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Dataset on the adoption of historical technologies
informs the scale-up of emerging carbon dioxide
removal measures
Gregory Nemet 1✉, Jenna Greene 1, Finn Müller-Hansen 2 & Jan C. Minx 2,3

A variety of agricultural, industrial, and consumer technologies have been adopted over the

past century and can provide insight into the scale-up of emerging technologies, such as

carbon removal. Here we present the Historical Adoption of Technology dataset—a set of

harmonized global annual time series from the early 20th century to present. We use three

growth metrics to compare historical growth to that of carbon removal in emissions scenarios

and future targets. We find heterogeneity in growth rates in the diffusion of historical

technologies, ranging from 1.1 to 14.3% (median 6.2%) for our preferred growth metric based

on a logistic function. Most emissions scenarios show growth within this range (median

5.9%, range 1 to >100%). Company announcements and policy targets imply faster growth

than both historical technologies and carbon removal in emissions scenarios. Further work

can explain the heterogeneity and facilitate more precise comparisons.
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Over the past century, a wide variety of new technologies
have been invented, passed through a formative phase,
and grown to widespread adoption. Many have had

profound effects on society. They span uses from medicine to
agriculture to transportation, and exhibit diversity in function
and adoption environments among other attributes. Amidst this
heterogeneity, case studies of these technologies have generated
stylized facts in the innovation literature that provide under-
standing, even in an environment inherently associated with
discovery, novelty, and uncertainty. For example, we know that
technology adoption is a process that takes time, even when
attributes of a new technology surpass those of incumbent
technologies1. And we know why; capital stock is long-lived,
adopters are risk averse, early versions are imperfect, applications
need to be found, and often complementary infrastructure needs
to be developed2. Heterogeneity in attitudes towards these
issues generates a sequence of adoption decisions, which in
aggregate emerges as a classic s-curve pattern, defined by a
logistic function3,4. Still, how quickly adoption occurs varies and
is of high interest for novel technologies that could help address
climate change because of the urgency of the required transition5.
In this paper, we study a large set of these technologies to gain
insight into the prospects for a class of emerging technologies to
address climate change, carbon dioxide removal (CDR). This
paper thus addresses the broad research questions: How quickly
do CDR technologies need to grow to meet future CDR targets
and climate scenarios? How realistic are those rates of growth
compared to the historical empirical record on the scale up of
analogous technologies?

The CDR scale up challenge is indeed daunting. The IPCC
Sixth Assessment Report (AR6) finds that the world will need to
remove hundreds of gigatons of CO2 to meet the Paris Agree-
ment targets5–7. Paris compatible scenarios include several giga-
tons of carbon dioxide removal annually by mid-century8, with a
large range depending on the level of ambition for other miti-
gation options and long-term temperature goals7. A recent study
of 507 AR6 scenarios found that “virtually all scenarios that limit
warming to 1.5 °C or 2 °C require novel CDR, such as bioenergy
with carbon capture and storage (BECCS), biochar, direct air
capture (DAC), and enhanced rock weathering”9.

CDR involves a variety of capture methods and storage media,
including afforestation, soil carbon management, bioenergy with
carbon capture and storage, direct air capture, enhanced weath-
ering, and ocean alkalization, among others. Many if not all of
these could plausibly contribute >1 gigaton of CO2 removal per
year by 205010. Given the challenges with build-out and sus-
tainability risks at scale11, portfolios of multiple CDR methods are
likely to provide the most robust solutions12. Aside from land-
based CDR like afforestation, current adoption levels of novel
CDR are trivial9 and the implied scale up of nascent CDR tech-
nologies like DAC, BECCS, and biochar seems ambitious, and to
some unrealistic.

Models of CDR scale up have thus imposed constraints citing
historical benchmarks13. For example, in some cases they apply
limits, such as limiting DAC growth to 20% per year14 or
assuming that growth rates decline once storage capacity reaches a
threshold15. The sensitivity of results to these assumptions pro-
vides motivation for establishing an empirical basis for how scale
up is modeled. Recent literature on this has progressed from
measuring growth from an individual technology in one country14

to two technologies (wind and solar) across multiple countries16 to
eleven technologies over 80 years17. The study of wind and solar
made particular progress in also determining how best to measure
growth using a variety of functional forms and metrics16, while the
11 technology study made an important distinction between
growth in the early formative phase18 and later growth17.

More broadly, case studies of previous technologies have pro-
ven helpful for arriving at insights for future technologies19. For
example, a detailed history of the drivers of change in solar
photovoltaics has been used to indicate how low-temperature
direct air capture could grow20. In another study, a projected
scale up of high-temperature direct air capture is based on the
development of ammonia synthesis21. Useful technology analo-
gues benefit from methodological development to structure the
process of selecting historical case studies to strengthen their
relevance to target innovations. This methodology depends on in-
depth historical analysis to identify a set of relevant matching
characteristics that can be used to identify the best analogue for
comparisons22. Among the factors that affect how quickly tech-
nologies grow is the unit-scale of a technology; detailed empirical
work has found that small unit scale, or granular, technologies are
adopted more quickly and fall in costs more rapidly than large-
scale technologies23–25. We thus assess growth in technologies
with the awareness that some historical technologies will be better
analogues for CDR than others, and that granularity, among
other technology characteristics26, will be important in explaining
the variation in historical growth. Our approach is thus to analyze
a wide array of technologies to understand general trends in
historic technology growth.

Using analogous technologies to inform CDR scale up requires
developing metrics of technology adoption that are consistent
across a diverse set of technologies. We need to assess: at what
rates have historical technologies been adopted? how quickly do
CDR technologies grow in Paris-compatible emissions scenarios?
and what growth rates are implied in government, company, and
industry targets for CDR? Answering these questions involves
assembling consistent time series for a variety of data types such
that they are comparable with each other. We assemble time
series on four types of data, which we describe further in the
Methods section: (1) an historical data set of the cumulative
adoption of 148 unique technologies across 11 categories, (2) data
on 1979 CDR technology time series in integrated assessment
model scenarios from the IPCC 6th Assessment Report (AR6), (3)
company announcements of CDR scale up plans, and (4) CDR
targets in policy announcements and Nationally Determined
Contributions (NDCs) under the Paris Agreement. We make all
these data publicly available. The historical technologies are now
available on-line as the Historical Adoption of TeCHnology
(HATCH) dataset; the AR6 scenarios are available at the Scenario
Explorer website27; and the company and government targets are
available as part of recently launched State of CDR Report9. We
then calculate multiple growth rates for each time series using
nine measurements across multiple functional forms (see Meth-
ods section and Supplementary Fig. 4) and arrive at three metrics,
on which we focus: (A) logistic coefficient, (B) linear around
inflection point, (C) formative phase exponential (Fig. 1). We
obtain these by fitting logistic curves to the historical data and
extract relevant coefficients from the fitted curve as our growth
rates. This allows us to use technologies from the second half of
the twentieth century, rather than only earlier ones for which an
inflection point has already been reached. We aim to include a
broad set of technologies and observe a wide range of adoption
rates, with the caveat that we do not observe technologies that are
not commercially adopted28. A few CDR technologies have not
yet seen commercial adoption and thus could fit into this non-
deployment category.

Seminal studies of new techniques in agriculture found that
adopters can be grouped by their propensity to use a new
technology29. Their behavioral patterns follow a normal dis-
tribution of a small group of early adopters, a similarly small
number of laggards, and in between, the majority3. In aggregate
their behavior is characterized by rapid initial growth as early
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adopters take on the risk of a new commercial technology, fol-
lowed by a slower but larger population of majority adopters who
act once the technology is de-risked, and finally laggards who
eventually embrace the technology as growth slows and reaches
market saturation4. This adoption behavior recurs across a variety
of technology and adoption contexts30 and when assessed
cumulatively generates a logistic curve, with its signature s-curve
shape31. A logistic function is defined by three parameters, which
represent: the inflection point around which the curve is sym-
metrical, the asymptote, and the steepness of the curve, which we
use as our first metric and interpret as indicative of a growth rate
(Panel A in Fig. 1).

A second metric using the logistic function provides a more
intuitive assessment of growth by focusing on the steepest section,
the period when the most amount of adoption occurs. A recent
paper on solar and wind growth assessed growth around the
inflection point with the parameter G, the maximum amount of
market share added annually, which in a logistic function occurs
at the inflection point16. This metric works well for clearly
defined markets such as those for electricity. But because we are
using a much broader set of technologies, not all of which are
straightforward substitutes for others, we need to arrive at a more
general formulation of growth at the inflection point. For
example, a clear market does not exist for road miles built,
materials mined, or even e-bikes used. We thus normalize each
technology to the inflection point and measure the linear growth
over the five years before and five years after the inflection point.
This provides a more generally applicable formulation than G and
provides a more intuitive comparison to other growth rates than
does simply using the coefficient defining the logistic function
(Panel B in Fig. 1). For these reasons, we use this metric as our
primary metric of technology adoption.

Third, because scale up of CDR in the early years of its
development is of particular interest to policymakers, we include
a separate look at each time series’ formative phase18,32. Using the
assumption that early adopters represent the 2-sigma left tail of a
normal distribution of adopters, the formative phase includes the
period from first commercialization to 2.5% of eventual satura-
tion. Early growth is important to the eventual technology
adoption levels for CDR, however this metric is sensitive to data
at the beginning of the time series33, so we focus on it separately
from later growth and include it as an additional metric (Panel C
in Fig. 1).

In summary, we found heterogeneity in growth rates for these
data, ranging from 1.1 to 14.3% (median 6.2%) for our preferred
growth metric based on a logistic function. Most emissions sce-
narios showed growth within this range (median 5.9%, range 1 to
>100%). The growth of both historical technologies and carbon
removal in emissions scenarios is lower than growth implied in
company announcements and policy targets.

Results
Patterns of growth rates in the data. The 148 unique technol-
ogies in the dataset exhibit a wide range of growth rates (Fig. 2
and Supplementary Table 8). Using the primary metric B. linear
around inflection), we find a median growth rate of 6% and
1–14% for the min-max range. The logistic coefficient A provides
a higher median (13%) as does C the formative phase exponential
(13%). The min-max range of growth rates measured by linear
around inflection is smaller than that of the logistic coefficient
(0–69%) and the formative phase (1–36%). Beyond the min-max
ranges, we observe plenty of dispersion across all three metrics
prompting interest in what factors might be affecting rates. We
provide an initial glimpse by assessing growth across technology

Fig. 1 Metrics to assess the growth of technology adoption. Panels show: (A) logistic coefficient, (B) linear around inflection point, (C) formative phase
exponential. We use metric B as our primary metric of technology adoption.

Fig. 2 Historical technology adoption growth rates for 148 technologies across three metrics. Box edges show the inter-quartile range, line in box
indicates median, dashed lines extend from the interquartile range to the nonoutlier minimum or maximum, and plus signs indicate outliers. If errors
occurred in function fitting to calculate the growth rate, the estimates were not included in this figure. All box plots in this paper use the same percentiles
for display.
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categories (Fig. 3 and Supplementary Table 9). Median and
ranges vary by technology category. Storage technologies and
digitalization technologies have the two highest median growth
rates by category whereas infrastructure and materials have the
lowest.

We also see large dispersion across scenario-technology pairs
from the AR6 scenarios, again measuring growth across the three
metrics, with a focus on B, linear around inflection (Fig. 4).
Within these data, 1024 scenarios included BECCS, 248 included
DAC, and 707 included land-use based CDR. The median growth
rate B was highest for DAC at 7%, followed by BECCS at 6% and
land use at 4%. DAC has the largest dispersion; for growth
around the inflection point DAC has the largest range (120%),
followed by land use (80%), and BECCS (47%). The policy
category (as indicated by temperature target) only has a small
impact on growth rates in scenarios, with more ambitious climate
targets leading on average to higher scale up rates. Model
specification has a much larger influence; the ranges and median
values differ strongly across model families (Fig. 5) and we also
observe that many model families have not yet implemented all

CDR options. While BECCS is available in all major IAMs, land-
use options are not, and DAC is only available in a minority of
models.

We combine announcements of CDR deployment targets by
companies, with deployment potentials of each technology34 to
calculate the same growth rates, A, B, and C described above. We
measure growth of company targets in three ways. The first way is
dividing companies by technology type and then adding each
company’s targets to create a time series of cumulative targets
(shown in Fig. 6). We then calculate each of the three growth
metrics (A, B, and C) for each technology and find the growth
around the inflection point of 13% for BECCS, 19% for biochar,
and 17% for DAC. The second method is to measure each
individual growth rate of the company targets using an
exponential growth rate. We use the IEA 2020 levels as a base
and the company announcements as the end point, resulting in a
dataset of one growth rate per company. The last method is to
create a time series of cumulative targets but not subdivided by
technology type. We can then measure growth through the three
growth metrics (A, B, and C). These data are sparser than the

Fig. 3 Historical technology adoption by technology categories. Growth
metric is B: linear around inflection point. Categories sorted by median
growth rate (largest on right). Box edges show the inter-quartile range, line
in box indicates median, dashed lines extend from the interquartile range to
the nonoutlier minimum or maximum, and plus signs indicate outliers.

Fig. 4 Growth rates from IAM scenarios for linear around inflection point
for three CDR technologies and four categories of temperature targets.
Box plots are grouped by temperature targets and each point shows the
growth rate around the inflection point for an integrated assessment model
scenario. Blue points show estimates for BECCS, orange points show
estimates for DAC, and green points show estimates for land use CDR. The
horizontal gray line shows the median growth rate of historical
technologies.

Fig. 5 Growth rates from IAM scenarios for linear around inflection point
for three CDR technologies and ten model families. Each point shows the
growth rate around the inflection point for a scenario in each integrated
assessment model family. Blue points show estimates for BECCS, orange
points show estimates for DAC, and green points show estimates for land
use CDR. The horizontal gray line shows the median growth rate of
historical technologies.

Fig. 6 Company announcements for DAC, Biochar, and BECCS
deployment. Square points show built capacity, circle points show
announced capacity from companies, and the line connecting each point
extends from 2020 capacity to 2030 targets52. The shaded area represents
the sociotechnical and economic potentials for these methods in 2050.
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historical data and thus we would expect large uncertainty in
fitting, although that the data are spread over multiple decades
mitigates this concern and provides an implicit view on growth
expectations from a company perspective. In doing this we are
aligned with recent work35, although we are more cautious in
avoiding imposing our own assumptions about future growth.

Countries and regions have set targets for carbon removal
through policies, plans, and nationally determined contributions
to the UNFCCC Paris Agreement. These goals include natural
carbon removal solutions such as afforestation and soil carbon
sequestration and to a lesser extent engineered carbon removal
solutions such as direct air capture. As we did for companies, we
calculate exponential growth rates from the starting capacity to
the targeted amount and find a range from 0.2% to 152% with a
median growth rate of 41%. The growth rates implied by country
goals and NDCs vary by the carbon dioxide removal methods.
Median growth rates for afforestation (11%) are much lower than
for engineered carbon dioxide removal methods (66%), in part
because of much higher existing base of removals for afforesta-
tion. In addition, afforestation targets mainly come from NDCs
for the Paris Agreement, which could be interpreted as more
binding than the small number of non-land-based CDR targets
we found.

Comparing growth rates across data types. Using consistent
definitions of growth that perform across diverse data types
enables comparisons to address the question of how future
growth compares to that of the past (Fig. 7). As a first compar-
ison, we find that median growth for historical technology
adoption is 6.2% and for AR6 scenarios is 5.9% using the linear
growth around inflection. In aggregate, CDR growth in IAM
scenarios modeling climate stabilization is similar to that aver-
aged across a wide range of non-CDR technologies in HATCH.
The interquartile ranges are also similar: 3–9% vs. 4–9%. Further,
we find that companies when pooled have a higher growth (19%)
rate than both historical and scenarios. Because they consist of
individual data points and are not suitable to pooling, we do not
calculate logistic growth for policies. The median exponential
growth rate for policies is 40%, which is below that of company

announcements (70%). We note that the company and policy
data are distinct from the historical and scenario data because the
former pair are not globally aggregated as the latter are; it is not
clear if national data would bias growth upwards. It is possible
that the higher rates for companies and policies reflect leader
actors.

To assess the robustness of findings to alternative growth
metrics, we compare growth rates across several growth metrics.
The order of the growth rate speed compared between historical
technologies, IAM scenarios, and company announcements does
not change by measuring growth through our three main metrics:
measuring growth at the formative phase, inflection point, and
logistic growth through the whole time series (Fig. 8 and
Supplementary Table 10). Historical data and IAM scenarios are
slowest; the fastest growth is from companies. Further growth rate
comparisons are provided in Supplementary Table 11.

Understanding the drivers of this variation is crucial to being
able to precisely use historical data to characterize scenarios, and
targets. One can see already that the categorization of historical
technologies explained above, shows quite distinct medians. Some
of these categories are particularly valuable classifications because
they display much lower dispersion than the pooled data. For
example, infrastructure, materials, energy, and hardware all show
narrower distributions than the pooled data. On the other hand,
food, health, storage, and digitalization have wide distributions
implying that other characteristics need to be accounted for to
assess how they can be used to inform novel technologies.
Variation of growth rates from IAM scenarios can also be partly
attributed to model specification as shown by the stark difference
in growth rates between model families and to some extent
climate target stringency. However, they are potentially also
influenced by other factors such as availability and cost of other
mitigation technologies. Further analyses are needed to better
understand how these factors influence variation in scale up rates,
both using large datasets26 as well as deep case studies36.

Our work to date in understanding this large observed
heterogeneity in growth rates leads us to a few conclusions on
promising directions identifying factors that explain dispersion in
growth. First, the literature indicates that a broad set of possible

Fig. 7 Comparison of growth around the inflection point of historical technologies, AR6 scenarios, CDR company announcements, and CDR
policy goals. Panel (A) compares growth around the inflection point across historical technologies and AR6 scenarios, with medians indicated for company
announcements. Circle points show each growth metric for historical technologies and scenarios, and diamond point shows the linear growth around the
inflection point for CDR companies, when combined. Panel (B) shows exponential growth rates for company and government targets. Box edges show the
inter-quartile range, line in box indicates median, dashed lines extend from the interquartile range to the nonoutlier minimum or maximum, and plus signs
indicate outliers.
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explanatory factors might play a role, including granularity,
policy, vintage, adoption phase, material intensity, design
complexity, customization, lifetime, and types of adopters.
Characterizing each of these factors for each technology is a
substantial data collection project. Second, initial descriptive
analyses can be helpful in assessing such factors, even if
insufficient for attribution. As examples, we provide two
illustrations in Supplementary Figure 5 and Supplementary
Figure 6 showing how vintage and type of adopter correlate with
growth rates. Third, a multiple regression framework will
ultimately be needed to avoid omitted variable bias and spurious
correlation. That depends on comprehensive data collection and
dealing with collinearity. In practice, identification will likely
require a variety of robustness checks to arrive at conclusions
about causal factors. Large data sets will be helpful as will national
rather than global data, both of which we aim to develop in a
future iteration of the HATCH dataset. We are optimistic that a
strong effort on data collection combined with an analytical
framework that prioritizes robustness of results across specifica-
tion can help identify the factors that contribute to the large
heterogeneity in growth rates we observe.

Discussion
These comparisons of large distinct data sets generated four main
insights. First, median historical technology growth is similar to
that in AR6 scenarios, albeit with wide dispersion. We see evi-
dence from the scale up of over one hundred historical technol-
ogies in HATCH that the required scale up of carbon removal
technologies fits within the historical range of previous efforts.
Although there is large heterogeneity in the data requiring further
assessment of drivers of variation to make dispositive compar-
isons. Clearly there are reasons, such as lack of policy support,
that CDR technologies might grow more slowly than historical
technologies.

Second, company announcements, as well as government tar-
gets imply much faster growth than the historical record and
compared to AR6 scenarios. These data are sparse, so they are
treated differently to enable comparisons; we pool them to use the
same growth around inflection metric, and we use exponential
growth to assess targets involving a single future value compared
to the current level. Either way these targets imply much faster

growth. One explanation is that at least some of these targets are
focused on novel CDR which will be growing from a very small
base. A second explanation is that although these goals seem
ambitious, they are consistent with gigatons of removal by mid-
century for a 1.5 C net zero. Companies and governments are
aiming well beyond the central tendency of the historical range.

Third, our main conclusion—that historical growth and sce-
narios are similar, but that company and policy targets are much
higher—is robust across three distinct specifications of our
growth metric. We find the same results when we assess growth
in a variety of ways, using different functional forms and asses-
sing different time periods of growth, which results in different
growth estimates.

Fourth, there is wide dispersion across all data sets. For
example, all interquartile ranges overlap. This spread of the data
implies that understanding what drives the dispersion in growth
rates will be important in determining how one can use the
empirical record to calibrate the potential for growth in future
oriented analyses like scenarios, literature, as well as company
and policy goals. Further refining the comparison will include
matching specific historical technologies to types of CDR using
technology characteristics. This will illuminate technologies that
may be analogous to different CDR methods22.

The number and diversity of technologies in the historical data
set means there are a range of plausible analogues for each CDR
technology. Our aim is that this historical technology data set
provides a basis for further studies on technology adoption to
inform the scale up of nascent technologies. This rich and
expanding data set is now available on-line as the Historical
Adoption of TeCHnology (HATCH) dataset. Assembling and
analyzing a large data set of technologies provides insight19 that
reliance on a smaller number of comparisons does not.

For the application of CDR, we see strong potential in work
characterizing factors that affect dispersion in growth rates. For
example, the technology categories seem to explain some of the
variation in that their medians are different and there appears to
be a rise in medians when ordered by decreasing unit scale. We
also would consider granularity, which we presume is partially
collinear with our technology categories, spatial scale, and
material intensity, for which digitalization would be lowest.
Model simulations of the effects of these factors as well as of the

Fig. 8 Comparing historical technologies, AR6 scenarios, company announcements, and government targets to one another and across growth
metrics. Diamonds show the growth rates for companies: the point furthest to the left is the logistic growth rate, the middle is the linear growth around the
inflection point, and the furthest right is the exponential growth in the formative phase. Box edges show the inter-quartile range, line in box indicates
median, dashed lines extend from the interquartile range to the nonoutlier minimum or maximum, and plus signs indicate outliers.

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-01056-1

6 COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:397 | https://doi.org/10.1038/s43247-023-01056-1 | www.nature.com/commsenv

www.nature.com/commsenv


dispersion in the data themselves can also provide indications of
the importance (or potential the lack of importance) of how
growth is calibrated and constrained in models to inform the role
of CDR in climate change mitigation.

Methods
Data. We assemble the Historical Adoption of TeCHnology
(HATCH) dataset to assess growth rates of historical technolo-
gies. We build upon publicly available time series datasets as well
as other public time series data such as the UN Food and Agri-
culture Organization. The dataset includes time series data of 148
unique technology time series measured in terms of cumulative
adoption (cumulative capacity or annual production). For tech-
nologies that are measured as annual production, rather than in
terms of cumulative capacity, authors include these data with the
assumption that annual production is directly related to cumu-
lative capacity, e.g., long-term growth in aluminum production
reflects growth in capacity to produce aluminum. In gathering
data, authors sought a variety of technology categories that range
in terms of granularity (from household appliances to infra-
structure technologies, for example) and in terms of technology
type (from digitalization data to agriculture data, for example).
Other technology types were chosen because of similarities to
CDR, such as energy technologies and energy storage technolo-
gies. In assembling this dataset, authors prioritized gathering a
large set of technologies to understand dispersion of growth rates
across different technologies. We used publicly available data and
prioritized gathering data from a broad set of technology types.
To measure growth rates by fitting functional forms, we included
technologies with at least ten data points. We did not select data
based on speed of scale-up. In the data collection process, authors
also collected technology time series data measured in terms of
market data share and analyzed it separately to analyze the sen-
sitivity of growth metrics to the data type; on average market
share data are slightly higher (9% vs 8%) for growth around
inflection (see Supplementary Fig. 3 and Supplementary Table 7).
When possible, market share data were converted to cumulative
capacity data to include in the overall dataset, if the size of the
market and unit size were available. If technology adoption data
were available on a global scale, authors used those time series
data in favor of country-level data for this analysis. If only
country level data were available, authors added adoption in each
country per year to create as large of a market as possible for a
more analogous comparison to global data.

To assess the AR6 Scenario data, we use the scenario database
compiled for the sixth IPCC assessment report27,37. This database
contains modeling results from integrated assessment models
(IAMs) calculated for different baseline and policy scenarios. We
focus our analysis on these because they were vetted for use in the
IPCC publications, which were rigorously peer-reviewed. The
IAM database includes modeled quantities of carbon removed
from the atmosphere necessary for reaching climate goals such as
the 1.5° and 2° Paris accord targets. Many models include BECCS
and DAC as CDR options. Many models also include carbon
removal in the land sector, even though only a few scenarios
specify by which technology or management method this will be
achieved, such as by afforestation/reforestation, enhanced weath-
ering, biochar, soil carbon sequestration. Further analysis of
growth rates by CDR method is included in Supplementary Fig. 2
and Supplementary Table 4. For handling the database, we use
the open-source Python package pyam38.

Companies focused on carbon dioxide removal have long-term
and interim goals for DAC, BECCS, biochar, and general CDR
deployment. The authors use data from public company
announcements to estimate growth rates for DAC companies

(Supplementary Tables 1 and 2). The authors searched the
websites of all direct air capture companies listed in the Direct Air
Capture Coalition for announced targets for DAC scale-up39. All
companies with targets on their websites were included in the
company announcement dataset. Biochar scale-up goals and
current capacity come from the European Biochar Industry
Consortium. Further analysis of company types can be found in
Supplementary Note 1, Supplementary Table 3, and Supplemen-
tary Figure 1.

Assessing the level of carbon dioxide removal included in
country policies and goals can also serve as a market signal for
carbon dioxide removal. We assess policies and plans related to
carbon dioxide removal in the United States, European Union,
and United Kingdom as well as searching NDCs to the Paris
Agreement for relevant carbon dioxide removal. More details
about the growth rates within country policies and goals are
included in Supplementary Tables 5 and 6. For regional and
country policy targets, authors use starting values from the
carbon removal purchases spreadsheet40 divided by three between
the United States, European Union and United Kingdom with
each of these regions estimated to contribute to an equal third of
carbon removal currently. For NDCs to be included, a starting
number and goal number were needed to calculate a compound
annual growth rate.

Measurement. None of the three main metrics we focus on tells
the adoption story completely. Early years are of clear policy
interest, but data quality can be low. Measuring growth at the
inflection point using a linear fit and standardizing it to the
asymptote level lessens this reliance on early data but can involve
out-of-sample extrapolation through modeled data based on the
logistic function. Other types of data, such as company targets,
preclude curve fitting because they include fewer than three data
points, typically including a starting year and capacity and an
ending year and capacity. For those we calculate an exponential
growth rate, the downside of which is that it is sensitive to the
start year and the exponential is only an appropriate function for
early years. Consequently, we test the robustness of our com-
parisons to these three distinct ways of measuring growth. We
also consider a variety of other metrics including other functional
forms such as Gompertz, exponential, and Softplus but, as we
discuss in the Methods, we find that these three are the most
appropriate for informing our research questions.

Measuring growth in time series data. The measurement of scale-
up in the literature is mostly based on annual growth rates.
However, growth rates have been estimated using a variety of
techniques. In our analysis, we measure growth across technol-
ogies using four functional forms (logistic, exponential, Gom-
pertz, and Softplus) and nine metrics. We measure growth in
many ways to assess robustness of the growth rate comparisons
depending on the type of growth metric we choose and to take an
account of the many ways researchers have measured the growth
of technology diffusion. More details on each measure are
described in Supplementary Note 2 and Supplementary Table 13.

The speed of technology diffusion has been theorized as
following a logistic curve, with its characteristic s-curve shape,
beginning with an innovation that brings a technology to market,
then growing with increased adoption that eventually slows upon
reaching and plateauing at a saturation point4,41. Fitting an s-
curve, particularly with a logistic function, to data is a common
approach to measuring growth42,43. The logistic function has
three free parameters and is defined as follows:

f ðtÞ ¼ L
1þ e�kðt�t0Þ

ð1Þ
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where the parameter L is the function’s asymptote or upper
bound for large t, k is the growth rate parameter that corresponds
to the growth rate for small t, and t_0 is the position of the
inflection point, i.e., the point of the curve of maximal absolute
growth after which absolute growth decreases again. The growth
rate parameter k is an estimate of the annual growth rate at the
initial phase of the scaling. This metric, k, is one metric to
measure growth across the whole time series period.

After fitting the logistic function to time series data, we use the
modeled parameters to project data before and after the time
series. Using these projected data based on the fitted logistic
function, we measure growth in three periods within the time
series. The first is in the formative (initial) phase of scale-up, the
second is around the inflection point, and the third is the time it
takes for a technology to grow from 10–90% of its eventual
saturation point.

To measure the growth of the technology in its initial formative
phase, we use the projected data to find the point at which the
technology reaches 2.5% of its asymptote. We fit an exponential
function onto the cut data to measure growth. This aligns with
the shape of initial growth in the s-curve model.

Measuring growth around the inflection point is also of interest
as a growth metric. We cut the projected data five years before
and five years after the inflection point and fit a linear function
onto these data. This gives us an absolute growth rate, which we
standardize based on the value at the inflection point to reach a
comparable growth rate around the inflection point of the
s-curve.

The third metric is closely related to the main logistic growth
metric. The time period Δt, defined as the time taken to increase
from 10% to 90% of the market share, can equivalently be used to
describe the function and is related to k in the following way:
Δt ¼ lnð81Þ=k � 4:39=k. To calculate this growth rate, we use
modeled data to find the years associated with reaching 10% and
90% of the market share, find the difference of these years, and
find the inverse of this value which gives us a steepness metric
that we consider a growth rate. This measure has been used to
characterize the speed of scale up of energy technologies44.

Although measuring growth based on an s-curve shape is
common in literature, the shape does not necessarily fit all data,
for example those technologies without a clear asymptote (for
example, some technologies do not have a natural market
saturation level). Some authors use functional forms beyond a
logistic function to measure growth16. We measure growth using
two growth metrics based on an exponential functional form: an
exponential growth rate fitted onto the whole time series and the
maximum exponential growth rate of the dataset measured in
ten-year increments. The exponential growth is measured with
the following equation:

f ðtÞ ¼ a � ebt ð2Þ
where b is the growth rate metric. We fit this exponential function
onto each technology dataset to measure growth.

To measure the maximum exponential growth for each
technology, we fit an exponential function to values of each 10-
year time window in the time series. The exponential rate b of
that function then gives the best estimate of the average
exponential growth rate for each ten-year period. We choose
the maximum of these ten-year exponential growth rates to
represent the growth rate of the technology. This allows us to
characterize the sustained maximal relative growth of a
technology. For technologies that are measured by decade rather
than yearly, we estimate the maximum 10-year exponential
growth using a compound annual growth rate.

We also measure growth through two metrics based on a
Gompertz function (Gompertz and G) and one metric based on a

Softplus function. The Gompertz function is similar to a logistic
function, but rather than a symmetrical function where initial
growth and eventual slowdown are symmetrical around the
inflection point, the Gompertz function estimates slower growth
after the inflection point to reach the asymptote than in the initial
period. The Gompertz equation is described as follows:

f ðtÞ ¼ Le�e�kðt�t0Þ ð3Þ
where L measures the asymptote, k is the growth metric, and t0 is
the initial year in the dataset.

The G metric measures the maximum growth rate at the
inflection point normalized to the asymptote value. To find the G
metric based on the Gompertz function, we use the following
equation:

G ¼ Lk
e

ð4Þ

The Softplus function is a new way to measure technology
diffusion. The Softplus function is similar to the logistic function,
but with a linearly increasing asymptote, rather than a flat
asymptote. This may account for technology diffusion measured
by cumulative capacity, in which the capacity can continue to
increase over time. The function is described as follows:

f tð Þ ¼ L
k
log 1þ ek t�t0ð Þ� �

ð5Þ

From the analysis of these nine growth metrics, we focus on
three metrics of growth based on the logistic function:
exponential growth measured in the formative phase, linear
growth measured around the inflection point, and logistic growth
measured through the whole dataset. A more thorough robust-
ness analysis is included in Supplementary Fig. 4 and Supple-
mentary Table 12 and throughout the rest of the study we include
these three main growth types in comparisons.

For data with two points, a starting point and an ending point,
we measure growth through a compound annual growth rate,
which requires only a start and end year and values. The
compound annual growth rate is measured with the following
equation:

c ¼ ½vðt2Þ=vðt1Þ� ^ ½1=ðt2 � t1Þ�; ð6Þ
where v(t) are the values of the timeseries at time t and c is the
compound annual growth rate. We use this metric to measure
growth for policy goals and individual company announcements
which are measured with two pairs of values, a start year and
value as well as an end year and value.

Analytical procedures and calculations for each data type. For
each data type below, we describe the specific method for data
collection and analysis.

We assembled a dataset of historical analogue technologies
(HATCH) that span a variety of categories, granularities, and
vintage (see Supplementary Note 3 for details on data inclusion
criteria). These data were compiled from a variety of sources,
from government records on infrastructure buildout to publicly
available datasets on energy technologies and hardware technol-
ogies, in the form of time series18. We fit a logistic function to
estimate a growth rate parameter, an inflection point year, and an
asymptote that estimates the time at which growth slows. We use
this logistic fit to estimate a growth rate through the growth rate
parameter, and we use the modeled data based on that logistic fit
to measure growth around the inflection point and at the
formative phase of growth.

We fit a logistic function to each integrated assessment model
scenario for AR6 by the underlying technology for carbon
removal (BECCS, DAC, land-use). This served as an estimate
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about the scaling of the underlying technology. Before fitting the
data to a logistic function, we removed data points from the start
if there were drops (decreases) in the early data and removed data
points from the end if there was a drop below more than 90% of
the maximum technology level reached. For the logistic fitting on
land use carbon dioxide removal methods, we added an offset to
the fitted logistic curve as many of these CDR methods start at a
non-zero level, so we only measure growth from that base level.

We fit a logistic function to 2350 scenario-technology pairs.
From the logistic fit for each scenario-technology pair, we
extracted the logistic growth rate parameters. For each of the fits,
we excluded all pairs with an error for bad fit, another warning, or
a runtime error (68 errors). Of the remaining 2282 pairs, 33 could
not be properly trimmed as described in the pre-processing data
and 270 had no growth, leaving us with 1979 scenario-technology
pairs. The logistic function fit gives us a parameter we use as a
growth rate of the whole function. We also use the modeled
logistic fit data to measure growth around the inflection point and
growth in the formative phase. We measure these growth rates for
land use, BECCS, and DAC technologies in IAM scenarios.

Companies have made announcements about future carbon
removal scale-up plans, including companies focused solely on
one technology (BECCS and DAC, for example) and those
focused more broadly on carbon dioxide removal45. To calculate
a growth rate from each company announcement, authors used
starting capacities listed by the companies (in reports from the
International Energy Agency, or through the Marginal Carbon
spreadsheet40), the announced capacity, and the timeline for the
scale-up to calculate a compound annual growth rate.

To make the company announcement data comparable to
scenario and historical technology data, we created a time series
dataset of company announcements that added each company
announcement to the market total to create a cumulative capacity
time series dataset. With this time series data, we measured
growth in the formative phase, around the inflection point, and
logistic growth for the dataset in the same manner as historical
technologies. Further, company announcements are coupled with
global potentials of carbon removal by technology10 as goal
capacities for 2050 in Fig. 6. Authors use the average of the range
of potentials for each technology (BECCS, biochar, DAC, and all
CDR technologies).

The United States, United Kingdom, and the European Union
have plans to reach net-zero emissions by 2050, which
necessitates carbon dioxide removal. We reviewed the country
and regional plans for net-zero carbon emissions9,46–48. To
estimate growth rates of these technologies, we use the end points
of carbon dioxide removal methods and the time period included
in these goals (whether 2035 or 2050, for example) to estimate the
exponential growth rate needed for this scale-up using a
compound annual growth rate.

The CDR growth rates from policy goals includes one policy
goal from the United States to scale up carbon dioxide removal—
both engineered and natural solutions (land use changes) to 1
gigaton of carbon dioxide removal by 205046. From the European
Union, policy goals include 5 megaton of carbon dioxide removal
from technological solutions by 205048. The United Kingdom
includes policy goals for 5 Mt of CO2 removal by 2030 through
BECCS and DAC deployment, 23 Mt of CO2 removal by 2035
through BECCS and DAC deployment, and a range of removal of
between 75 and 81 Mt of carbon dioxide annually by 2050
through engineered removal technologies47. Afforestation goals in
NDCs include Pakistan, Bangladesh, Cabo Verde, Uganda, and
Rwanda49.

To calculate the exponential growth rate, we use the starting
estimates from the carbon removal purchase tracking
spreadsheet40. We sum the carbon removal purchases across

technologies to come up with a CDR starting capacity and divide
this amount by three, between the United States, United
Kingdom, and European Union. In other words, we assume that
the carbon dioxide removal purchases are equally distributed
between entities, organizations, or companies within the United
States, United Kingdom, and European Union.

For the national determined contributions that include carbon
dioxide removal, authors search the NDC database with each
technology name (e.g. “afforestation,” “direct air capture”) and
broad carbon dioxide removal (e.g., “negative emission technol-
ogies,” “net-zero”)49. Authors capture both the inclusion of CDR
terms in NDCs as well as any NDCs that include growth
rate data.

Data availability
The data that support the findings of this study are available in the Historical Adoption
of TeCHnology (HATCH) dataset, available at https://cdr.apps.ece.iiasa.ac.at/story/
hatch/50.

Code availability
The code used to process the data in this study are available at https://zenodo.org/record/
832734751.
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