). The tNCP and tRES were
341.2 ± 22.2 Tmol-C year-1 (4.1 ± 0.3 Pg-C year-1) and 293.2 ± 19.1 Tmol-C year-1 (3.5 ± 0.2 Pg year-1), respectively. The errors in c and d are 6.5%, while
the CS error was calculated by the propagation of the error between tNCP and tRES (see section “4: Uncertainties of NCP, RES and CS” in Supplementary
information for details).
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the amount of carbon transported into the ocean interior, and
this result is very close to the estimation of CO2 net ocean uptake
based on the atmospheric transport model in the SO south of
30°S, 0.53 ± 0.23 Pg-C year-1 31. Our estimate of CS in the SO
accounts for a maximum of approximately 75% of the carbon
sink in the global ocean (0.8 Pg-C year-1)32, which may be caused
by the transportation of water masses into the ocean interior,
including Antarctic Intermediate (AAIW) and sub-Antarctic
Mode Water (SAMW) in the SO33.

Regional characteristics of NCP and RES in the SO. To char-
acterize the NCP at the Polar Front zones and the basin scales, we
divided the SO into three front zones34 and three ocean sectors as
follows: Region 1, the zone south of the polar front (PF); Region
2, the zone between the PF and the Subtropical Front (STF);
Region 3, the zone north of the STF; Indian sector: 20–150°E;
Pacific sector: 150°E–60°W; Atlantic sector: 60°W–20°E (Fig. 2).
Higher tNCP was found in Region 2 due to the confluence of
nutrient-rich sub-Antarctic waters with nutrient-poor subtropical
waters and the mixing of cold and warm currents causing the
seawater to mix up and down, interacting with westerly wind
augmentation leading to sufficient nutrients30. Similarly, there is a
great amount of CS in Regions 2 and 3 (the area north of the PF),
which may also be due to AAIW and SAMW bringing a large
amount of carbon to the ocean interior33,35. Conversely, despite
having more nutrients than the other regions, Region 1 had a
much lower CS (Fig. 2c). This may be due to the lower biological
pumping activity caused by the longer ice cover period and iron
limitation at high latitudes36,37. As for each ocean sector, the
Pacific has the highest tNCP, followed by the Indian, and the
Atlantic has the lowest tNCP (Fig. 2d). However, the ranking of
the three ocean sectors was reversed in terms of tNCP per unit
area (Table 2). Despite the Atlantic Sector having the smallest
area, there was a wide area with higher NCP ( > 4 mol-C m−2

year−1) of all the ocean sectors, extending along the South
American continent coast (Fig. 1 & Fig. S6), resulting in a larger

tNCP per unit area in the Atlantic Sector (Table 2). This is
probably due to the supply of iron and other nutrients from the
South American continent26 and upwelling due to the Atlantic
meridional overturning circulation2.

To verify the accuracy of the NCP and RES gridding, we also
computed tNCP and tRES for each sector and the entire SO by
multiplying the NCP and RES average unit area by the ocean area
(Table 2). We found that these values are essentially the same as
the tNCP and tRES calculated by gridding (Fig. 2c, d), which
proves the reliability of the tNCP and tRES obtained by gridding
for the entire SO (Fig. S6).

Comparing our result with a previous study38 about the
meridional distribution of NCP in the SO despite only in the
Indian sector, we found that the value of NCP in our study is in
the same order as that in the previous study (Fig. S7). However,
the previous study shows higher NCP in the low-latitude regions
and no NCP in the high-latitude regions, which contrasts with the
almost constant meridional NCP distribution in our study. The
NCP in the previous study was derived from averaging
approximately one-week observations in each season, with the
observations concentrated in the Indian sector. In contrast, our
results are derived from Argo’s year-round observations, and are
distributed over the entire SO. Considering the full-year NCP for
the entire SO, our results may be more convincing.

Temporal variabilities of NCP and RES in the SO. To reveal the
variations in the NCP of the SO over the past decades, we plotted
the time series of the 3 years running mean of the NCP and RES
in the SO from 2008 to 2017 (Fig. 3a). Since the BGC-Argo data
before 2008 are not sufficient to cover the Southern Ocean, we
have used only the data after 2008 to obtain more representative
estimates of trends. Over the mid-SO (between 45°S and 60°S),
which is controlled by strong westerlies and characterized by
nutrient-rich deep water upwelling and intermediate water for-
mation, we found a significant decrease of ~0.8% per year in the
NCP and no significant trend in RES from 2008 to 2017 (Fig. 3a).

Table 1 Comparison of tNCP between this study and the previous studies.

References Method Period Location tNCP (Pg-C year-1)

This study Neural network-based parameterization and BGC-Argo 2004–2019 South of 30˚S 4.1 ± 0.3
Arteaga et al. (2018) Carbon export efficiency models and satellite observation* 2005–2016 South of 30˚S 2.7 ± 0.6 ***
Arrigo et al. (2008) Primary production from satellite observation* 1997–2006 South of 50˚S 1.9 ± 0.1 ****
Li et al. (2021) VGPM, BGC-Argo and NCP model* 1997–2020 South of 35˚S 3.91 ± 0.16
Chang et al. (2014) Neural network-based self-organizing map (SOM)* 1998–2009 South of 30˚S 3.5
Johnson et al. (2017) Annual nitrate drawdown measured by BGC-Argo 2009–2016 South of 50˚S 1.3

* Satellite data-based method.
** The average tNCP of the previous studies in this table is 2.9 ± 1.2 Pg-C year-1, and our estimate is about 20% larger than the average value of the previous studies.
*** Estimation of net primary production (NPP).
**** Estimation of gross primary production (GPP).

Table 2 Comparison of the regional amount of NCP and RES in each sector of the SO. The uncertainties in these estimations are
6.5%.

Region Location Ocean surface area
(1012m2)

a NCP (mol-C m-2

year-1)

b RES (mol-C m-2

year-1)

c tNCP’ (Tmol-C
year-1)

d tRES’ (Tmol-C
year-1)

SO South of 30˚S 110 3.1 ± 0.2 2.7 ± 0.2 341 ± 22 297 ± 22
Indian sector 20˚E– 150˚E 37 2.9 ± 0.2 2.7 ± 0.2 107 ± 7 100 ± 7
Pacific sector 150˚E– 60˚W 47 2.9 ± 0.2 2.5 ± 0.2 136 ± 9 118 ± 9
Atlantic sector 60˚W– 20˚E 26 3.6 ± 0.2 3.0 ± 0.2 93 ± 5 78 ± 5

a NCP of unit area.
b RES of unit area.
c total NCP in each region, calculated by NCP of unit area multiplied by ocean surface area.
d total RES in each region, calculated by RES of unit area multiplied by ocean surface area.
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This decreasing trend in the NCP is opposite to the increasing
trend during LGM6. During the LGM, the drying of the air due to
global cooling and the northward shift of westerlies in the
southern hemisphere transported terrestrial-derived dust into the
ocean, leading to iron fertilization and an increase in marine
biological production in the SO, which resulted in the drawdown
of atmospheric CO2 by approximately 80 ppm lower than the
modern preindustrial average6. Conversely, modern SO is pre-
dominantly affected by global warming and the southward shift
of the westerlies, leading to accelerated melting of glaciers in the
coastal region with a shallower mixed layer and limited upwelling
of nutrients, which consequently causes a decreasing trend in
biological production in the mid SO6,7,39.

On the other hand, iron released from the melting sea ice may
have broader impacts on the biological production in the SO40, and
temporal variability of ice extent may affect the NCP in the SO
widely. We compared the time series of NCP between 45°S and
60°S and the time series of February and September sea ice extents
for the Southern Hemisphere41, although the ice extent does not
reach this latitude range. There were correlations between sea ice
extent and NCP in the SO (Fig. 3c), suggesting that the decrease in
sea ice extent causes seawater environment changes, including
ocean freshening, intensified ocean stratification, and reduction in
iron supply from sea ice, which could potentially result in changes
in the biology of the phytoplankton community and reduce
biological production efficiency39. Contrastingly, the correlation
between RES and sea ice extent during September is because during
the winter season, the mixing layer is deeper throughout the SO42,
and deep winter mixing caused a large amount of DIC to upwell
from the ocean interior, consequently leading to a weak correlation
of RES with the Southern Hemisphere sea ice extent in the SO.
Therefore, the significant decrease of 0.8% per year in the NCP in
the mid-SO may be caused by feedback to the westerly southward

shift and stronger ocean stratification7. RES demonstrated no
significant trend from 2008 to 2017. The new finding of a declining
trend in NCPs in this study could indicate a reduction in CS as an
anthropogenic carbon sink in the ocean, potentially accelerating
future global warming and consequently altering the ocean
biogeochemical cycle. As a caveat in estimating the time series, it
should be noted that the NCP and RES trends may contain several
decadal oscillations43. Therefore, long-term and more extensive
observations over several decades using BGC-Argo will be required
in the future to determine the significance of this trend.

Our new concept in this study first constructed an MLR-NN
hybrid parameterization for DIC in the SO and gave a simultaneous
estimate of the spatiotemporal distributions of NCP, RES, and CS
over the SO based on BGC-Argo observations, without relying on
an idealized stoichiometry ratio. Furthermore, with the develop-
ment of BGC-Argo in the global ocean, our method can be applied
to the rest of the global ocean, leading to a deeper and better
understanding of biological production and the change in the
carbon budget under climate change in the global ocean now and in
the future.

Methods
Data used in this study. The BGC-Argo data (T, S, DO, and Pr)
used for constructing the spatiotemporal high-resolution map-
ping of DIC were sourced from the Japan Agency for Marine-
Earth Science and Technology (JAMSTEC) Argo website (http://
www.jamstec.go.jp/ARGO/argo_web/argo/) of the SO (south of
30° S) from 2004 to 2019. Information on BGC-Argo, wherein we
utilized the data, is depicted in Fig. S3 and Table S1.

Due to the BGC-Argo DO sensor drift, it was essential to
correct the BGC-Argo DO data to the high-accuracy shipboard
DO observational data. We utilized the monthly World Ocean
Atlas 2018 (WOA18)44 dataset as the high-accuracy shipboard

Fig. 3 Time-series of NCP, RES, and sea ice extent in the SO. a Time-series of averaged NCP and RES (mol-Cm-2 year-1) over the mid-SO from 2008 to
2017; NCP and RES are depicted in 3 years running mean. Data used to estimate the time series are depicted in Fig. S4. b Interannual variation of sea ice
extents in September and February (1012 m2) for the southern hemisphere from 2007 to 2019 from Parkinson [2019]41. c Correlation between sea ice
extent and NCP, RES in the SO from 2008 to 2018. The horizontal axes depict sea ice extent for the month corresponding to NCP and RES period. Note that
the sea ice extent data in February is shifted one year to the previous year. In a, c, the line and the shaded area represent the linear relationship between the
variables and the 95% confidence interval, respectively. The error bars indicate one standard deviation. However, because of the spatial bias of data for
each year, especially in the coastal regions, the error may be larger. Note: In the previous study based on the neural network model and Argo floats
(2015–2020)21, the trend of NCP south of 35˚S of about -0.1% year-1 was estimated by the assumption that the average DIC was 2100 μmol year-1 in the
mixed layer and the DIC was totally consumed by NCP. However, this neural network model is a black box because they are difficult to show as equations,
and it is hard to reproduce their estimate. Moreover, the selection of the input parameters in this previous study is subjective and there are covariances
between parameters, which brings uncertainties to these estimates.
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DO and S observational data to compare with BGC-Argo DO and
S data at depths below the mixed layer (the mixed layer depth is
estimated when the temperature gradient from the surface
exceeds 0.5 °C)45 to 2000 m. We used the latitude and longitude
of each BGC-Argo measurement cycle to determine WOA18 DO
and S data at the corresponding location (latitude and longitude ±
0.5°) to determine a linear relationship. As a result, the linear
relationship between WOA18 and S in BGC-Argo had a
coefficient of determination of 0.99 or higher, thus verifying that
it was not required to correct S for this BGC-Argo. For this BGC-
Argo, if the coefficient of determination of DO was greater than
0.8 between WOA18 and BGC-Argo, we corrected the DO based
on the linear relationship with the WOA18 DO data to use it for
DIC estimation. Additionally, if the BGC-Argo measurement
period was less than two years, we did not use it because of the
difficulty in obtaining the annual periodicity of DIC. We obtained
154 valid BGC-Argo data with the above steps and then
standardized it according to the WOA18 data depth levels (see
Supplementary Note “1: Data standardization” for details).

In addition, there is a further point that must be considered.
The increase in anthropogenic CO2 leads to a decrease in
atmospheric oxygen concentration (maximum of 4 ppm year-1)46,
leading to a possible temporal difference between the WOA18
and BGC-Argo DO data. Thus, it is necessary to check the effect
of anthropogenic CO2 on the DO in the ocean. The WOA18 DO
data are climatological data based on observations from 1955 to
2017 (the median year is 1986), and the BGC-Argo data used
were from 2004 to 2019 (the median year was 2013). The 27-year
difference in the period between the WOA18 and BGC-Argo data
used here (2013–1986= 27) resulted in a decrease in atmospheric
oxygen concentration of 108 ppm, equivalent to 0.05% of the
current atmospheric oxygen concentration ( ~ 209,000 ppm).
Oxygen solubility is higher when temperatures and salinity are
lower. To estimate the maximum effect of anthropogenic CO2 on
the DO, we assumed a water temperature of –1.8 °C (around the
freezing temperature of seawater) and salinity of 34 (near the
Antarctica coast) in the SO, this reduction in the atmospheric
oxygen concentration would lead to a decrease of 0.2 μmol kg-1

(0.05%) of the maximum saturated oxygen concentration of
370 μmol kg-1. However, the precision of the GLODAPv2.2020
DO data used in our construction of DIC parameterization
is ~1%23, which would lead to an error of approximately
4 μmol kg-1 for the maximum saturated oxygen concentration.
Therefore, the reduction in the maximum saturated oxygen
concentration caused by the reduction in oxygen concentration
during the 27-year difference in the period between the WOA18
and BGC-Argo data could be neglected when compared to the
error in the GLODAPv2 DO data.

DIC Parameterization methods. As biological productivity in
the SO consumes DIC in seawater, we can treat this consumed
DIC during the production period as NCP. We first constructed
DIC parameterization for the SO as follows:

We used an MLR-NN hybrid method to construct the DIC
parameterization (Fig. S1a). The MLR method is a useful approach
used to estimate the SO DIC7. As the MLR method relies strongly
on linear relationships with parameters to estimate DIC, it is
suitable for DIC estimation in the ocean interior where the
environment is relatively stable. However, it is difficult for the MLR
method to estimate DIC in many locations in the surface mixed
layer where biological and physical processes are complex, and the
linear relationships are difficult to maintain. Therefore, using the
MLR method to reconstruct the DIC of the surface mixed layer
constraints must be imposed on the parameters7,47 (Table S2).
Contrastingly, the NNmethod can provide extensive DIC estimates

without considering the constraints (see Supplementary Note “2:
Introduction of DIC parameterization methods” for details).
However, it is difficult for the NN method to evaluate the
covariance between each input parameter. To evaluate whether
each parameter could be applied to DIC parameterization, we first
constructed an MLR parameterization for DIC (Fig. S2a),
considered parameters with an F-value (an index used in linear
regression to test the significance of parameter) greater than 2.4 as
significant, and verified the presence of multicollinearity between
each parameter using the variance inflation factor (VIF)7. As a
result, we obtained valid parameters including T, S, and Pr to reflect
physical processes and apparent oxygen utilization (AOU) to
reflect biological processes, where AOU is calculated from DO and
saturated DO concentration48. Next, using the NN method (the
back-propagation neural network model) with CTD-bottle data of
T, S, DO, and Pr since 2000 from the GLODAPv2.2020 dataset
(Fig. S2b), we constructed NN-based parameterization of DIC over
the SO (see Equation S2 for details). When comparing the root
mean square error (RMSE) between the MLR and MLR-NN
methods, although the MLR-NN method RMSE is slightly larger
than that of the MLR method (Fig. S2), the back-propagation
model of the NN model can effectively reconstruct the DIC over
the SO, including the surface mixed layer. This MLR-NN hybrid
parameterization can be used to reconstruct DIC in terms of T, S,
DO, and Pr from 0m to the deepest depth (~2000m) measurable
by BGC-Argo. Around Antarctica, the predicted DIC derived from
BGC-Argo data were in great agreement with the GLODAP DIC
observations within the RMSE of our parameterization (Fig. S8).
Using the amount of DIC decrease during the production period,
we can quantify the amount of NCP from the SO (see the next
section, “Estimation of NCP and RES” for details).

Estimations of NCP and RES. To obtain the NCP and RES by
applying MLR-NN hybrid DIC parameterization to the BGC-Argo
data, we set standard depth levels (5, 10, 20, 30, 40, 50, 60, 70, 80,
90, 100, 125, 150, 175, and 200m; see Supplementary Note “1: Data
standardization” for details), and obtained spatiotemporal high-
resolution distribution of DIC at each depth over the SO.

In this study, to obtain the NCP and RES in the water column,
we first utilized the seawater temperature (T) at 30 m depth as a
benchmark to delineate the production and restoration period
(production period: the period from the annual minimum DIC
(DICmin) to the annual maximum DIC (DICmax); restoration
period: the period from DICmax to DICmin)11. NCP in each
standard layer is defined as the decrease from DICmax to DICmin,
and RES in each standard layer is defined as the increase from
DICmin to DICmax. We computed the DIC variation for each
standard depth level during the Production and Restoration
periods. We then integrated the total DIC variation within the
water column during the Production and Restoration periods.
The NCP integration depth level is determined by the critical
depth, where the amount of DIC variation is zero, defined as the
depth at which the integrated phytoplankton production balances
the integrated destruction in the surface mixed layer rather than
the mixed layer depth used in previous studies13,30 (see the
schematic in Figs. S5 and S9). For RES, the integration depth level
was the same as that of the NCP. Note that the NCP and RES
estimated in this study are defined by the net change in DIC in
each period and may be apparent values. As the BGC-Argo
cannot move autonomously and the flow motion is almost the
same as that of seawater (Lagrangian motion), we assume that
the data collected by the same BGC-Argo are approximately in
the same water column.

Our method can account for NCP at the SCM that are
unobservable to satellites, which leads to potentially more significant
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tNCP values in our study than in previous studies13,29,30,48 (see
Table 1). However, we may not be able to obtain hydrographic data
(T, S, DO, and Pr) from BGC-Argo for the Antarctic continental
coast and areas where BGC-Argo has not floated due to the
bathymetry of the SO coast and sea ice limitations24. Here, we use
the Weight Average algorithm to expand the NCP and restore these
regions using Ocean Data View49. To generate a spatiotemporal
high-resolution distribution of NCP and RES in the SO, all
reconstructed NCP and RES data were extended to a common
1° × 1° latitude-longitude grid south of 30°S (see Supplementary
Note “3: Gridding of NCP and RES data” for details). However,
compared with in situ NCP observations30,39,48, the weighted
average algorithm in this study may have uncertainty along the
Antarctic coast because of the inability to measure some regions of
high biological production along the Antarctic coast due to the
measurement limitations of BGC-Argo.

Data availability
The GLODAP dataset used to construct DIC parameterization was sourced from https://
glodap.info/. The BGC-Argo dataset was sourced from the Japan Agency for Marine-
Earth Science and Technology (JAMSTEC) Argo website (http://www.jamstec.go.jp/
ARGO/argo_web/argo/). The WOA dataset used to correct the Argo DO was sourced
from https://www.ncei.noaa.gov/products/world-ocean-atlas. Predicted DIC and NCP,
RES estimations data of this study can be downloaded from https://doi.org/10.6084/m9.
figshare.24311710.v1.

Code availability
The parameterizations in this study were constructed by using JMP13 software (https://
www.jmp.com/en_gb/home.html).
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