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Coastal surface soil carbon stocks have distinctly
increased under extensive ecological restoration
in northern China
Yuan Chi 1✉, Dahai Liu 1✉, Jianhua Gao2✉, Jingkuan Sun3, Zhiwei Zhang1,2, Wenxiu Xing1, Yubing Qu1,2,

Xuejian Ma1 & Bian Zha2

Coastal soil carbon stock is critical owing to the coexistence of terrestrial and marine carbon

sinks and undergoes drastic changes under complex factors. Here we conduct surface soil

organic carbon (SOC) stock mapping in northern China’s coastal areas in 2020 and 2010

based on large-scale field survey, remote sensing, and land cover data. Our results indicate

that a 100m resolution is the optimum mapping resolution for its good simulation accuracy

and precise spatial details. The surface SOC stock and density in 2020 increased by 39.19%

and 37.82%, respectively, compared with those in 2010 under extensive ecological

restoration. The SOC densities of forests, grasslands, croplands, wetlands, and built-up areas

increased by 72.58%, 74.25%, 41.39%, 4.58%, and 26.30% from 2010 to 2020, respectively.

The study determines the optimum mapping resolution and denotes the positive effects of

ecological restoration on coastal soil carbon.
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Soil is one of the largest carbon pools on Earth and plays a vital
role in global biogeochemical cycles under the background of
climate change1,2. The coastal soil carbon stock is enormous

owing to the blue carbon sequestrated by wetland vegetation3,4 and
the green carbon sequestrated by coastal upland forests5, while
demonstrates remarkable spatiotemporal variations due to intensive
land-sea interaction6 and increasing human activities7 in recent
decades. Shifts in the coastline caused by natural deposition-erosion
processes8,9 and anthropogenic coastal engineering10, along with
changes in land surface characteristics controlled by human
activities11,12, shape the spatial pattern of coastal soil carbon stock.
In addition, during the last decade in China, extensive ecological
restoration projects have been implemented at the national
scale13,14, dominating vegetation greening15, improving habitat
quality16, and thus influencing the large-scale pattern of soil carbon
stock17, particularly in the surface soil, which is the most sensitive
soil layer to land surface characteristics18. It is of great significance
to map the spatiotemporal pattern of coastal soil carbon stock at a
large scale during the last decade to effectively grasp the overall and
spatial characteristics of coastal blue and green carbon in the con-
text of extensive ecological restoration.

The core issue in large-scale coastal soil carbon stock mapping is
accuracy, which creates a high demand on four points. The first is
field soil data, which serve as the basis of soil mapping; however,
they are costly at a large scale19 and are always discontinuous across
different time points18, thereby limiting the large-scale soil carbon
mapping across time points. The second is the predictors, which
are used as the covariates of field point data and to realize the from
point to area conversion of the soil data20,21. Predictors are
essential for soil carbon mapping; however, their comprehensive-
ness and applicability are always incompatible because of the data
availability problem22. The third is the spatial resolution, which
refers to the minimum simulation unit in the mapping and indi-
cates the spatial details of the results23,24. Coarse resolution
(≥1000m) was always adopted in studies on large-scale soil carbon
mapping25–27, while fine resolution can be observed in several
studies, which, however, remained in a static state at a single time
point28–30. The fourth is the simulation accuracy, which finally
denotes the mapping effect31,32 and is determined by multiple
factors, including the number and distribution of field soil data33,34,
the comprehensiveness and applicability of predictors35,36, and the
fitness of simulation unit37,38. The four aforementioned points can
be summarized as follows: Sufficient field soil data should be col-
lected, suitable predictors that cover the study area should be
selected, and optimum spatial resolution should be adopted to
achieve high simulation accuracy and precise spatial details in
large-scale coastal soil carbon stock mapping.

In the present study, large-scale coastal soil carbon stock map-
ping was conducted to correspond to the aforementioned four key
points using the northern China’s coastal areas as the scope, which
range from 31°N to 38°N and from 117°E to 122°E, consisting of
two provinces (Shandong and Jiangsu) and 44 counties and cov-
ering more than 64,000 km2 (Fig. 1). The study area belongs to
warm-temperate or subtropical climate zones and is located mostly
between China’s two longest rivers, the Yangtze and Yellow Rivers.
Across different divisions within the study area, the coastline and
land surface exhibit distinct spatial heterogeneities controlled by
natural conditions and human activities. The divisions near the
sides of the two rivers generally have muddy coasts due to the large
amount of sediment input via the rivers8,39, and wetlands are
continuously distributed along the muddy coasts in forms of salt
marshes such as the Yellow River Estuary (National Park) and
Yancheng Coastal Wetlands (World Natural Heritage Site), con-
taining huge potential of carbon sink40,41. In contrast, rocky and
sandy coasts are distributed over the remaining divisions. Addi-
tionally, humans exploit the coast and transform it into artificial

coasts by constructing docks, embankments, and ponds42,43. The
terrain is undulating in most divisions of Shandong Province,
whereas it is generally flat over Jiangsu Province. Nearly every
corner of the study area is occupied or altered by human activities.
Croplands constitute the major landscape with mixed forests and
grasslands, making large and different contributions to the soil
carbon sink5,44, and built-up areas are widely spread over the study
area, with different types and intensities across divisions45,46.
During the last decade (from 2010 to 2020), ecological restoration
projects that are featured by abundant connotations, various types,
and extensive scope have been conducted in the study area; they
covered nearly all forests, croplands, grasslands, wetlands, and
built-up areas in aspects of scale control, spatial configuration, and
quality promotion to enhance coastal ecosystem health47,48. These
circumstances render the study area suitable for mapping the
spatiotemporal variations of large-scale coastal soil carbon stock in
the context of extensive ecological restoration.

Here, in terms of field soil data, we obtained surface soil data in
2020 in 457 sites (Fig. 1) through field surveys, in-situ sampling,
and laboratory measurements, while extracted those in 2010 at the
same sites by referencing robust historical open source data49. As
for the predictors, we established a comprehensive land surface
factor system (CLSFS)22, which consists of four aspects, namely,
ecological indices, landscape composition, landscape configuration,
and geographical position, and covers different types of natural and
anthropogenic influencing factors; we extracted a total of 17 pre-
dictors based on open source remote sensing and land cover data.
From the perspective of spatial resolution, we adopted 10 scales
(simulation units) from fine (100m) to coarse (1000m) resolutions
to determine the optimum resolution with high simulation accu-
racy and precise spatial details. We generated maps of surface soil
organic carbon density (SOCD) in 2020 and 2010 and those of
ΔSOCD from 2010 to 2020 (SOCD in 2020 minus that in 2010)
across the 10 scales. This study proposes the following hypothesis:
Large-scale coastal surface soil carbon stock has increased
remarkably and presents distinct spatial heterogeneities in northern
China in the context of extensive ecological restoration. To validate
this hypothesis, we must answer the following three scientific
questions: (1) Which spatial resolution is optimal in coastal soil
carbon mapping for high simulation accuracy and precise spatial
details? (2) What are the main driving factors of spatiotemporal
variations of coastal soil carbon stock in northern China during the
last decade? (3) What are the effects of extensive ecological
restoration on coastal soil carbon stock in the entire study area and
across land cover types?

We found that the 100 m scale is the optimum resolution to
map the large-scale coastal soil carbon stock for the good simu-
lation accuracy and precise spatial details. Ecological quality
promotion in the context of extensive ecological restoration was
the main driving factor of the spatiotemporal variations in coastal
soil carbon stock and increased the soil carbon stock to different
degrees across land cover types.

Results and discussion
Simulation accuracies and spatial details across scales from
100m to 1000m. The simulation accuracies of soil organic car-
bon (SOC) across scales were measured using two commonly
used metrics: root mean squared error (RMSE) and Lin’s con-
cordance correlation coefficient (Lin’s CCC)50,51, which refer to
the absolute and relative errors, respectively, and a lower RMSE
and higher Lin’s CCC indicate higher simulation accuracy. The
two metrics were calculated by comparing the simulated soil data
with the field observed data in the validating samples and one
value was generated for each of RMSE and Lin’s CCC at one scale
through a 10-fold cross-validation. The RMSE and Lin’s CCC at a
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scale represented the simulation accuracy at this scale (Fig. 2).
The two metrics slightly fluctuated from 100 m to 500m scales,
with the highest accuracy achieved by the results at the 200 m
scale; however, the difference among the five scales was small. At
scales from 600 m to 1000 m, the simulation accuracy was gen-
erally lower than that at scales from 100 m to 500 m, and the
700 m scale presented the lowest accuracy among all the 10 scales.
The RMSE from 100 m to 500 m scales was around 4.20 g kg−1,
which was higher than those in some cases at small spatial scales,

such as the Yellow River Delta in China (2.78 g kg−1)22, the
southern tip of Liaodong Peninsula in China (2.79 g kg−1)52, and
Erath and Comanche Counties in Texas in United States
(4.10 g kg−1)53, however, was much lower than those in studies at
large scales, such as the whole Nigeria (6.75 g kg−1)54, the whole
China (12.65–13.41 g kg−1)27,55, the whole Japanese forests
(27.6 g kg−1)56, and the whole Canada (58.60 g kg−1)57. Lin’s
CCC from the 100 m to 500 m scales was higher than 0.55, which
was in a high level compared with that reported in previous
studies18,58,59. This indicates that large-scale coastal surface soil
carbon mapping in the present study achieved high simulation
accuracy at a fine spatial resolution.

The maps of SOCD in 2020 and 2010 and those of ΔSOCD
from 2010 to 2020 across scales from 100 m to 1000m are
presented in three extents to identify the spatial details (see Fig. 3
for maps of SOCD in 2020; see Supplementary Figs. S1 and S2 for
maps of SOCD in 2010 and those of ΔSOCD from 2010 to 2020).

In Extent 1, which covers the entire study area, the map
graininess was indistinct and the overall spatial characteristics of
soil carbon were similar across the 10 scales. In Extent 2, which
refers to County 4 (one of the 44 counties), the map graininess
was indistinct from 100 m to 400 m scales, yet it became distinct
at the 500 m scale and gradually increased from 500 m to 1000 m
scales. In Extent 3, which indicates the mouth of the Yellow River
(a specific geographical unit), all maps except that at the 100 m
scale exhibited distinct graininess and graphically presented
the differences from fine (100 m) to coarse (1000 m) spatial
resolutions.

Fig. 1 Administrative divisions and sampling sites of the study area. a Administrative divisions. b Sampling sites. The oblique line is the boundary of
Shandong Province (above) and Jiangsu Province (below). Counties 1–30 belong to Shandong Province while Counties 31–44 belong to Jiangsu Province.
The detailed administrative divisions and their names can be referenced in Supplementary Table S1.

Fig. 2 Simulation accuracies of soil organic carbon (SOC) across scales
from 100m to 1000m. RMSE root mean squared error, Lin’s CCC Lin’s
concordance correlation coefficient.
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The differences across scales were not only represented in
graininess but also in the precision of the results (Fig. 4). The
SOCD in 2020, ΔSOCD, soil organic carbon stock (SOCS) in 2020,
and ΔSOCS (i.e., SOCS in 2020 minus that in 2010) fluctuated
across the 10 scales in the three extents, yet the differences
distinctly increased from Extent 1 to Extent 3. Particularly in Extent

3, ΔSOCD and ΔSOCS changed considerably across scales in
aspects of quantity and quality (e.g., they were < 0 at 700m scale).
This result indicates that although the estimation of the soil carbon
stock in the entire study area was generally similar across the
10 scales, the spatial details in a specific region, such as Extent 3,
which is an important estuarine wetland and possesses huge

Fig. 3 Maps of soil organic carbon density (SOCD) in 2020 across scales from 100m to 1000m in the three extents. The scale refers to the minimum
unit to conduct the SOC mapping, i.e., the spatial resolution of the maps. a Extent 1: the entire study area. b Extent 2: the selected area within Extent 1, i.e.,
Kenli District (County 4), Dongying City, Shandong Province. c Extent 3: the selected area within Extent 2, i.e., the mouth of the Yellow River.
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potential for blue carbon47,60, might vary remarkably. Precise
spatial details in a small extent greatly contribute to revealing the
soil carbon stock in a specific geographic unit and improving the
overall accuracy at a large scale28,29.

In summary, good simulation accuracy was achieved at scales
from 100m to 500m, of which the 100m scale presented little map
graininess in different extents and high precision in spatial details.
Therefore, the scale of 100m was recommended as the optimum
spatial resolution to map the large-scale coastal soil carbon stock
and was used to conduct the following studies, thereby answering
the first scientific question of the study. The method for mapping
the large-scale coastal soil carbon stock at a fine resolution is highly
applicable in different areas for the easily accessible data source,
clear and repeatable simulation process, and optimum spatial
resolution. The needed data for the soil carbon mapping are field
soil data and predictors. The former can be obtained through
conventional field survey and sampling, along with applying for the
inventory data, while the latter can be conveniently generated based
on the open source remote sensing and land cover data by using the
CLSFS. The simulation algorithm (partial least squares regression),
validation approach (10-fold cross-validation), and accuracy
metrics (RMSE and Lin’s CCC) are all frequently used methods
and possess clear procedure and high repeatability. The 100m is
recommended as the optimum spatial resolution for the high
simulation accuracy and precise spatial details and can be applied
to other studies on the large-scale coastal soil mapping. Further, the
simulation unit in the method is in the vector form for calculating
the predictors in aspects of landscape composition and fragmenta-
tion, thereby generating huge data amount (e.g., 6 534 950
simulation units in 2020) at the 100m spatial resolution in the
large-scale coastal areas and limiting the application at a larger
scale. Under this circumstance, the 200m spatial resolution can be
adopted to balance the precision of the results and the data amount.

Spatiotemporal patterns of coastal soil carbon stock from 2010
to 2020. Coastal soil carbon stocks showed distinct spatio-
temporal heterogeneity (Figs. 3, 5). In 2020, low SOCD areas were

always observed in the northwestern part of Shandong Province
and the alongshore areas of Jiangsu Province, whereas high
SOCD areas were generally distributed in the inland areas, par-
ticularly in the mountainous areas in Shandong Province and
parts of the cropland in the two provinces (Fig. 3). The spatial
pattern of ΔSOCD was in accordance with that of SOCD, that is,
high SOCD areas always had high ΔSOCD. Most areas had
ΔSOCD > 0, indicating an overall increase in surface soil carbon
stock in the entire study area; areas with ΔSOCD < 0 were mainly
distributed along the coastline (Fig. 5). In terms of different
counties, the mean ΔSOCD in all counties was > 0, yet the values
distinctly varied across counties; the counties with high ΔSOCD
were mostly located in the eastern part of Shandong Province;
Counties 6, 16, and 24 achieved the highest three ΔSOCDs while
Counties 3, 25, and 31 had the lowest three (Fig. 5).

The spatial patterns of SOCD and ΔSOCD were analyzed along
latitudinal, longitudinal, and anthropogenic gradients. The latitu-
dinal gradient is defined as the change in latitude from 31°N to 38°N
in the study area. SOCD and ΔSOCD presented up-down-up-down
trend with the increase in the latitude, and those in 38°N obtained
much lower values than in the other latitudes (Fig. 6a). The
longitudinal gradient refers to the change in the distance to the
coastline (DTC) because China’s continental coastline generally
spreads from north to south61 and naturally forms a longitudinal
gradient. The coastline is the most noteworthy boundary and
undergoes a series of coastal processes, including sediment
deposition and erosion62, storm surge63, seawater intrusion64, and
soil salinization65. SOCD and ΔSOCD consistently and gradually
increased with the increase in DTC (Fig. 6b). The anthropogenic
gradient was represented by the distance to built-up areas (DTB),
which indicates the degree of anthropogenic interference with
natural ecosystem66. SOCD and ΔSOCD first increased and then
decreased along the DTB gradient (Fig. 6c). The soil carbon storage
and increment increased with the decrease in anthropogenic
interference in areas with DTB < 2 km. These areas were covered
mostly by croplands, built-up areas, forests, and grasslands,
and SOCD and ΔSOCD increased through the conversation from

Fig. 4 Estimations of soil organic carbon density (SOCD) and stock (SOCS) across scales from 100m to 1000m in the three extents. E1, E2, and E3
refer to Extent 1, Extent 2, and Extent 3 presented in Fig. 3, respectively. SOCD/SOCS indicates that in 2020, i.e., SOCD2020/SOCS2020. ΔSOCD/ΔSOCS
indicates the SOCD/SOCS in 2020 minus that in 2010. a SOCD and ΔSOCD in Extent 1. b SOCD and ΔSOCD in Extent 2. c SOCD and ΔSOCD in Extent 3.
d SOCS and ΔSOCS in Extent 1. e SOCS and ΔSOCS in Extent 2. f SOCS and ΔSOCS in Extent 3.
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built-up areas to the other types. By contrast, the soil carbon storage
and increment decreased with the increase in DTB in areas with
DTB > 2 km. The DTB increase in these areas denoted the
conversion from other land cover types to wetlands, thereby
inducing the decrease in SOCD and ΔSOCD.

The predictors in the CLSFS constituted the potential
influencing factors of the spatial pattern of coastal soil carbon
stock, and their correlation coefficients with SOCD and ΔSOCD
varied remarkably across predictors (Table 1).

The predictors include four aspects: ecological indices, land-
scape composition, landscape configuration, and geographical
position. The ecological indices directly represent the vegetation
growth condition and ecological quality67,68; they had distinctly
higher correlations with SOCD and ΔSOCD than the remaining

three aspects. It denoted that the ecological quality determined
the spatial pattern of SOCD and the quality promotion
dominated the spatiotemporal variation of coastal soil carbon
stock, that is, areas with good ecological quality always had high
SOCD and those with large quality promotion generally exhibited
high ΔSOCD. Landscape composition refers to the area
proportions of different land cover types and generally influences
soil carbon by determining the vegetation types and underlying
surface69,70. The predictors of landscape composition had distinct
correlations with SOCD; SOCD was high in vegetation areas and
croplands but low in wetlands and built-up areas. In contrast,
they exhibited weak correlations with ΔSOCD, indicating that the
change in land cover types was not the main factor driving the
spatiotemporal variations of coastal soil carbon stock during the

Fig. 6 Spatial patterns of SOCD and ΔSOCD along the multiple gradients. DTC distance to the coastline, DTB distance to built-up areas. a SOCD and
ΔSOCD along the latitude gradient. b SOCD and ΔSOCD along the DTC gradient. c SOCD and ΔSOCD along the DTB gradient.

Fig. 5 Maps of ΔSOCD from 2010 to 2020. a ΔSOCD at the 100m scale. b ΔSOCD in different counties. The names of Counties 1–44 can be referenced
in Supplementary Table S1.
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last decade. The study area is a highly developed area with
intensive land use for a long term, and land cover changes of
different types have generally been small during the last decade71

under the policies of ecological civilization72 and farmland
protection73. Landscape configuration indicates the spatial
arrangement and positional interrelations of landscape patches
and is characterized by fragmentation driven by human activities
in coastal areas74,75. The predictors in landscape configuration
presented low correlations with SOCD and ΔSOCD, denoting the
small contribution of landscape fragmentation to the spatiotem-
poral patterns of coastal soil carbon stock at the large scale. This
result is not in accordance with those of previous studies
conducted at the local scale37,76. It can be inferred that the effect
of landscape fragmentation on soil carbon may decrease with the
increase in scale. For the geographical position, DTC exhibited a
positive and high correlation with SOCD, which corresponded to
the result in Fig. 6, but a low one with ΔSOCD. DTC influenced
the soil carbon stock in the entire study area mainly by
influencing the spatial pattern of land surface characteristics.
The effect of coastline evolution caused by natural processes and
anthropogenic intervention on soil carbon variation was distinct
in alongshore areas. DTB was negatively correlated with SOCD
but positively correlated with ΔSOCD. This indicates that human
activities could contribute to an increase in soil carbon when the
interference was low (e.g., farming and plantation), but led to a
decrease in soil carbon when the interference increased (e.g.,
urbanization)77,78. Besides the predictors, two terrain factors,
namely, elevation and slope, were used to identify the spatial
pattern of coastal soil carbon stock, and had positive and high
correlations with SOCD and ΔSOCD. Mountainous areas showed
higher soil carbon stock and larger increase in stock than flat
areas because mountainous areas are mostly covered by forests

and grasslands71, which possessed high SOCD and ΔSOCD in the
context of ecological restoration.

Therefore, ecological quality promotion in the context of
extensive ecological restoration was the main driving factor of the
spatiotemporal variations in coastal soil carbon stock at the large
scale, and coastline evolution controlled by natural and anthro-
pogenic processes considerably influenced the soil carbon stock in
the alongshore areas. These results answer the second scientific
question.

Effects of extensive ecological restoration on coastal carbon soil
stock. Based on the high-resolution maps of coastal soil carbon
stock at the 100 m scale, the total amount of surface SOCS in the
entire area in 2020 summed to 197.80 Tg C, increasing by 39.19 %
from 2010 to 2020, and the mean value of surface SOCD was
3.04 kg m−2, increasing by 37.82 % from 2010 to 2020.

As illustrated earlier, the increase in coastal soil carbon stock is
mostly attributed to the quality promotion of coastal ecosystems in
the context of extensive ecological restoration that cover the entire
study area. Within the study area, different types of ecological
restoration projects cover the land surface and correspond to
different land cover types, including forests, grasslands, croplands,
wetlands, and built-up areas16. All the types are closely related and
form a multi-component community of life79, in which the soil
serves as the basis for humans: The soil supports the vegetation in
different land cover types, thereby providing essential ecological,
productive, and recreational functions for human survival and
sustainable development. The ΔSOCDs of the five land cover types
were all >0, indicating the positive effects of different types of
ecological restoration on the coastal soil carbon stock; forests,
grasslands, croplands, built-up areas, and wetlands were in
descending order of SOCD and ΔSOCD, and the differences
among land cover types were large (Fig. 7a). In terms of the total
amount of SOCS, croplands occupied the most because of its large
area and its ΔSOCS contributed the most, followed by built-up
areas, which covered a considerable part (Fig. 7b). From the
perspective of the increase rates from 2010 to 2020 (Fig. 7c), the
increase rate of SOCD in the entire study area was slightly lower
than that of SOCS because the natural increase in coastal wetlands
and anthropogenic sea reclamation enlarged the study area from
2010 to 2020. For the five land cover types, the difference in the
increase rate between the SOCD and SOCS was attributed to area
changes. Specifically, areas of forests, wetlands, and built-up areas
increased, while those of grasslands and croplands decreased,
resulting in the higher increase rate in SOCS than that in SOCD for
forests, wetlands, and built-up areas, but the lower increase rate in
SOCS than that in SOCD for grasslands and croplands. Consider-
ing that the area increase in certain land covers was not the
outcome of ecological restoration (e.g., the increase in built-up
areas was due largely to urbanization), the increase rates of SOCD
were adopted to identify the effects of different types of ecological
restoration on coastal soil carbon stock; the SOCDs of forests,
grasslands, croplands, wetlands, and built-up areas increased by
72.58%, 74.25%, 41.39%, 4.58%, and 26.30%, respectively, from
2010 to 2020 in the context of extensive ecological restoration. This
corresponds to the third scientific question of this study.

During the last decade, extensive ecological restoration projects
have been implemented for multiple components of the commu-
nity. For forests and grasslands, new plantations were established in
barren mountains and lands, and replantation was carried out in
degraded forests and grasslands by mainly adopting native species
and jointly considering the tree, shrub, and herb layers to ensure
the vegetation scale, thereby increasing the areas of forests and
inevitably decreasing those of grasslands in the study area.
Vegetation quality was promoted in the following two aspects:

Table 1 Correlation coefficients of soil organic carbon
density (SOCD) with the potential influencing factors.

Items SOCD ΔSOCD
Ecological indices DVI/ΔDVI 0.693 0.342

NDVI/ΔNDVI 0.796 0.408
SAVI/ΔSAVI 0.740 0.370

Landscape
composition

VC/ΔVC 0.241 0.107
FP/ΔFP 0.390 0.142
GP/ΔGP 0.366 0.146
CP/ΔCP 0.338 0.014
WP/ΔWP −0.252 −0.019
BP/ΔBP −0.199 −0.135
WAP/ΔWAP −0.534 −0.049

Landscape
configuration

NP/ΔNP 0.048 −0.066
TE/ΔTE 0.093 −0.05
AWMSI/
ΔAWMSI

0.041 −0.114

SWI/ΔSWI 0.065 0.039
LII/ΔLII −0.132 −0.132

Geographical
position

DTC/ΔDTC 0.508 0.165
DTB/ΔDTB −0.228 0.273

El 0.420 0.435
Sl 0.362 0.364

The correlations were conducted using the results at the 100m scale through Minitab. The
correlation coefficient indicates the Pearson correlation coefficient; n= 6534 387 for SOCD and
6542 596 for ΔSOCD; p < 0.01 for all the correlations. SOCD is the SOCD in 2020; ΔSOCD is
the SOCD in 2020 minus that in 2010. The same situations apply to the influencing factors, e.g.,
DVI is the DVI in 2020 while ΔDVI is the DVI in 2020 minus that in 2010. DVI difference
vegetation index, dimensionless, NDVI normalized difference vegetation index, dimensionless,
SAVI soil adjusted vegetation index, dimensionless, VC vegetation coverage, %, FP forest
proportion, %, GP grassland proportion, %, CP cropland proportion, %, WP wetland proportion,
%, BP built-up area proportion, %, WAP water area proportion, %, NP number of patches, ind.,
TE total edges, m, AWMSI area-weighted mean shape index, dimensionless, SWI Shannon-
Wiener index, dimensionless, LII landscape isolation index, dimensionless, DTC distance to the
coastline, km, DTB distance to built-up areas, km., El elevation, m, Sl slope, °.
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First, natural and secondary forests, particularly young growth,
were strictly protected; second, plantations were progressively
enhanced by nurturing multi-layer and uneven-aged forest stands
and optimizing tree species structure, especially in coastal shelter
forests5. The self-restoring capacity of grasslands has been used to
improve the ecological quality, accompanying with the forest
restoration. In addition, forest fires were cautiously and
routinely prevented to minimize the carbon emissions resulting
from the fire, and a special project was conducted to control
invasive species, especially Bursaphelenchus xylophilus, which
has wreaked havoc on pine forests in China’s coastal areas80.
Correspondingly, the soil carbon stocks of forests and grass-
lands have increased remarkably in the study area. For
croplands, high-standard ones were constructed to pursue the
goal of integration of quantity and quality, and a series of tillage
practice81,82, including straw return, organic fertilizer and green
manure application, no (or minimum) tillage, land use and
maintenance combination, and cropland shelterbelt construc-
tion, were conducted to increase the soil carbon stock. Wetlands
have been protected mainly through natural processes, in which
areas of coastal wetlands have increased during the last decade.
In the damaged wetlands, specific projects such as Blue Bay
Remediation Project and Coastal Protection and Restoration
Project were implemented to recover the damaged wetlands and
improve the vegetation scale and quality in salt marshes83. The
wetland SOCS distinctly increased because of the expansion of
coastal wetlands; the newly formed coastal wetlands always had
low SOCD (see Extent 3 in Fig. 3), thus ΔSOCD of wetlands was
generally low. In built-up areas, spatial resources were
adequately utilized based on land spatial planning84 to establish
the green space system through the Urban Ecological Restora-
tion Project to increase the scale and connectivity of green
spaces and improve the soil carbon stock.

Therefore, coastal surface soil carbon stock in northern China
has remarkably increased from 2010 to 2020 in the context of
extensive ecological restoration and SOCD and ΔSOCD exhibited
distinct spatiotemporal heterogeneities in different administrative
divisions, along the multiple gradients, and across land cover
types. This validated the study’s hypotheses.

Methods
Data acquisition. Field soil data: Field data in 2020 were obtained
from a large-scale field survey. The sampling sites were set fol-
lowing a grid sampling pattern85, that is, the sites were evenly
distributed within the study area and one site was set every 12.5 km
to balance the comprehensiveness and cost. In the process of field
investigation, the factual positions of sampling sites were adjusted
in the consideration of representativeness and accessibility: The
factual site should represent the ecological characteristics of the

surrounding areas and can be easily reached to ensure the suc-
cessive investigation. Finally, a total of 457 sites were surveyed (see
Fig. 1). The surface (0–20 cm) soil was sampled and soil factors
were measured in the laboratory. Bulk density (BD) was measured
using a cutting ring with a volume of 100 cm3 and SOC was
measured using the potassium dichromate oxidation method. Field
data in 2010 were collected from the National Earth System Science
Data Center, National Science & Technology Infrastructure of
China (https://www.geodata.cn). Soil data in the same sites to 2020
were extracted to ensure spatial consistency of the sites across the
two time points, and the data in 438 sites were available for 2010
because of the coastline evolution from 2010 to 2020. The field soil
data are presented in Supplementary Table S2. In the field soil data,
the mean values of SOC were 11.77 g kg−1 and 7.98 g kg−1 in 2020
and 2010, respectively; those in forests, grasslands, croplands,
wetlands, and built-up areas were 22.86 g kg−1, 19.12 g kg−1,
11.65 g kg−1, 6.41 g kg−1, and 9.89 g kg−1 in 2020, respectively, and
were 9.64 g kg−1, 8.57 g kg−1, 8.01 g kg−1, 5.92 g kg−1, 8.21 g kg−1

in 2010, respectively.
Remote sensing data: Data from Landsat satellites were

adopted; data in 2020 were from Landsat 8 and those in 2010
were from Landsat 5 to ensure temporal consistency between field
and remote sensing data, and the multi-spectral bands had a
spatial resolution of 30 m. At each of the two time points, remote
sensing images that covered the entire study area, had little or no
clouds (cloud cover ranged from 0 to 4%), and possessed
temporal consistency across images were collected. The informa-
tion of the Landsat data are presented in Supplementary Table S3.
The spectral reflectance map for each band at each time point was
generated through radiometric calibration and atmospheric
correction. In addition, the coastline of the study area in 2020
and 2010 was extracted based on remote sensing images that
fused different bands to exhibit RGB color. The extent of the
study area containing administrative divisions was then deter-
mined (see Fig. 1).

Land cover data: Open-source land cover data were collected
from GlobeLand30 (www.globallandcover.com). The data were
extracted mainly from Landsat and Chinese HJ-1 and GF-1 satellite
images and had good classification accuracy86 with overall
accuracies of 83.50% and 85.72% for 2010 and 2020, respectively,
and kappa coefficients of 0.78 and 0.82, respectively. The data had a
spatial resolution of 30m, thereby ensuring spatial consistency with
the aforementioned multispectral remote sensing data. According
to GlobeLand30 data, land cover in the study area can be classified
into seven types: forests, grasslands, croplands, wetlands, built-up
areas, water areas, and bare lands (see Supplementary Fig. S3). The
cropland was the landscape matrix, covering more than 65% of the
entire study area, but its area slightly decreased from 2010 to 2020;
in contrast, the proportion of built-up areas increased from 10.80%
to 15.65% from 2010 to 2020; forests and grasslands were generally

Fig. 7 Effects of extensive ecological restoration on coastal soil carbon stock. a The columns indicate SOCD and ΔSOCD across land cover types while
the solid and dashed lines refer to the mean values of SOCD and ΔSOCD in the entire study area, respectively. b The columns indicate SOCS and ΔSOCS
across land cover types. c The columns indicate the increase rates of SOCD and SOCS from 2010 to 2020 across land cover types while the solid and
dashed lines refer to the mean values of increase rates of SOCD and SOCS from 2010 to 2020 in the entire study area, respectively.
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distributed in the mountainous areas and in the upland along the
coastline; wetlands were mostly located in the alongshore areas in
the form of salt marshes; water areas consisted of natural rivers and
lakes, as well as artificial ponds; and bare lands presented a very
small proportion and were scattered within the study area.

In summary, the multi-source data ensured spatial consistency
in field soil data across the two time points and between the
remote sensing and land cover data, as well as temporal
consistency among the field, remote sensing, and land cover
data, thereby meeting the demand for high-resolution coastal soil
carbon mapping at a large scale.

Predictors in CLSFS. The predictors were selected followed the
CLSFS22, which is characterized by comprehensiveness and
applicability. Comprehensiveness is realized by the 17 predictors
in the four aspects that cover different dimensions of potential
influencing factors of soil carbon, and applicability denotes that
all predictors are sourced from the open source remote sensing
and land cover data.

Ecological indices: Three predictors, difference vegetation
index (DVI), normalized difference vegetation index (NDVI),
and soil-adjusted vegetation index (SAVI), were selected. The
equations used are as follows87,88:

DVI ¼ Re5 � Re4 ð1Þ

NDVI ¼ Re5 � Re4
Re5 þ Re4

ð2Þ

SAVI ¼ Re5 � Re4
Re5 þ Re4 þ L

´ ð1þ LÞ ð3Þ

where Rex is the spectral reflectance of Bx for Landsat 8 data in
2020 and should be minus one (i.e., Bx−1) for Landsat 5 data in
2010; L is given as 0.5.

Landscape composition: The following seven predictors were
used: vegetation coverage (VC), forest proportion (FP), grassland
proportion (GP), cropland proportion (CP), wetland proportion
(WP), built-up area proportion (BP), and water area proportion
(WAP). The equations were proposed in the study as follows:

VC ¼ FAþ GAþWA
TA

´ 100% ð4Þ

FP ¼ FA
TA

´ 100% ð5Þ

GP ¼ GA
TA

´ 100% ð6Þ

CP ¼ CA
TA

´ 100% ð7Þ

WP ¼ WA
TA

´ 100% ð8Þ

BP ¼ BA
TA

´ 100% ð9Þ

WAP ¼ WAA
TA

´ 100% ð10Þ

where FA, GA, WA, CA, BA, and WAA are the areas of forests,
grasslands, wetlands, croplands, built-up areas, and water areas,
respectively, and TA is the total area of the simulation unit.

Landscape configuration: Five predictors, including number of
patches (NP), total edges (TE), area-weighted mean shape index
(AWMSI), Shannon-Wiener index (SWI), and landscape isolation
index (LII), were selected. NP and TE were directly measured using
the total number and perimeter of patches in the simulation unit,

respectively. The equations for the three remaining predictors are
as follows89:

AWMSI ¼ ∑
0:25´ LPi

ffiffiffiffiffiffiffi

LAi

p ´
LAi

TA

 !

ð11Þ

SWI ¼ �∑
LAi

TA
´ Ln

LAi

TA

� �� �

ð12Þ

LII ¼ ∑ 0:5 ´

ffiffiffiffiffiffiffiffi

LNi

TA

r

´
TA
LAi

 !

ð13Þ

where LPi, LAi, and LNi are the perimeter, area, and number of
landscape type i, respectively.

Geographical position: Two predictors, distance to the coast-
line (DTC) and distance to built-up areas (DTB), were used.
These values were calculated by entering the vector data of
coastline and built-up areas into the Euclidean Distance tool in
ArcGIS.

Therefore, 17 predictors in the four aspects were obtained
based on the open source remote sensing and land cover data (see
Supplementary Figs. S4–S20).

Spatial simulations across scales. Ten scales (the scale here
indicates the spatial resolution to conduct the simulation, i.e., the
simulation unit) from 100 m to 1000m (from fine to coarse
resolutions) were used to determine the optimum scale for
achieving high simulation accuracy and precise spatial details.
Simulation units at the 10 scales were generated using the Fishnet
tool in ArcGIS. The numbers of simulation units from 100 m to
1000 m in 2020 summed to 6 534 950, 1 642 362, 733 594, 414
710, 266 648, 186 050, 137 341, 105 616, 838 00, and 68 199,
respectively, while those in 2010 summed to 6 441 180, 1 618 441,
722 864, 408 519, 262 659, 183 245, 135 267, 103 986, 82 530, and
67 145, respectively. Seventeen predictors were spatially exhibited
based on the 10 scales, and 10 maps were produced for each
predictor at each time point. A total of 340 maps for the 17
predictors across the two time points are presented in Supple-
mentary Figs. S4–S20.

At each of the 10 scales, the 10-fold cross-validation method was
used to conduct the spatial simulation and validate the simulation
accuracy and uncertainty. Specifically, the field soil data from the
457 sites were randomly and evenly divided into 10 groups. Each of
the 10 groups was considered validating samples, while the
remaining nine groups were considered training samples, with
every group serving as the validating samples once. A commonly
used algorithm, namely, partial least squares regression, was used to
implement the simulations through Minitab Statistical Software
v20 to ensure repeatability. Thus, 10 sets of results were obtained at
a scale, and the mean value and standard deviation of the 10 sets
were used as the final simulation result and uncertainty at the scale
(see Supplementary Figs. S21–S24). The simulation accuracies
across the scales were measured using the RMSE and Lin’s CCC,
and the equations are as follows90,91:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n
∑
n

i¼1
ðSVi � OViÞ2

r

ð14Þ

Lin0s CCC ¼ 2CC ´ SDs ´ SDo

ðMVs �MVoÞ2 þ SDs
2 þ SDo

2 ð15Þ

where SVi and OVi are the simulated and observed values in
validating sample i, respectively; CC is the correlation coefficient
between the simulated and observed values; SDs and SDo are
the standard deviations of the simulated and observed values,
respectively; and MVs and MVo are the mean simulated and
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observed values, respectively. The simulated values at the 457 sites
across the 10 scales through the 10-fold cross-validation are
presented in Supplementary Table S4.

Effects of ecological restoration on coastal soil carbon. Maps of
SOCD in 2020 and 2010 and those of ΔSOCD from 2010 to 2020
were generated based on spatial simulations across scales; the
maps using the 10 spatial resolutions are presented in Fig. 3 and
Supplementary Figs. S1 and S2. Owing to the large scale of the
study area and limited map size, three extents of maps were
presented to exhibit spatial details at different scales to determine
the optimum scale. Extents 1, 2, and 3 are the entire study area,
Kenli District, and the mouth of the Yellow River, respectively,
and refer to large, intermediate, and small scales, respectively.

The spatial resolution with high simulation accuracy and
precise spatial details was used as the optimum resolution to
analyze the spatiotemporal patterns of SOCD in 2020 and
ΔSOCD from 2010 to 2020 in the entire study and along multiple
scales. The SOCS in 2020 and ΔSOCS from 2010 to 2020 were
estimated based on the corresponding SOCD maps at the
optimum scale. Thus, the effects of extensive ecological restora-
tion on coastal soil carbon over the entire study area were
identified. Then, SOCD, ΔSOCD, SOCS, and ΔSOCS for the five
main land cover types, namely, forests, grasslands, croplands,
wetlands, and built-up areas, were assessed to correspond to
different types of ecological restoration, and the effects of
different types of ecological restoration on coastal soil carbon
were identified. Though built-up areas were characterized by the
impervious surface in most areas, vegetation and bare soils could
be observed mixed in them because of the mixed pixel of remote
sensing data, and the circumstance was common and acceptable
in regional ecological research92,93. Besides, the size of simulation
unit is 100 m × 100 m, which may contain multiple land
cover types.

Data availability
The source data that underlie all the figures in this study have been deposited in the
Figshare database (https://doi.org/10.6084/m9.figshare.24187368). The field soil data in
the 457 sites is provided in Supplementary Table S2; the remote sensing data used in this
study are available from USGS (https://glovis.usgs.gov/) and the detailed information is
presented in Supplementary Table S3; the land cover data used in this study are available
from GlobeLand30 (www.globallandcover.com).
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