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Nutrient use efficiency has decreased in southwest
China since 2009 with increasing risk of nutrient
excess
Guitang Liao 1,2✉, Yongdong Wang2, Haiying Yu2, Peng He3, Zhengyu Lin3, Tianfei Dai4, Chenghua Xu1 &

Tinxuan Li2✉

The optimal application of nutrients, such as nitrogen and phosphorus, to the soil is crucial for

achieving high crop yields with minimal environmental impact. However, the effect of spatio-

temporal changes in soil nutrient supply on crop yield is poorly understood in China. Here, we

present a framework that combines environmental data, fertilizer field experiments, and

machine learning to estimate the rice yield responses to different nutrient conditions and

overall farmland nutrient sustainability in southwest China from 2009 to 2019. The results

show that the fertilizer input has contributed to the long-term increase in rice yield over the

past ten years. The fertilizer use has increased rice yield by 2.3–2.4 tons per hectare per year.

However, the nutrient use efficiency decreased, with the fertilizer contribution ratio declining

from 29.3% in 2009 to 27.5% in 2019. Further, 19% of the rice-growing farmlands are at risk

of nutrient excess, and 36% are at risk of nutrient degradation. Controlling nitrogen and

phosphorus input is key to nutrient regulation, and our approach may guide the sustainable

use of nutrient resources on farmlands.
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Food is the material basis for the sustainable development of
human society. Since the coronavirus disease (COVID-19)
pandemic, food security issues have gained wider attention

and have been more extensively discussed around the world1,2.
Fertilizers, especially the widespread use of chemical fertilizers,
have been one of the key factors in food production over the past 50
years and have enabled global food quantities to meet the needs of
population growth3–5. However, the resource and environmental
costs required to achieve the above goals are extremely high6,7, with
rice, wheat, and maize alone producing around 60% excess nitro-
gen and phosphorus8. A sobering prediction indicates that the
demand for global food production will double by 2050, putting
unprecedented pressure on the global ecosystem9. How to ensure
ecological security while achieving food security, has become an
important challenge for global sustainable development10–13.

For decades, China has fed 22% of the world’s population with
only 9% of the world’s arable land, making a huge contribution to
global food security but resulting in higher environmental costs and
resource consumption14. It is estimated that the contribution rate
of chemical fertilizers to crop yield once reached 50% in China15,16.
However, due to long-term excessive and unbalanced fertilization,
the amount of fertilizer per unit area in China was three times that
of the EU and the US, resulting in soil degradation, non-point
source pollution, low fertilizer utilization, and other serious
problems17,18. Taking effective measures to reduce the number of
chemical fertilizers and adjust the nutrient structure has become an
important part of China’s sustainable development strategy in
recent years19,20. Although China has achieved zero growth in the
total amount of chemical fertilization at the national level, there is
great spatial heterogeneity and seasonal variation in soil nutrient
conditions and fertilizer management in different regions, which
makes fertilizer pollution control complicated and difficult at the
regional scale21,22. Therefore, an accurate assessment of nutrient
use efficiency and its impact on crop yield at the regional scale is of
great significance for food security and sustainable development in
China and the world23–25.

Currently, scholars have developed various mathematical mod-
els to predict the effects of environmental factors on crop yield: (1)
Meteorological yield model. This model uses factors such as light,
temperature, and water to build a statistical or mechanism model
and then combines climate prediction to simulate crop yield; its
prediction accuracy depends largely on the accuracy of meteor-
ological data26–29. In addition, agro-hydrological models such as
CERES30, SWAP31, and AquaCrop32 have also been widely used to
assess the impact of climate change on crop yield33,34. (2) Remote
sensing yield model. This model is based on the differences in the
spectral characteristics of crops at different growth stages and uses
remote sensing data bands to establish a model of their quantitative
relationship with crop biomass to achieve rapid and accurate large-
scale crop yield estimation35. As early as the 1980s, the United
States and Europe began using Landsat data to estimate crop yield
on global and national scales36,37. In recent years, researchers have
widely used optical remote sensing data (TM, ETM+, NDVI, EVI,
etc.)38,39, hyperspectral remote sensing data (MODIS)40, micro-
wave remote sensing data (FPAR)41, and agronomic parameter
data (LAI, NPP, etc.)42 to estimate the yield of crops such as rice
and winter wheat, and the prediction error is usually 10–20%. (3)
Crop growth model. This model can quantitatively evaluate the
interactions of crop yield and its influencing factors by simulating
crop growth processes such as light energy utilization, phenological
development, drymatter distribution, and nutrient balance, and the
prediction error is usually around 10%43. Currently, widely used
crop growth models include DSSAT44, WOFOST45, APSIM46,
ORYZA47, CropGrow48, etc. Notably, the application of crop
growthmodels at the macro scale is limited due to the large number
of model parameters, some of which are difficult to obtain. (4)

Machine learning (ML) models. With the advancement of artificial
intelligence technology, crop yield prediction models that integrate
multi-source environmental data andML algorithms have been the
frontier and hotspot of precision agriculture research49. Scholars
have selected various factors (climate (temperature, humidity,
precipitation, solar radiation, etc.), soil (type, moisture, texture,
etc.), topography (elevation, slope, etc.), crops (variety, density,
etc.), and management (cultivation, irrigation, etc.)50–54) using ML
algorithms (e.g., neural networks55, random forests56, support
vector machine57, extreme gradient boosting58, and long-short
term memory59, etc.) to effectively improve the accuracy of crop
yield prediction. In addition, some scholars have studied the impact
of soil nutrients on crop yield at global and national scales to
estimate fertilizer requirements and formulate fertilization strate-
gies, usually with low spatial resolution (≥500m)60–62. Unfortu-
nately, most of the current prediction models cannot explain the
impact of changes in soil nutrient supply on crop yield63; in par-
ticular, the temporal–spatial accurate simulation of crop yield
based on fertilizer response on the regional scale is rarely reported.

Since 2005, a large number of fertilizer response field experiments
have been conducted in China24, but the application of the results
has been limited to fitting the fertilizer response function model64 to
calculate the optimal fertilization rate of crops, and the value of the
experimental data in crop yield prediction has not been deeply
explored65. On the other hand, the Chinese government started to
implement fertilizer reduction actions in 2015, and then some
scholars attempted to evaluate the fertilizer reduction potential at
the national66, provincial67–69, and county70 scales. However, these
studies generally lack effective methods to link microscopic field
experiments andmacroscopic spatial simulations, which still rely on
the results of single-point experiments or the average value of multi-
point experiments, leading to gaps in the precise management of
farmland nutrients at the regional scale71. Therefore, we developed
a new model to estimate crop yield responses under different
nutrient conditions by integrating fertilizer response field experi-
ments, multi-source environmental data, and ML algorithms, using
the main rice-growing area in southwest China as an example, to (1)
upscale and spatialize multi-point fertilizer field experiments, (2)
accurately simulate the contribution of fertilizer to rice yield, and
(3) spatially identify and assess farmland nutrient sustainability.

Results
Rice yield GWRK model. Based on the fitting modeling of 1027
field experiment training samples using ArcGIS, the Geo-
graphically weighted regression (GWR) models of soil-based yield
and relative yield coefficient (RYC) were established (Supple-
mentary Tables 1–3). The R2 of the GWR models of soil-based
yield and RYC were 0.41 and 0.49, respectively. After ordinary
kriging correction of the GWR model residuals (Supplementary
Table 4), the spatial distributions of the regression coefficients
of the geographically weighted regression kriging (GWRK)
model variables are shown in Supplementary Figs. 1 and 2. The
regression coefficient of each model variable contained positive
and negative values, indicating that the influence of each envir-
onmental variable on the spatial distribution of rice yield showed
spatial heterogeneity. Sensitivity analyses showed the stability of
the soil-based yield (YS) and the RYC model parameters (Sup-
plementary Table 5 and Supplementary Fig. 3). The relative
sensitivity index (RSI) of the model metrics was less than 0.3,
except for TEM and PRE, which had high sensitivity (RSI > 0.85.)
Therefore, when the rice yield model is applied to different cli-
matic regions, the meteorological metrics should be calibrated.
According to the evaluation indexes in Table 1, the prediction
accuracies of the YS and fertilized yield (YF) GWRK models were
close, and the prediction accuracies of YF were better than those
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of YS, reflecting that fertilizer input effectively improved the
stability of crop yield in the study area63. The ME values of both
models were negative, indicating that the predicted yields of the
models were slightly higher than the observed yields. The SMAPE
of soil-based yield in hills and plains ranged from 15% to 17%,
while the SMAPE of fertilized yield was only about 10%. How-
ever, the SMAPE of yield forecast in mountainous areas was
between 19% and 22%.

Rice yield distribution characteristics. From 2009 to 2019, the
rice yield showed an increasing trend in the study area (Fig. 1,
Supplementary Table 6). The average YS increased from 5.72 t ha−1

in 2009 to 6.19 t ha−1 in 2019, which was highest in plains, followed
by hills and mountains. From 2009 to 2019, YS in the study area
increased by an average of 0.47 t ha−1, with plains, hills, and
mountains increasing by 0.55 t ha−1, 0.46 t ha−1, and 0.38 t ha−1,
respectively. The average YF increased from 8.11 t ha−1 in 2009 to
8.53 t ha−1 in 2019, which was highest in hills, followed by plains
and mountains. YF increased by an average of 0.42 t ha−1, with
plains, hills, and mountains increasing by 0.3 t ha−1, 0.43 t ha−1,
0.53 t ha−1, respectively. The average fertilizer increased yield (FIY)
was about 2.3–2.4 t ha−1, which was significantly lower in plains
than in hills and mountains. From 2009 to 2019, the average
FIY decreased by 0.05 t ha−1, with decreases by 0.25 t ha−1 and

Table 1 Evaluation indexes of prediction accuracy of GWRK models.

Model Region Number of samples ME (t ha-1) MAE (t ha-1) RMSE (t ha-1) SMAPE (%)

YS GWRK Total 155 −0.21 0.89 1.22 16.49
Plain 38 −0.57 0.97 1.23 16.37
Hill 97 −0.04 0.86 1.11 15.54
Mountain 20 −0.37 0.92 1.62 21.29

YF GWRK Total 155 −0.20 0.89 1.22 11.45
Plain 38 −0.37 0.80 1.00 9.76
Hill 97 −0.15 0.83 1.06 10.51
Mountain 20 −0.17 1.29 2.01 19.01

Fig. 1 Statistical chart of rice yield from 2009 to 2019 in different regions of Sichuan Basin, SW China. Fiddle plots of (a) rice soil-based yield (YS), (b)
fertilized yield (YF), (c) fertilizer increased yield (FIY), and (d) fertilizer contribution ratio (FCR) for all grids (4.87 × 106). Boxes represent interquartile
range with the mean value as the bold line, whiskers represent 1.5 interquartile range, and the outer border represents the data distribution.
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0.03 t ha−1 in the plains and hills, respectively, and an increase by
0.16 t ha−1 in the mountains. In particular, fertilizer inputs brought
YF in the hills to the level of the plains. The average fertilizer
contribution ratio (FCR) was 27–29% in the study area, with
mountains > hills > plains, which is in consistent with the findings
of Liang, et al.72. Moreover, the standard deviation of YF was lower
than that of YS. This indicates that fertilizer inputs have positively
contributed to the growth and stability of rice yield in the study area
over the past 10 years. However, we could also see that the effect of
fertilization on rice yield in the study area had a downward trend.
The average FIY decreased from 2.39 t ha−1 in 2009 to 2.34 t ha−1

in 2019. FCR decreased from 29.3% in 2009 to 27.5% in 2019.
Except for mountainous regions, the growth rate of YF was lower
than that of YS. Particularly in the plains, the FIY and FCR
decreased by nearly 14% and 17% respectively.

Figure 2 shows that the spatial distribution of the rice yield
levels in 2009 and 2019 was similar, and the overall trend was
plains > southern hills > eastern hills > central hills > northern
mountains > southern and southwestern mountains. The regions
with high YS were mainly distributed in the western plains and
southern hill. The regions with high YF are concentrated in the
central plains, south and eastern hills. The spatial distribution of
FIY is regular from 2009 to 2019. The low FIY area was
distributed in a band along the plain-Minjiang River-Yangtze
River, and the area with high FIY was mainly concentrated in the
central and northeastern part of the hills, the northern and
southern part of the mountains. Meanwhile, the change in FIY
showed significant spatial heterogeneity. The northern and

southern plains, and the eastern, southern, and southwestern
hills mainly showed negative changes, and the central and
northern hills and mountains mainly showed positive changes.
The order of FIY changes from high to low was central
hills > northern hills > mountains > plains > southern and south-
western hills. In the Sichuan Basin, FIY decreased in more than
50% of the regions, and the proportions of areas with decreased
FIY were 68.3%, 46.8% and 43.2% in the plains, hills and
mountains, respectively.

Rice nutrient balance distribution characteristics. In this paper,
the average of Sichuan Basin was used and the nitrogen, phosphorus
and potassium uptake were 2.03 kg, 0.92 kg and 2.47 kg, respectively
(Supplementary Figs. 4, and 5, Supplementary Tables 7 and 8). The
average nitrogen fertilizer utilization efficiency (REN), phosphorus
fertilizer utilization efficiency (REP), and potassium fertilizer utili-
zation efficiency (REK) in the Sichuan Basin were 28.94%, 13.17%,
and 26.38%, respectively (Supplementary Fig. 6 and Supplementary
Table 9). The distribution of fertilizer utilization efficiency was
similar, with hills > mountains > plains in general. The areas with
high fertilizer utilization efficiency were mainly distributed in the
north-eastern hills and northern mountains. However, the fertilizer
utilization efficiency is generally low in the region along the plains-
Minjiang River-Yangtze River. The average theoretical nitrogen
fertilizer rate (TFRN), theoretical phosphate fertilizer rate (TFRP),
and theoretical potassium fertilizer rate (TFRK) were 125.8 kg ha−1,
63.4 kg ha−1, and 90.1 kg ha−1 in 2009, respectively; the average

Fig. 2 Spatial distributions of rice yield from 2009 to 2019 in the Sichuan Basin, SW China. Spatial distribution of (a) YS, (b) YF, (c) FIY in 2009 and (d)
YS, (e) YF, (f) FIY in 2019.
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TFRN, TFRP, and TFRK were 121.4 kg ha−1, 60.9 kg ha−1, and
87.4 kg ha−1 in 2019, respectively (Figs. 3 and 4, and Supplementary
Table 10). In general, the nutrient demand of rice in the Sichuan
Basin showed a decreasing trend from 2009 to 2019. In particular,
the demand for nitrogen and phosphorus was significantly lower in
the plains than in the hills and mountains. In spatial distribution,
nutrient demand was relatively low in the western part of the plains,
along the Minjiang River-Yangtze River, and in the eastern part of

the hills; and relatively high in the north-central part of the hills and
in the mountains.

The NBRN, NBRP, and NBRK were 0.32, 0.14, and −0.29,
respectively, in 2009; the NBRN, NBRP, and NBRK were 0.44,
0.24, and −0.15, respectively, in 2019 (Figs. 4 and 5, and
Supplementary Table 11). The trend of nitrogen and phosphorus
excess is increasing, while the trend of potassium deficiency is
reversed from 2009 to 2019. Notably, the nutrient balance has an

Fig. 3 Spatial distributions of rice fertilizer utilization efficiency and theoretical fertilizer rate in the Sichuan Basin, SW China. Spatial distributions of
(a) nitrogen fertilizer utilization efficiency (REN), (b) phosphorus fertilizer utilization efficiency (REP) and (c) potassium fertilizer utilization efficiency
(REK). Spatial distribution of (d) theoretical nitrogen fertilizer rate (TFRN), (e) theoretical phosphate fertilizer rate (TFRP), and (f) theoretical potassium
fertilizer rate (TFRK) in 2009 and (g) TFRN, (h) TFRP, (i) TFRK in 2019.
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obviously spatial heterogeneity in the Sichuan Basin. In the
plains, there is a general excess of nitrogen and phosphorus, while
there is an excess of potassium in the south-west and insufficient
potassium in the north-east. In the hills, the nutrient balances are
bifurcated, with nitrogen insufficient in the center and excessive
in the surroundings, phosphorus insufficient in the north-central
part and excessive in the south and east, and potassium generally
insufficient except along the Yangtze River. Meanwhile, the area
of nutrient insufficiency in the hills shows an expanding trend
from 2009 to 2019.In the mountains, nutrient excesses are mainly
concentrated in the west, while nutrients are generally insufficient
in the north and south.

Farmland nutrient sustainability classification and characteristics.
SPSS Modeler was used to build a Self-organizing feature map
(SOFM) model for identifying and zoning farmland nutrient sus-
tainability. Here, we used 2019 NBRN, NBRP, and NBRK as input
parameters to accurately classify 4.87 million grids in the Sichuan
Basin (Supplementary Table 12). Silhouette measure of cohesion and
separation of the SOFM model is 0.46, indicating that the clustering
results were reliable. Using SOFM clustering, we can divide the study
area into three categories (Table 2, Supplementary Table 13, Sup-
plementary Table 14 and Supplementary Fig. 7): the first category is
the Sustainable Zone (SZ), accounting for 44.6% of the study area.
This zone has a slight excess of nitrogen, a balanced phosphorus and

a slight deficiency of potassium. Meanwhile, the FIY was 2.2 t ha−1,
with FCR of 26.3%, generally achieving a sustainable use of nutrient
resources. The second category is the Excess Risk Zone (EZ),
accounting for 19.4% of the study area. The nutrient balance ratio of
nitrogen, phosphorus and potassium in this zone was greater than 1,
especially nitrogen and phosphorus were almost doubled. Due to the
highest soil nutrient content (except potassium) in this zone, coupled
with the highest fertilizer inputs, the FCR was only 10.9% and the
FIY was only 0.9 t ha−1. Excess nitrogen and phosphorus led to a
significant reduction in the nutrient use efficiency of rice and serious
environmental risks. The third category is the Degradation Risk
Zone (DZ), accounting for 36.0% of the study area. The nutrient
balance ratio of nitrogen, phosphorus and potassium in this zone is
negative, especially potassium is apparently deficient. Due to the
lowest soil nutrient content (except potassium), coupled with the
lowest fertilizer inputs, rice in this zone had the strongest fertilizer
response, with FIY of 3.3 t ha−1 and FCR of 38.1%. However,
inadequate fertilizer inputs could lead to soil nutrient depletion,
thereby increasing the risk of soil degradation. Furthermore, the
standard deviation of FIY was significantly higher in the degradation
risk zone than in the other zones, indicating that inadequate nutrient
inputs negatively affected rice yield stability.

In general, Sichuan Basin is facing the serious problems of
excessive and degraded farmland nutrients, with degradation risk
zones accounting for about 36% of the total area and excess risk

Fig. 4 Statistics chart of rice theoretical fertilizer rate and nutrient balance ratio in Sichuan Basin, SW China. Fiddle plots of (a) TFRN, (b) TFRP, (c)
TFRK, (d) NBRN, (e) NBRP, and (f) NBRK for all grids (4.87 × 106). Boxes represent interquartile range with the mean value as the bold line, whiskers
represent 1.5 interquartile range, and the outer border represents the data distribution. Positive nutrient balance ratios indicate excessive nutrient inputs,
zero nutrient balance ratios indicate balanced nutrient inputs, and negative nutrient balance ratios indicate insufficient nutrient inputs.
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zones accounting for about 19% of the total area. Figure 6 shows
that the nutrient degradation zones are mainly distributed in the
central and northern hills, and the northern and southern
mountains. The nutrient excess zones are mainly distributed in
the south-western plains, along the Minjiang-Yangtze River and
in the eastern part of the hills. The nutrient sustainable zones are
mainly distributed in the western, southwestern and northeastern
hills, central and northern plains. The plains have the highest
farmland nutrient sustainability, but also the highest risk of
nutrient excess, with 58% and 37% of sustainable and excess
areas, respectively. The hills have medium farmland nutrient
sustainability, mainly at risk of nutrient degradation, with 14%
and 42% of excess and degraded areas, respectively. Mountains

have the lowest farmland nutrient sustainability, with 53% of the
area at risk of nutrient degradation.

Impact factors on rice yield and nutrient balance. Pearson
correlation analysis showed that natural and socio-economic
factors influenced rice yield and nutrient balance differently, with
a general consistency across different regions (Fig. 7). Socio-
economic factors had little effect on rice yield and nutrient bal-
ance overall. The economy and population had a slightly negative
effect on yield in areas of excess risk and a slightly positive effect
on yield in areas of degradation risk. The closer to towns, roads
and rivers, the higher the rice yield. This may be due to the flat

Fig. 5 Spatial distributions of rice nutrient balance ratio in the Sichuan Basin, SW China. Spatial distributions of NBRN, NBRP, and NBRK in 2009 (a–c)
and 2019 (d–f). Positive nutrient balance ratios indicate excessive nutrient inputs, zero nutrient balance ratios indicate balanced nutrient inputs, and
negative nutrient balance ratios indicate insufficient nutrient inputs.

Table 2 Statistics on zoning results of farmland nutrient sustainability.

Type Area (103 ha−1) Nutrient balance ratio Mean Min Max S.D.

Sustainable zone 1420.4 NBRN 0.33 −0.54 3.30 0.42
NBRP 0.04 −0.80 2.43 0.36
NBRK −0.32 −0.87 1.75 0.24

Excess risk zone 1761.3 NBRN 1.96 −0.35 3.30 1.06
NBRP 1.85 −0.44 3.60 1.23
NBRK 1.01 −0.75 2.40 0.95

Degradation risk zone 766.6 NBRN −0.27 −0.87 0.62 0.24
NBRP −0.41 −0.89 0.67 0.19
NBRK −0.60 −0.94 0.20 0.15
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topography, high soil nutrients and better infrastructure near
these areas, resulting in higher rice yields. Precipitation had a
significant positive effect on yield, while temperature and terrain
had a negative effect. The lower the slope and the lower the
altitude, the higher the rice yield. The study area is close to the
Tibetan Plateau in the northwest and belongs to the southeastern
monsoon climate zone, so the eastern and southern parts of the
study area have better thermal and hydrological conditions,
which is beneficial to the increase of rice yield. Soil pH, available
phosphorus, and available potassium had a positive effect on rice
yield, while soil organic matter and total nitrogen had a negative
effect. In general, soil nutrients had a negative effect on nutrient
balance, which indicated that the improvement of basal soil fer-
tility could reduce fertilizer inputs.

Discussion
Due to the spatial heterogeneity of various factors affecting rice
yield, the yield prediction results of traditional global models will
be biased73. The GWRK model in this paper reliably solves the
problem of spatial non-stationarity of the predictor variables. The
results of an empirical study in a main rice-growing areas of
southwest China are consistent with related studies74, proving the
reliability of this method. In general, the accuracy of rice yield
prediction has generally reached a high level40,75, and the pre-
diction accuracy in hills and plains was obviously higher than that
in mountains. On the one hand, due to the small number and
uneven spatial distribution of fertilizer response experiments in
mountainous areas, the prediction accuracy of the model
decreased. On the other hand, relevant studies have shown that
water and low-temperature stress can lead to a decline in the
accuracy of crop yield simulation76. The mountainous areas of
Sichuan Basin are severely affected by seasonal drought and
extreme temperatures77, which may also be an important reason
for the lack of simulation accuracy. Meanwhile, due to the lack of
consideration of factors such as crop varieties and pests78, the

uncertainty of the prediction results was increased to some extent.
Notably, the method in this paper bridges the gap between
microscopic field experiments and macroscopic spatial simula-
tions, which has advantages in accurately simulating the response
of rice yield to fertilizer inputs under different soil nutrient
conditions. In contrast, prediction methods such as remote sen-
sing have the advantage of accuracy, but cannot effectively
explain the reasons for crop yield variation, especially the inter-
actions between crop yield, soil nutrients and fertilizer inputs79.
At present, field experiments have attracted widespread attention
and popularity around the world, providing a reliable source of
the data required for the methodology of this paper80,81. This
method can be applied more broadly in the future as more
experimental data is available.

Rice yield is sensitive to changes in meteorological and soil
factors in southwest China. From 2009 to 2019, we observed an
increasing trend in both YS and YF in the Sichuan Basin. There
were two main regions of YS improvement (Fig. 2): one is the
eastern and southwestern part of the hills, where the spatial
location of the YS improvement coincided with the increase in
precipitation (Fig. 2, Supplementary Figs. 11 and 12, and Sup-
plementary Table 19), so precipitation may be the dominant
factor for the increase in YS in this area; the other is the plain,
where the increase in soil nutrients was significantly higher than
that of other regions, which may be the main reason for the
improvement in YS. In addition, factors such as improved
farmland management and atmospheric nitrogen deposition may
also contributed to the increase in YS82,83. The change in YF was
similar to that of YS, but the increase in YF was lower than that of
YS due to a decrease in fertilizer rates (Fig. 2 and Supplementary
Table 19). Significantly, the average content of soil organic matter
in Sichuan Basin increased by 2.1 g/kg, but this change had a
small impact on rice yield, indicating that soil organic matter may
not be a limiting factor for rice growth in the study area. Nitrogen
fertilizer increase will cause nutrient excesses, which provides
valid evidence for enhanced control of nitrogen fertilizer use in

Fig. 6 Spatial distribution of farmland nutrient sustainability zones in Sichuan Basin, SW China. The pie charts represent the proportion (%) of the area
of the sustainable zone (green), the excess risk zone (red) and the degradation risk zone (yellow) for the different regions. The fiddle chart represents the
statistics of NBRN, NBRP, and NBRK for sustainable zone, excess risk zone, and degradation risk zone. Boxes represent interquartile range with the mean
value as the bold line, whiskers represent 1.5 interquartile range, and the outer border represents the data distribution. Positive nutrient balance ratios
indicate excessive nutrient inputs, zero nutrient balance ratios indicate balanced nutrient inputs, and negative nutrient balance ratios indicate insufficient
nutrient inputs.
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the main rice-growing areas of southwest China84,85. Soil avail-
able phosphorus had a positive effect on rice yield, but the
increase of soil phosphorus also causes phosphorus excess in
some regions (excess risk zone). Soil available potassium increases
rice yield while contributing to the potassium balance. Since
potassium deficiency is widespread in the Sichuan Basin (Sup-
plementary Table 19), increasing potassium inputs may be a key
component of nutrient sustainability in the main rice-growing
regions.

The degradation risk zone and the excess risk zone should be
the critical areas for the farmland nutrient resource regulation in
the Sichuan Basin. Degradation risk zone: increasing organic and
potash fertilizer inputs, appropriate supplementation of phos-
phorus fertilizer and improving soil nutrient levels will be the
focus of future nutrient management. Over the last 10 years, the
average nitrogen, phosphorus, and potassium fertilizer inputs in
the degradation risk zone decreased by 26 kg ha−1, 16 kg ha−1,
and 10 kg ha−1, respectively, and the phosphorus and potassium
fertilizer inputs were significantly lower than those in other
regions (Supplementary Table 14); soil organic matter, available
phosphorus and available potassium decreased by 2.2 g kg−1,
10.8 mg kg−1 and 43mg kg−1, respectively. Except for potassium,
soil nutrient levels in the degradation risk zone were already the
lowest in the study area (Supplementary Table 14). Excess risk
zone: Strict control of nitrogen and phosphorus inputs and
moderate use of potassium fertilizer to maintain soil nutrients is

the key to nutrient regulation. Soil nutrients are highest in this
area, but high fertilizer inputs cause serious excesses of nitrogen
and phosphorus (Supplementary Table 14). Importantly, the
excess risk zones have the potential to reduce at least 20,000 t of
nitrogen and 9000 t of phosphorus per year (20% reduction),
based on the reality of a 1–2 times excess of nitrogen and
phosphorus. Sustainable zone: nutrient regulation will focus on
moderately reducing nitrogen fertilizer and increasing potassium.
The NBRN of this zone is 0.33 (Table 3), indicating that this area
is still at risk of excessive nitrogen.

Conclusions
Optimal management of farmland nutrient resources is an
important foundation for sustainable agriculture in China. Based
on the idea of “nutrient supply change—crop yield response—
nutrient sustainable zoning”, we propose a new assessment fra-
mework for farmland nutrient sustainability. First, the GWRK
model has reliability and accuracy, but there were spatial differ-
ences in the prediction accuracy, with the accuracy of the model
in the hills and plains being significantly higher than that in the
mountains. Second, we found that fertilizer input made an
important contribution to the long-term growth and stability of
rice yield in southwest China. Over the past 10 years, fertilization
has increased rice yield by 2.3–2.4 t ha−1 (FCR: 27–29%) and
improved rice yield stability. However, the nutrient use efficiency

Fig. 7 Correlation plot of rice yield, nutrient balance ratio and the natural social factors in Sichuan Basin, SW China. Correlation analysis of (a)
sustainable zone, (b) excess risk zone and (c) degradation risk zone. YSΔ, YFΔ, (YF-YS)Δ, NBRNΔ, NBRPΔ, and NBRKΔ represent changes in YS, YF, FIY,
NBRN, NBRP, and NBRK from 2009 to 2019. The horizontal coordinates indicate the change in gross domestic product (F1), population density (F2),
annual mean precipitation (F6), annual mean temperature (F7), NDVI (F12), soil pH (F13), soil OM (F14), soil TN (F15), soil AP (F16), soil AK (F17), FRN
(F18), FRP (F19), FRK (F20) from 2009 to 2019, and distance from cities (F3), distance from roads (F4), distance from rivers (F5), altitude (F8), slope
(F9), longitude (F10), latitude (F11). Positive (negative) values indicate a positive (negative) correlation between indicators. Lighter colors indicate smaller
correlation coefficients and lower correlations. (*) indicates that the correlation reaches a significant level (p≤ 0.05), (**) indicates that the correlation
reaches an extreme significant level (p≤ 0.01).
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of farmland in the study area showed a downward trend, with the
FCR decreasing from 29.3% in 2009 to 27.5% in 2019. Third, the
main rice-growing areas in southwest China face serious pro-
blems of excessive and degraded farmland nutrients. The nutrient
imbalance is mainly characterized by excess nitrogen and phos-
phorus and insufficient potassium. The NBRN, NBRP, and NBRK
were 0.32, 0.14, and −0.29, respectively, in 2009; the NBRN,
NBRP, and NBRK were 0.44, 0.24, and −0.15, respectively, in
2019. Finally, The Sichuan Basin is divided into three farmland
nutrient sustainability zones: the degradation risk zone, the excess
risk zone, and the sustainable zone, accounting for 36.0%, 19.4%,
and 44.6% of the total area, respectively. Controlling nitrogen and
phosphorus inputs and increasing soil organic matter and
potassium are key to future nutrient regulation of farmland in the
Sichuan Basin. This paper provides a new approach to the opti-
mal allocation of farmland nutrient resources under the dual
objective constraints of food security and ecological security.

Methods
Study area. The Sichuan Basin is located in the upper reaches of
the Yangtze River in southwest China (28°00′–31°59′ N,
102°47′–107°30′ E), which includes 124 counties in 17 cities,
covering an area of 180,900 km2 (Fig. 8). This region belongs to
the humid subtropical climate zone, with an average annual
temperature of 16–18 °C, an accumulated temperature of
4000–6000 °C, and a frost-free period of 230–340 days. The
annual sunshine time is short, with only 1000–1400 h of annual
sunshine, which is 600–800 h less than the annual sunshine in the
lower reaches of the Yangtze River Basin at the same latitude, and
it is the region with the least sunshine in China. Annual pre-
cipitation is 900–1200 mm in most areas, with more than 50%
concentrated in the summer. As the Sichuan Basin is located in
the transition zone between the Qinghai–Tibet Plateau and the
eastern plains, the landform types are complex and diverse, with
an altitude of 250–3000 m, mainly including three types of
landforms: plain, hill, and mountain. The alluvial plain (Chengdu
plain) is distributed in the western part of the basin, with a
relative height difference of less than 20 m, and the surface is
covered with fertile moisture soil. The hills are distributed in the
central part of the basin; the altitude is generally 250–600 m, and
the relative height is 20–200m. Cretaceous-Jurassic purple
sandstone shale is exposed on the surface, making this the most
concentrated area of purple soil in China. The mountains are
distributed around the edge of the basin; they are mainly low and
medium mountains with an altitude of 1000–3000m, and the soil
is mainly zonal yellow soil.

The Sichuan Basin includes the most developed urban
agglomeration in western China, Chengdu-Chongqing, and is
also a key functional area for food supply and ecological
protection in the Yangtze River Economic Belt. In 2020, the
resident population of the Sichuan Basin was 75.7 million; the
GDP exceeded 4.5 trillion CNY; and the total cultivated area was
5.88 million ha. The rice yield exceeded 14.2 million tons,
accounting for about 54% of the total grain yield. The proportion
of rice planting area in the plain, hill, and mountain areas of the
Sichuan Basin is 21%, 61%, and 18%, respectively. However, due
to rapid urbanization and population growth in the Sichuan
Basin, the excessive and unbalanced inputs of chemical fertilizer
to farmland have resulted in low regional fertilizer utilization
efficiency. Currently, the total consumption of chemical fertilizers
in this region exceeds 1.61 million tons (76.4% of Sichuan
Province), and the consumption per unit area exceeds
332 kg ha−1 (N exceeds 143 kg ha−1), which is significantly
higher than the international level86. The risk of agricultural
non-point source pollution in Sichuan Basin is already
moderate87. Therefore, it is fundamental to regulate and optimize
regional farmland nutrient resources.

“3414” fertilizer field experiment. The field experiment data
were collected from the Soil Testing and Formulated Fertilization
Project (STFF) in Sichuan Province. The fertilizer response field
experiments included 1182 rice experiments (plain: 251, hill: 708,
mountain: 223) from 2009 to 2019 (Fig. 9a). These experiments
used the “3414” design scheme with three factors (nitrogen,
phosphorus, and potassium), four fertilization levels for each
factor, and a total of 14 experimental treatments (Supplementary
Table 15)88. The meaning of the four fertilization levels: level 0
means no fertilization, level 2 refers to the representative fertili-
zation rate of the experiment area (N, P2O5, and K2O), level
1= level 2 × 0.5 (this level represents insufficient fertilization),
level 3= level 2 × 1.5 (this level represents excessive fertilization).
The average fertilizer rates of N, P2O5, and K2O at level 2 in this
study were 151.5, 75.0, and 75.3 kg ha−1, respectively. The ferti-
lizer rate ranges of N, P2O5, and K2O were 45–390 kg ha−1,
27–180 kg ha−1, and 15–300 kg ha−1, respectively (Supplemen-
tary Table 16 and Supplementary Fig. 9). The 14 experimental
treatments were (1) N0P0K0, (2) N0P2K2, (3) N1P2K2, (4) N2P0K2,
(5) N2P1K2, (6) N2P2K2, (7) N2P3K2, (8) N2P2K0, (9) N2P2K1, (10)
N2P2K3, (11) N3P2K2, (12) N1P1K2, (13) N1P2K1, and (14)
N2P1K1. Yield data (kg ha−1) of each experimental treatment
were recorded after rice harvest. In addition, indicators of soil
physical and chemical properties such as organic matter (OM),

Table 3 Theoretical semi-variogram models and corresponding parameters of soil properties and fertilizer rates.

Year Variable Model Nugget (C0) Sill (C0+ C) Range (km) C0/(C0+ C) (%) R2 Residual

2009 Soil OM (g kg−1) E 0.17 0.31 61.9 54.8 0.846 2.289 × 10−3

Soil pH E 0.73 1.48 139 49.3 0.985 9.794 × 10−3

Soil AP (mg kg−1) E 0.48 0.67 14 71.6 0.933 2.173 × 10−3

Soil AK (mg kg−1) E 0.17 0.24 40.3 70.8 0.73 1.492 × 10−3

FRN (N; kg ha−1) S 0.03 0.09 9.3 33.3 0.84 7.579 × 10−4

FRP (P2O5; kg ha−1) G 0.08 0.14 11.7 57.1 0.743 1.717 × 10−3

FRK (K2O; kg ha−1) E 0.06 0.12 12.1 50.0 0.863 3.054 × 10−4

2019 Soil OM (g kg−1) E 0.13 0.27 34.7 48.1 0.966 3.922 × 10−4

Soil pH S 0.91 1.83 22.8 49.7 0.994 1.23 × 10−2

Soil AP (mg kg−1) E 0.86 1.37 12.4 62.8 0.912 1.56 × 10−2

Soil AK (mg kg−1) E 0.19 0.3 47.5 63.3 0.978 1.195 × 10−3

FRN (N; kg ha−1) E 0.32 0.53 67.7 60.4 0.894 4.639 × 10−3

FRP (P2O5; kg ha−1) E 0.23 0.38 16.8 60.5 0.718 3.169 × 10−3

FRK (K2O; kg ha−1) E 0.3 0.59 17.7 50.8 0.926 3.739 × 10−3
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pH, available phosphorus (AP), and available potassium (AK)
were tested at each field experimental site.

Soil properties and fertilizer rates. The soil data were obtained
from the STFF and the Cultivated Land Quality Monitoring
Project in Sichuan Province. The soil data (OM, pH, AP, and AK)
included 2 years: 20,798 soil sampling points from 2009 and
17,737 soil sampling points from 2019. Rice fertilizer rates were
obtained from 3918 fertilization survey points from 2009 and
3344 fertilization survey points from 2019 (Fig. 9), including
nitrogen fertilizer rate (FRN), phosphorus fertilizer rate (FRP)
and potassium fertilizer rate (FRK). In this paper, we used
geostatistical methods to estimate the spatial distribution of soil
properties and fertilizer rates89,90. The semi-variance function is

the key to geostatistical analysis, reflecting the degree of the
spatial autocorrelation of observations at different distances. The
model can be expressed as

γ hð Þ ¼ 1
2N hð Þ∑

N hð Þ
i¼1 Z xi

� �� Z xi þ h
� �� �2 ð1Þ

where γ hð Þ refers to the semi-variance function; h refers to the step
size; N(h) refers to the logarithm of the observed sample points s,
and Z xi

� �
and Z xi þ h

� �
refer to the measured values of the

variable Z(x) at the spatial positions xi and xi þ h, respectively.
We used GS+ software for the geostatistical analysis of soil

properties and fertilizer quantities in the Sichuan Basin. Table 3
shows the fitting results of the semi-variance model. The semi-
variance function models of the study area include the Gaussian

Fig. 8 Location and landform type of the study area in Sichuan Basin, SW China. The color fills in the figure represent the altitude (m) of the study area.
Black lines divide the study area into plains, hills and mountains. Blue lines represent major rivers.

Fig. 9 Distribution of rice field experiments and survey sites in Sichuan Basin, SW China. a Rice fertilizer response field experiments in 2009-2019.
b Soil sample sites in 2009. c Soil sample sites in 2019. d Fertilizer survey sites in 2009. e Fertilizer survey sites in 2019.
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model, the exponential model, and the spherical model. The
seven factors in 2009 and 2019 had obvious spatial autocorrela-
tion, and the range was generally greater than 10 km. Further-
more, high R2 and low residuals indicated that the geostatistical
methods were reliable in estimating the spatial distribution of soil
and fertilizer factors. The process of geostatistical analysis of soils
and fertilizers is presented in Supplementary Tables 17, 18 and
Supplementary Fig. 10.

Meteorological, vegetation and terrain factors. The datasets of
land use and cover, digital elevation model, normalized difference
vegetation index in rice maturity stage (NDVI), annual mean
precipitation (PRE), annual mean temperature (TEM), roads,
rivers, and administrative districts were provided by the Data
Center for Resources and Environmental Sciences, Chinese
Academy of Sciences (RESDC)91–94. Socio-economic data were
collected from the Statistical Yearbook of Sichuan Province and
the Statistical Yearbook of various counties (2009 and 2019).
Spatial distribution of population (1 × 1 km) and GDP (1 × 1 km)
data also from RESDC. The spatial resolution of the raster data
was uniform, 30 × 30 m (Supplementary Figs. 12 and 13).

Rice yield simulation under different nutrient conditions.
GWR is a typical local spatial regression model, which decom-
poses global parameters into local parameters for estimation, and
considers the relationship of non-stationarity when estimating the
parameters of each spatial location point95. The GWR model is
not only suitable for capturing the local variability of crop yields,
but it also clearly explains the effects of environmental
variables96. To further reduce the error in crop yield prediction,
scholars have proposed the GWRK method, which combines
GWR and kriging to quantify uncertainty in yield prediction
results97. In this method, ordinary kriging (OK) interpolation is
performed on the residuals obtained from the GWR local model
fitting, and then added to the GWR fitting results.

Crop soil-based yield (YS) and fertilized yield (YF) can
effectively reflect the contribution of farmland inherent soil
productivity and fertilization for rice yield, respectively98. Here,
using 1027 field experiments (plain: 213, hill: 611, mountain: 203)
as training samples (Fig. 9a), we established GWRK models to
simulate the effects of soil and fertilizer nutrient supply on YS and
YF of rice. YS refers to rice yield without fertilization in the
current year, expressed as the yield of treatment 1 (N0P0K0) of the
“3414” experiment88. The YS is important for two reasons: firstly,
it shows the spatial distribution of rice yield reduction under the
hypothetical condition of no fertilizer use; and secondly, the FIY
(YF-YS) provides the possibility to calculate the theoretical
fertilizer requirement of rice in order to assess the nutrient
balance. The independent variables (explanatory variables)
corresponding to the YS model include 9 environmental factors:
soil OM (X1), pH (X2), soil AP (X3), soil AK (X4), PRE (X5), TEM
(X6), NDVI (X7), altitude (X8), and slope (X9).

YF refers to rice yield under normal fertilization conditions
(representative fertilization rate and cultivation management of
local farmers). Since YF significantly depends on YS98, we
adopted the RYC as the dependent variable fitting model to
improve the prediction accuracy, which is expressed as the ratio
of the yield of treatment 1 and treatment 6 (N0P0K0/N2P2K2) in
the “3414” experiment. Based on the YS model, the RYC model
adds 3 fertilization quantity factors: FRN (X10), FRP (X11), and
FRK (X12), increasing the number of independent variables to 12.
Finally, YF is calculated on the basis of RYC and YS. FIY is used
to express the increase in rice yield due to fertilizer application by
subtracting the soil base yield from the fertilizer applied yield;
FCR was used to measure the contribution of fertilizer to rice

yield99. The model can be expressed as100

YSi μi; νi
� � ¼ β0 μi; νi

� �þ∑kβk μi; νi
� �

Xik þ εi;Xk ¼ X1;X2; � � � ;X9

ð2Þ
RYCi μi; νi

� � ¼ β0 μi; νi
� �þ∑kβk μi; νi

� �
Xik þ εi;Xk ¼ X1;X2; � � � ;X12

ð3Þ
YFi ¼ YSi=RYCi ð4Þ

FIYi ¼ YFi � YSi ð5Þ

FCRi ¼ YFi � YSi
� �

=YFi ´ 100% ð6Þ
where YSi, RYCi, YFi, FIYi, and FCRi refer to the soil-based yield,
the RYC, the fertilized yield, the FIY and the FCR of point i,
respectively; μi; νi

� �
refers to the spatial coordinates of point i; β0

refers to the intercept of point i; Xik refers to the value of the
explanatory variable of number k at point i; βk refers to the
regression coefficient of the explanatory variable of number k;
and εi is the residual error of the GWR model after fitting in point
i, which is calculated with interpolation using the OK method
(Formula 1).

In order to evaluate the simulation accuracy of the GWRK
model, we randomly selected 155 field experiments as verification
samples to calculate the error between the actual yield and the
predicted yield (Fig. 9a). The corresponding evaluation indicators
and their formulas are as follows:

ME ¼ 1=n∑n
i¼1 z xi

� �� z0ðxiÞ
� � ð7Þ

MAE ¼ 1=n∑n
i¼1 z xi

� �� z0ðxiÞ
�� ��� � ð8Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n∑n

i¼1 z xi
� �� z0ðxiÞ

� �2
q

ð9Þ

SMAPE ¼ 1=n∑n
i¼1 2 ´ z xi

� �� z0ðxiÞ
�� ��� �

= z xi
� ��� ��þ z0ðxiÞ

�� ��� �� �
´ 100%

ð10Þ
where ME, MAE, RMSE, and SMAPE refer to the mean error, the
mean absolute error, the root means square error, the mean
relative error, and the symmetric mean absolute percentage error,
respectively; z0ðxiÞ refers to the predicted value of sample i; z xi

� �
refers to the actual observed value of sample i; and n refers to the
number of samples. The smaller the MAE, RMSE, and SMAPE
values are, the smaller the error and the higher the simulation
accuracy are.

In this paper, we use the OAT (one-at-a-time) method to
analyze the sensitivity of rice yield model parameters. Since
topographic indicators change very little, we focus on analyzing
the sensitivity of meteorological, vegetation, soil, and fertilizer
parameters. The OAT method increases or decreases the value of
only 1 parameter in the database by 10% each time, and then
calculates the RSI101. The calculation formula is as follows

RSI ¼ y x þ Δxð Þ � yðxÞ� �
=yðxÞ

Δx=x

����
���� ð11Þ

where x refers to the value of a parameter in the model
parameters; Δx is the amount of change in that parameter; yðxÞ
and y x þ Δxð Þ refer to the simulated output values (YS and RYC)
before and after the parameter change, respectively. Higher values
of RSI indicate that the parameter is more sensitive, and lower
values are less sensitive.

Farmland nutrient sustainability assessment. Farmland nutrient
sustainability is an important foundation for sustainable agri-
culture, but previous studies cannot accurately assess and identify
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farmland nutrient sustainability in spatial locations102,103.
Therefore, we propose a farmland nutrient sustainability assess-
ment framework (Fig. 10) based on the interrelationships between
soil, fertilizer and crop to achieve spatial optimization and precise
management of farmland nutrient resources.

Calculation of nutrient uptake for 100 kg rice yield. Since the
nutrient content of rice stems and leaves was not measured in the
“3414” fertilizer field experiment, we used 103 rice fertilizer uti-
lization efficiency field experiments in the Sichuan Basin to cal-
culate nutrient uptake. There were five fertilizer treatments in the
field experiments104: (1) nitrogen-phosphorus-potassium fertili-
zer; (2) phosphorus-potassium fertilizer; (3) nitrogen-potassium
fertilizer; (4) nitrogen-phosphorus fertilizer; and (5) no fertilizer
(CK). The experimental plots area for each treatment were
20–30 m2 with three replications, arranged in random groups.

Fertilizer rates were representative fertilization levels of the
experimental area. According to NY/T 2911 and relevant
studies105, the formula can be expressed as

NUTN ¼ YSE ´NCNSE þ YSL ´NCNSL ´ 1� SRð Þ� �
=YSE ´ 100

ð12Þ

NUTP ¼ YSE ´NCPSE þ YSL ´NCPSL ´ 1� SRð Þ� �
=YSE ´ 100

ð13Þ

NUTK ¼ YSE ´NCKSE þ YSL ´NCKSL ´ 1� SRð Þ� �
=YSE ´ 100

ð14Þ
where NUTN , NUTP, and NUTK refer to nitrogen, phosphorus
and potassium nutrient uptake (kg) for 100 kg rice yield, respec-
tively. YSE and YSL refer to rice seed yield and stem-leaf yield

Fig. 10 Assessment framework for farmland nutrient sustainability. The rectangular boxes in the figure represent the main data types used in the study,
the rounded rectangular boxes represent the main assessment steps, and the arrows represent the assessment process and sequence.
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(kg ha−1) in experimental treatment 1, respectively; NCNSE and
NCNSL refer to rice seed total nitrogen content (%) and stem-leaf
total nitrogen content (%) in experimental treatment 1, respec-
tively;NCPSE andNCPSL refer to rice seed total phosphorus content
(%) and stem-leaf total phosphorus content (%) in experimental
treatment 1, respectively; NCKSE and NCKSL refer to rice seed total
potassium content (%) and stem-leaf total potassium content (%),
respectively; SR refers to the rice straw return rate, which was 64%
in Sichuan Basin according to the relevant study106.

Calculation of rice fertilizer utilization efficiency. Rice fertilizer
utilization was calculated using the subtraction method107,108.
First, we calculated the fertilizer utilization efficiency of rice in
1182 “3414” field experiments in the Sichuan Basin. Second, the
results of the fertilizer utilization efficiency calculation were
analyzed by Geostatistics (Supplementary Fig. 5 and Supple-
mentary Table 8). Finally, ArcGIS was used to generate spatial
distribution maps of rice fertilizer utilization in the Sichuan Basin.
The formula can be expressed as

REN ¼ NUTN ´ YNPK � YPK

� �
=FerN ´ 100 ð15Þ

REP ¼ NUTP ´ YNPK � YNK

� �
=FerP ´ 100 ð16Þ

REK ¼ NUTK ´ YNPK � YNP

� �
=FerK ´ 100 ð17Þ

where REN , REP, and REK refer to rice nitrogen, phosphorus and
potassium fertilizer utilization efficiency (%), respectively. YNPK
refers to the rice yield of “3414” experimental treatment 6
(N2P2K2) with nitrogen, phosphorus and potassium fertilizers;
YPK refers to the rice yield of “3414” experimental treatment 2
(N0P2K2) without nitrogen fertilizers; YNK refers to the rice yield
of “3414” experimental treatment 4 (N2P0K2) without phosphate
fertilizer; YNP refers to the rice yield of “3414” experimental
treatment 8 (N2P2K0) without potassium fertilizer; FerN , FerP,
and FerK refer to the nitrogen, phosphorus, and potassium fer-
tilizer rates (2 levels) in the “3414” experiment, respectively.

Calculation of the theoretical nitrogen fertilizer rate. based on the
nutrient balance method109, the theoretical rate of nitrogen,
phosphorus, and potassium fertilizer for rice was calculated using
the predicted results of YS and YF. Then, the theoretical fertilizer
rate was compared with the actual fertilizer rate to calculate the
nutrient balance rates of nitrogen, phosphorus and potassium110.
The calculation formulas can be expressed as

TFRN ¼ YF � YSð Þ ´NUTN½ �= REN ´ 100ð Þ ð18Þ

TFRP ¼ YF � YSð Þ ´NUTP½ �= REP ´ 100ð Þ ð19Þ

TFRK ¼ YF � YSð Þ ´NUTK½ �= REK ´ 100ð Þ ð20Þ

NBRN ¼ FRN � TFRNð Þ=TFRN ´ 100% ð21Þ

NBRP ¼ FRP � TFRPð Þ=TFRP ´ 100% ð22Þ

NBRK ¼ FRK � TFRKð Þ=TFRK ´ 100% ð23Þ
where TFRN , TFRP, and TFRK refer to the theoretical nitrogen
fertilizer rate (kg ha−1), theoretical phosphate fertilizer rate
(kg ha−1), and theoretical potassium fertilizer rate (kg ha−1) in
each grid, respectively; YS and YF refer to the soil-based yield and
fertilized yield calculated in formula (2) and (4) in each grid,
respectively. NUTN , NUTP, and NUTK refer to nitrogen, phos-
phorus and potassium nutrient uptake (kg) for 100 kg rice yield,
respectively. REN , REP, and REK refer to rice nitrogen, phos-
phorus and potassium fertilizer utilization efficiency (%) in each
grid, respectively; NBRN , NBRP, and NBRK refer to nitrogen,

phosphorus and potassium nutrient balance ratios in each grid,
respectively (NBR> 0 indicates excessive nutrient inputs, NBR ¼
0 indicates balanced nutrient inputs, and NBR<0 indicates
insufficient nutrient inputs).

Nutrient sustainability assessment based on the SOFM model.
SOFM is a type of unsupervised artificial neural network111 that
has been widely used in the clustering or partitioning work of
geography and ecology112,113. Therefore, SOFM clustering was
used to identify farmland nutrient sustainability in this paper.
The NBRN, the NBRP and the NBRK are used as input nodes of
the SOFM model. According to the SOFM clustering results, the
nutrient sustainability zones such as nutrient excess, nutrient
degradation, and nutrient sustainability were identified and
classified. The SOFM network calculation process is as follows:

(1) Initialize the connection weights of n input nodes to output
nodes and assign a random initial value wij. Meanwhile, set
the initial neighborhood domain for each output node j.

(2) Normalize the input sample set. Then, select a sample from
the sample set as the input vector and calculate the
Euclidean distance, dj, between the input vector and each
output node j. The calculation formula is

dj ¼ kX �Wjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1½xiðtÞ � wijðtÞ�2
q

ð24Þ
(3) The output node k with the minimum distance is selected as

the winning node. Given a surrounding domain SkðtÞ,
update the weights of the winning node and of the nodes in
its surrounding domain. The weight change is

Δwij ¼ η tð Þ xi tð Þ � wij tð Þ
h i

; j 2 SkðtÞ ð25Þ
where η refers to a positive learning rate, decreasing with
time.

(4) Repeat steps 2–3 until the number of iterations is met.
(5) Input all samples for calculation; finally, according to the

clustering results, classify the storage.
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