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Steady global surface warming from 1973 to 2022
but increased warming rate after 1990
B. H. Samset 1✉, C. Zhou 2, J. S. Fuglestvedt 1, M. T. Lund 1, J. Marotzke 3,4 & M. D. Zelinka 5

The change in global mean surface temperature is a crucial and broadly used indicator of the

evolution of climate change. Any decadal scale changes in warming rate are however

obfuscated by internal variability. Here we show that the surface temperature increase

through the recent La Nina influenced years (2022) is consistent with the 50-year trend of

0.18 °C/decade. We use an Earth System Model based tool to filter out modulations to the

warming rate by sea-surface temperature patterns and find consistent warming rates in four

major global temperature data series. However, we also find clear indications, in all obser-

vational series, of a step-up in warming rate since around 1990. CMIP6 models generally do

not capture this observed combination of long-term warming rate and recent increase.

https://doi.org/10.1038/s43247-023-01061-4 OPEN

1 CICERO Center for International Climate Research, Oslo, Norway. 2 Nanjing University, Nanjing, China. 3Max Planck Institute for Meteorology,
Hamburg, Germany. 4 Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany. 5 Lawrence Livermore National
Laboratory, Livermore, CA, USA. ✉email: b.h.samset@cicero.oslo.no

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:400 | https://doi.org/10.1038/s43247-023-01061-4 | www.nature.com/commsenv 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-01061-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-01061-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-01061-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-01061-4&domain=pdf
http://orcid.org/0000-0001-8013-1833
http://orcid.org/0000-0001-8013-1833
http://orcid.org/0000-0001-8013-1833
http://orcid.org/0000-0001-8013-1833
http://orcid.org/0000-0001-8013-1833
http://orcid.org/0000-0003-1489-5143
http://orcid.org/0000-0003-1489-5143
http://orcid.org/0000-0003-1489-5143
http://orcid.org/0000-0003-1489-5143
http://orcid.org/0000-0003-1489-5143
http://orcid.org/0000-0001-6140-8374
http://orcid.org/0000-0001-6140-8374
http://orcid.org/0000-0001-6140-8374
http://orcid.org/0000-0001-6140-8374
http://orcid.org/0000-0001-6140-8374
http://orcid.org/0000-0001-9911-4160
http://orcid.org/0000-0001-9911-4160
http://orcid.org/0000-0001-9911-4160
http://orcid.org/0000-0001-9911-4160
http://orcid.org/0000-0001-9911-4160
http://orcid.org/0000-0001-9857-9900
http://orcid.org/0000-0001-9857-9900
http://orcid.org/0000-0001-9857-9900
http://orcid.org/0000-0001-9857-9900
http://orcid.org/0000-0001-9857-9900
http://orcid.org/0000-0002-6570-5445
http://orcid.org/0000-0002-6570-5445
http://orcid.org/0000-0002-6570-5445
http://orcid.org/0000-0002-6570-5445
http://orcid.org/0000-0002-6570-5445
mailto:b.h.samset@cicero.oslo.no
www.nature.com/commsenv
www.nature.com/commsenv


The major agencies tracking global surface temperature
anomalies (GSTA) rank 2022 as the 5–6th warmest on
record1–3. That global warming continues is clear4, and

apparent in the markedly strengthening impacts felt around the
world5. Satellites and ocean data also document a strengthening
uptake of energy in the Earth system, related to an increasing
imbalance between incoming solar radiation and energy re-
emitted to space6,7. The recent rate of global mean surface
warming—a crucial measure for tracking the progress of climate
change and the effects of future mitigation efforts—is however
less clear8,9. Primarily, this is due to the influence of internal
variability on year-to-year temperature anomalies. 2022 saw
strong, prevailing La Nina conditions in the Pacific, which is
known to cool the surface, globally, by up to several tenths of a
degree Celsius on annual mean. The same was true for 2021, and
parts of 2020; an uncommonly long period of cool conditions in
the Pacific. This leads to an expectation of observed GSTA values
below the full anthropogenic warming since 1850–1900, and an
apparent short-term slowdown in the rate of surface warming.

Concurrently, the rate of change, and balance between compo-
nents of, anthropogenic radiative forcing is also changing4.
Atmospheric concentrations of CH4 have increased strongly in the
recent decade, while the increase in anthropogenic CO2 emissions,
the primary driver of warming, has slowed to ~1%/year, relative to
~3%/year in the period 1990–201010. Emissions of SO2, precursor
of cooling sulfate aerosols, have decreased strongly over the last
decade, largely due to strong Chinese efforts to combat air
pollution11. Because of the rapid and potentially non-linear influ-
ence of aerosol emission changes on surface temperatures8, and the
remaining uncertainty on the total anthropogenic aerosol forcing of
the climate12, the near-term GSTA evolution can provide a crucial
test of the strength of the aerosol-climate interaction. Tracking the
rate of change of global surface temperatures is therefore crucial, on
both short and long time scales.

Recently, we published a method for filtering out parts of the
influence of sea-surface temperature (SST) patterns on the

observed global mean surface temperature anomaly13. Briefly, a
model-based transfer function is used to relate an SST fluctuation
in one location to a global mean effect. This function is in turn
applied to the realized, detrended SST pattern for a given month
or year, to arrive at a total influence on the GSTA from all ocean
areas, which can subsequently be filtered out (Methods). This
reduction of the influence of internal variability is an advantage
over simple running means, since it includes a physical
mechanism linking the SSTs to the GSTA. It is also distinct from
common multi-regression approaches that primarily use an
ENSO index to quantify ocean variability14, and from formal
detection and attribution techniques as it does not rely on forcing
estimates and dedicated simulations.

Applying the method to the HadCRUT5 data series, we found
that for the (then) last 50 years (1971–2020), global warming had
progressed at an overall rate of 0.19 °C/decade13. Here, we update
this analysis to include the La Nina influenced years of 2021 and
2022, and show how internal variability has recently affected
seasonal and annual global mean temperatures. We then use the
method to revisit observed and modelled changes in the rate of
global mean surface warming over the last 50-, 20- and 10-year
periods.

Results
50-year warming rates. In Fig. 1, we present a breakdown of the
SST influence on the GSTA in HadCRUT5, from 1850 and
through the last calendar year, including an in-depth look at the
last 10 years. The warming influence of the 2016 El Niño is clearly
visible, as is the La Niña influence on 2021 and 2022. The annual
mean SST related influence on 2021, in our method was found to
be −0.09 °C. 2022 was also influenced by the La Nina conditions,
but to a lesser degree; we find a cooling of −0.04 °C. For com-
parison, the El Nino influence in 2016 was +0.16 °C. In all, this
places 2022 directly on the latest 50-year (1973–2022) trend,
which remains at 0.19 ± 0.01 °C/decade. The error is the 5–95%

Fig. 1 Steady course for global surface warming for 50 years. All panels show global, annual mean surface temperature anomalies from the HadCRUT5
data series, raw (red) and SST influence filtered via a model derived transfer function (black). The upper and lower insets show, respectively, the full data
series since 1850, and the latest 10 years. Anomalies are taken relative to 1850–1899.
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confidence interval of the 50-year regression, using the Had-
CRUT5 ensemble mean.

We also performed the same analysis for three other gridded
surface air temperature data products. For the GISTEMP v4,
NOAA v5.1 and Berkeley Earth (BEST) surface temperature, we
find 50-year warming rates of 0.19, 0.18 and 0.17 °C/decade,
respectively. See Table 1. The mean, filtered warming rate of the
four series is 0.18 ± 0.01 °C/decade. For recent individual years, all
four series give similar results after filtering (see Supplementary
Methods 1 and Supplementary Figs. 1–3).

An interesting feature of the filtering method is that it allows us
to extract the pattern of ocean temperature influence on the
GSTA through a given year. Firstly, we note that the detrended
seasonal surface temperature anomalies from HadCRUT5 capture
a range of weather events known from news reports of extreme
conditions (Supplementary Fig. 4). 2021 began with a cold spell
over northern Eurasia, driven by a collapse of the polar vortex,
while SSTs are dominated by a very cold Central and Eastern
Pacific. This had a strong cooling influence on global surface
temperatures in Spring of 2021, albeit counteracted somewhat by
a warm fluctuation in the Western Pacific. For 2022, the well
documented spring and summer heatwaves in Europe and Asia
are apparent, as is a Pacific La Nina pattern that persists through
the year. However, other ocean regions had concurrent warm
conditions, notably the North Pacific and the Southern Ocean,
which counteracted some of the Pacific cooling. An ocean surface
hot spot in the Southern Atlantic also contributed to a warmer
GSTA toward the end of 2022.

Broadly, we find that anthropogenic global warming is still on a
steady course, with recent years tracking near the expectation
from the linear 50-year rate (Fig. 1). However, there have been
recent discussions, both in the scientific literature14,15 and in the
public debate, about the possibility of a higher recent rate-of-
change of global surface temperature. The increase in Ocean Heat
Content (OHC) is also likely to have been accelerating over the
last 50 years16,17, which raises the question of whether this change
is also reflected in GSTA values.

Warming rate increases since 1990. Table 1 shows warming rates
also for the most recent 20- and 10-year periods. After filtering,

these are indeed consistently higher than the 50-year average,
consistent with recent literature4. In Fig. 2, we investigate this
further using filtered data series, updated through 2022, and per-
form a comparison to CMIP6. Panel a shows filtered GSTA values
for the four major data series, with a common, recent baseline
(1973–2022). For HadCRUT5, we also show 20-year linear fits at
the start and end of the 50-year period. Panel b shows how the
regression coefficient of the 20-year fits (in °C/decade) changes with
time, for unfiltered and filtered data. Both show an overall increase,
as previously documented15, but the filtered data have a markedly
stronger signal-to-noise ratio, of about 1, compared to 0.5 for
unfiltered data. A linear regression gives a warming rate increase of
0.012 °C/decade/decade, with a 5–95% confidence interval of
[0.008, 0.017]. We also note that the time evolution, with a step-up
in rates after 1990, is qualitatively similar to what is found when
performing a similar, 20-year sliding window trend analysis on
NOAA Ocean Heat Content observations (Supplementary Fig 5).

We now redo this analysis for window lengths of 10–30 years,
to see if there is any dependence of the rate increase on the
chosen window. Panel c shows the resulting regression coeffi-
cients. For all trend windows longer than about 20 years, we find
a consistent rate increase for the filtered data. The 5–95%
confidence intervals (error bars) also decrease markedly with the
length of the fit window, and is strongly reduced by the filtering
procedure. The raw data also show an increasing warming rate,
but with greater uncertainty and with stronger influence of
annual-to-decadal scale internal variability. We also note that the
raw data consistently shows a stronger rate increase than the
filtered data, indicating differences in the amount of warming
filtered through the time period. While the reasons for this
require further investigation, it may be due to a systematic shift in
SST patterns over the period of study.

Again, similar results are found for the other data series, albeit
with different values for rate increases. The GISTEMP, NOAA
and BEST surface temperature series yield filtered (20-year
window) warming rate increases of 0.022, 0.023 and 0.008 °C/
decade/decade, respectively. The mean, filtered warming rate
increase of the four series is 0.016 °C/decade/decade. See Table 1,
which also shows confidence intervals and unfiltered values. We
note that, after filtering, the observational data series are fully
consistent in their 50-year warming rates, but inconsistent in
their rate increases. This is possibly due to differences in
treatment of areas with low observational density, or to
differences in their SST data series which map onto the
corrections applied by our transfer function.

While we do find a consistent increase in warming rate over
the last 50 years, we find no evidence of an “acceleration” of
global surface warming in recent years, in the sense of a
continuous rate increase. Rather, the strongest increase in rates
seems to have occurred as a step-up around the middle of the 50-
year period, with a levelling off in later years. This is similar to
what is found for OHC (Supplementary Fig 5).

Comparisons to CMIP6. Expectations for near-term warming
trends typically come from modelling exercises like CMIP6, using
a set of pathways for future emissions and greenhouse gas con-
centrations. To evaluate any changes in trend, it is therefore of
relevance to know if the current model ensemble captures the
observed evolution. In Fig. 2 panel d, we compare the 50-year
warming rates and rate increases to those from an ensemble of
119 Earth System Model simulations, provided as part of CMIP6
and using historical emissions until 2014, and a Shared Socio-
economic Pathway (SSP5–8.5) thereafter. Note that the results are
insensitive to the choice of a high or low emission pathway
(SSP5–8.5 or SSP1–2.6), as we only extend to 2022 where

Table 1 Global mean surface warming rates for the recent
50-, 20- and 10-year periods, and rate changes calculated
using 20-year intervals.

Data
series

Filtered

Warming rate [°C/decade] Rate change

1973–2022 2003–2022 2013–2022 [°C/decade/
decade]

HadCRUT5 0.19 ± 0.01 0.21 ± 0.03 0.23 ± 0.08 0.012 ± 0.004
GISTEMP 0.19 ± 0.01 0.23 ± 0.03 0.26 ± 0.06 0.022 ± 0.004
NOAA 0.18 ± 0.01 0.22 ± 0.03 0.25 ± 0.06 0.025 ± 0.003
BEST 0.17 ± 0.01 0.20 ± 0.03 0.24 ± 0.07 0.008 ± 0.003

Unfiltered

Warming rate [°C/decade] Rate change

1973–2022 2003–2022 2013–2022 [°C/decade/
decade]

HadCRUT5 0.19 ± 0.02 0.21 ± 0.07 0.15 ± 0.25 0.017 ± 0.009
GISTEMP 0.19 ± 0.02 0.22 ± 0.07 0.20 ± 0.26 0.027 ± 0.009
NOAA 0.18 ± 0.02 0.22 ± 0.07 0.17 ± 0.25 0.030 ± 0.009
BEST 0.17 ± 0.02 0.20 ± 0.07 0.17 ± 0.24 0.012 ± 0.010

Numbers are given for filtered and raw global surface temperature anomaly time series.
Uncertainties are 5–95% confidence intervals for a linear regression.
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emissions only differ moderately between SSPs. All simulations
have been filtered using the transfer function, as for the obser-
vations. We show one ensemble member per model, except for
three selected models (CanESM5, MPI-ESM1-2-LR and ACCESS-
ESM1-5) where we include multiple members to provide an
indication of the effects of internal variability. Firstly, virtually all
CMIP6 simulations have higher 50-year warming rates than the
observations. This result has been discussed in previous literature
and is likely due to a combination of high equilibrium climate
sensitivities in some CMIP6 models18, and that the realized SST
patterns are not well captured by the model ensemble, notably in
the Pacific19,20. We also find a tendency for more rapidly
warming models to have a higher rate change over the 50-year
period (Fig. 2). These models are generally characterized by
higher Equilibrium Climate Sensitivities (ECS) and Transient
Climate Responses (TCR; see Supplementary Methods 2 and
Supplementary Fig 6). This is particularly clear for the three large
ensembles included, which come from models with ECS values
ranging from 3.0 °C to 5.6 °C. The observations are notable in
that they have higher rate changes than all models of comparable
mean warming rates, and generally lie at the upper end of the
CMIP6 mean rate change (0.007 °C/decade/decade, calculated
using one ensemble member per model). Hence, when looking at
warming rate and rate increase in combination, the observations
sit well outside the CMIP6 model ensemble. Identifying possible
reasons for this requires a broader analysis with other tools than
used here, but they may include the poor representation of Pacific
SSTs19, influences of aerosol forcing21, and/or the broader climate
response to the 1991 eruption of Mt. Pinatubo22.

Discussion
Returning to the near-term evolution of global mean surface
temperatures, tracking the global and seasonal evolution of the
GSTA for the coming years will clearly give important informa-
tion on the condition and evolution of the climate system. Firstly,
El Nino conditions are projected to develop in late 2023, and last
well into 2024. While the strength of the El Nino event is not yet
known, when combined with the ongoing rates of change, it can
be expected to yield record high GSTA values in 2024. In addi-
tion, however, there are still crucial uncertainties remaining about
the response of the climate system to continued anthropogenic
forcing. One key question is the historical balance between
warming from greenhouse gases, notably CO2 and methane, and
cooling from aerosols, notably sulfate23. While there is a wide
spread in possible future aerosol emissions in the Shared Socio-
economic Pathways generally used by the climate modelling
community24, most scenarios in which emissions are reduced in
line with the aims of the Paris Agreement also include strong
reductions in aerosol emissions25. The possibility of a very strong
aerosol radiative forcing has still not been ruled out. If this is the
case, the warming effects aerosol mitigation could rapidly man-
ifest in a change in the rate of global warming.

We therefore advocate for additional attention to, and efforts
in tracking, the evolution of the global surface temperature
anomaly, when filtered for influence of internal variability. Our
conclusion is that global warming continued at a steady rate
through 2022, consistent with both longer term 50-year warming
rates, and more recent, higher rates. Also, CMIP6 models gen-
erally do not reproduce the observed combination of mean

Fig. 2 The rate of global surface warming has been elevated since around 1990. a Filtered global surface temperature anomalies for four data series,
relative to a common baseline. Dashed lines show 20-year linear regressions for HadCRUT5. b Time evolution of rate-of-change of 20-year regressions for
HadCRUT5. Open circles show unfiltered data, closed circles show filtered data. The dotted line shows the 50-year warming rate, the yellow box shows the
5–95% confidence interval of the 50-year regression. The dashed line is a linear regression, showing the increase in warming rate over the 50-year period.
c Warming rate increase (the regression coefficient from the fit in b), as function of the length of the fit window, for HadCRUT5. The dotted line shows the
20-year window from b. Error bars are 5–95% confidence intervals from the regression. Open circles and dashed lines (offset for clarity) show unfiltered
data. d 50-year filtered warming rates (y-axis) vs the increase in rate over this period, for four data series (colored circles) and 119 CMIP6 simulations
(dots). For CMIP6, the colors indicate the Equilibrium Climate Sensitivity (ECS). Diamonds and triangles show members from three Large Ensembles
(CanESM5, ACCESS-ESM1–5, MPI-ESM1-2-LR).
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warming rates since 1973, and the recent rate increases, which is
concerning for impact studies and climate risk assessments based
on these ensembles of simulations. We caution, however, that our
conclusions are based on a tool from one model only (Methods),
and only take into account sea-surface temperature fluctuations.
More sophisticated analyses are possible, using multiple models
and also taking into account a wider range of factors such as
stratospheric temperatures, volcanic eruptions and the hetero-
geneous pattern of anthropogenic aerosol emissions, to provide
both the scientific community and policy makers with accurate
information on the evolution of climate risks over the coming
years and decades.

Methods
Datasets. The primary dataset used in this study is the Had-
CRUT5 gridded dataset of global historical surface temperature
anomalies, version 5.0.1.01. We used monthly data for the period
January 1850–December 2022.

We also used three other gridded surface temperature data
products, on monthly resolution, from their start dates and
through December 2022: The GISS Surface Temperature Analysis
version 4 (GISTEMP v4)2,26, NOAA Global Surface Temperature
Dataset (NOAAGlobalTemp) Version 5.1 (updated July 2023),
and Berkeley Earth (April 2023 update)27.

Trend removal. The pattern of monthly internal temperature
variability is isolated from the long-term influence of anthro-
pogenic warming via a boxcar smoothing with a 10-year window,
applied at each grid point of the input dataset, relative to a
1850–1900 baseline. This removes the underlying global mean
temperature increase, geographical patterns of global warming,
and any seasonal differences. Near the endpoints, where there is
insufficient data for the 10-year mean, we ensure consistent
weighting by mirroring the data points. This was shown in
Samset et al. 202213 to have a negligible impact on the overall
results, including trend estimates, even for the end years of the
series. Note, however, that our chosen method will not remove
decadal scale variability in regional temperature patterns.

Green’s functions. The analysis performed is identical to that
documented and used in Samset et al. 202213, see that publication
for a more thorough writeup and various sensitivity tests and
consistency checks. Briefly, we use a Green’s Function (GF) cal-
culated with the CESM1.2.1-CAM5.3 Earth System Model,
monthly resolved and taking 40-year simulations with fixed sea-
surface temperatures as input28,29. A GF, in our usage, relates an
idealized increase in sea-surface temperature at a given location,
to resulting influences on radiation, clouds, water vapor and,
ultimately, global mean surface temperature, and allows us to
calculate the modulation of global mean surface temperatures
resulting from a given pattern of SST variability. It is based on
simulations where the SST was individually perturbed in 74
(partially overlapping) ocean patches of 80° longitude and 40°
latitude. We use 2-meter surface air temperature to quantify the
modulations.

GSTA modulations are calculated by multiplying the Green’s
Function for that month with the detrended SST pattern from
HadCRUT5. The total modulation is the sum of the contributions
from all ocean-dominated grid points. For this calculation, monthly
temperature fields from HadCRUT5 and GISTEMP have been
regridded to the GF resolution (2.5° latitude, 1.9° longitude).

Climate model data analysis. Climate model simulations shown
in Fig. 2 were analyzed identically to the surface data series,

including filtering using the Green’s Function. All simulations
used were provided for the ScenarioMIP30 CMIP6 Endorsed
MIP31, and made available to the community through the Earth
System Grid Federation (ESGF). We made use of 250-year
transient simulations using the CMIP6 historical (1850–2014)
and Shared Socioeconomic Pathway (SSP) (2015–2100) emission
datasets. Two SSPs were used (SSP1–2.6, SSP5–8.5), to extend the
historical data through 2027. (The main analysis runs through
2022, but we use subsequent data so as to avoid the need for
mirroring the endpoints). The results of Fig. 2 are insensitive to
the choice of SSP (SSP5–8.5, SSP3–7.0, SSP2–4.5, SSP1–2.6). Only
monthly mean temperature data (Global Surface Air Temperature
at 2 meters) was used. See Supplementary Methods 1 for a list of
the 33 individual models and 119 ensemble members used.

Data availability
The processes time series used for the figures in this manuscript, and the underlying
analysis, are published on figshare (https://doi.org/10.6084/m9.figshare.24236434)32.

The CESM1 Green’s Function is documented and made available at https://github.
com/mzelinka/greens-function (https://doi.org/10.5281/zenodo.5514146).

Surface temperature datasets are publicly available from these websites (accessed on
11.05.2023): https://www.metoffice.gov.uk/hadobs/hadcrut5/, https://data.giss.nasa.gov/
gistemp/, https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.
ncdc:C01585, https://berkeleyearth.org/data/.

All climate model simulations used in this paper are publicly available through the
ESGF (e.g., https://esgf-node.llnl.gov/projects/cmip6/).

NOAA Ocean Heat Content is available from https://www.ncei.noaa.gov/access/
global-ocean-heat-content/

CMIP6 model ECS and TCR values are available in the Supplementary Information of
IPCC AR6 WG1 Chapter 716.
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