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A machine learning approach to rapidly project
climate responses under a multitude of net-zero
emission pathways
Vassili Kitsios 1,2✉, Terence John O’Kane3 & David Newth4

Navigating a path toward net-zero, requires the assessment of physical climate risks for a

broad range of future economic scenarios, and their associated carbon concentration path-

ways. Climate models typically simulate a limited number of possible pathways, providing a

small fraction of the data needed to quantify the physical risk. Here machine learning

techniques are employed to rapidly and cheaply generate output mimicking these climate

simulations. We refer to this approach as QuickClim, and use it here to reconstruct plausible

climates for a multitude of concentration pathways. Higher mean temperatures are confirmed

to coincide with higher end-of-century carbon concentrations. The climate variability

uncertainty saturates earlier, in the mid-century, during the transition between current and

future climates. For pathways converging to the same end-of-century concentration, the

climate is sensitive to the choice of trajectory. In net-zero emission type pathways, this

sensitivity is of comparable magnitude to the projected changes over the century.
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The global community is currently facing the challenge of
how to meet the needs and desires of humanity1,2, while
not exceeding the planetary boundaries that the Earth can

safely sustain3. Anthropogenic carbon emissions have been
attributed to global warming4 and modifications to climate
variability5,6. Such changes to the climate influence the human
experience in numerous ways, including: food production7,
affordability8–10 and trade11; water security12; bushfire risk13;
spread of zoonotic diseases14; human health and mortality15–17;
labour productivity18; and economic development19. Navigating
the transition to a low carbon net-zero emission economy is key
to mitigating these and other climate related impacts.

Efforts are currently being undertaken to assess the transitional
and physical climate risks as a result of the uncertain path toward
a net-zero emissions world20,21. Transition risks relate to how
economic development may be influenced by changes in future
policy, technology, and/or consumer preferences brought on by
the constraining emissions pathway. These risks are often asses-
sed via integrated assessment models22,23 to determine the eco-
nomic settings compatible with prescribed target emissions
trajectories. A measure of the transition risk is the spread of
various possible economic measures associated with a range of
plausible emissions trajectories.

Physical climate risks are the damages imparted upon society
as a result of changing climatic conditions (chronic) and extreme
weather events (acute)24. To quantify the relevant future envir-
onmental hazards, one requires spatially resolved estimates of not
only the mean global warming response25, but also the prob-
abilities of a variety of natural phenomena26. Existing Coupled
Model Inter-comparison Project (CMIP) climate projections27,28

provide data for only a small subset of the universe of possible
future emissions trajectories. These general circulation model
simulations of the global climate are computationally expensive
and complex29. Consequently, it is not feasible to run such
simulations for each and every bespoke concentration pathway
required by the various stakeholders in the global economy.

To undertake consistent transitional and physical risk assess-
ments across a broad range of economic scenarios, a computa-
tionally fast means of determining how climate variability and
change might respond to arbitrary concentration pathways is
required. Existing approaches to estimating globally averaged
temperatures, involve the simulation of prescribed emissions or
concentration trajectories by reduced complexity models30. The
globally averaged temperature can then be used as an input to
estimate static spatially dependent maps of climate change related
modifications to temperature (or rainfall), using pattern scaling
techniques31. These methods provide no time varying informa-
tion, nor any information pertaining to the variability nor
extremity of these future climates. Systems that provide time
varying gridded fields for a prescribed globally averaged tem-
perature, do so only for monthly averaged surface temperature32.

Here we apply purpose-built model reduction approaches in
conjunction with machine learning (ML) techniques to produce
time varying gridded climate fields in response to prescribed
concentration pathways. Our approach captures both climate
variability and change. It is also multi-variate and can simulta-
neously reconstruct multiple user-defined climate variables in a
dynamically consistent manner. We refer to this capability as
QuickClim. QuickClim utilises existing climate model data and
the associated atmospheric carbon dioxide equivalent (CO2e)
concentrations, to learn the relationships between the two. The
adopted class of ML methods33,34 captures the dependence of the
data at a given time, on the data at previous times, and on the
applied external forcing (i.e., CO2e). The ML model coefficients
can also be regime dependent. This approach has previously been
successfully applied to climate attribution problems5,35–37, and

finance applications38–40. The power and novelty of QuickClim,
is that it can estimate the climate variability and change for any
arbitrary concentration pathway, and for any selection of climate
variables. At present there is no other method in the literature
capable of doing so.

The majority of research on the climatic response to net-zero
emissions pathways, has addressed the mean change to a small
number of specific trajectories. Here, via multiple case studies, we
use QuickClim to examine how a multitude of possible con-
centration pathways influence the climate. We first determine the
influence of the average decarbonisation rate. Then for a fixed
average decarbonisation rate and fixed end-of-century con-
centration, we infer the influence of the specific trajectory. Finally,
we assess a family of concentration pathways approaching that of
RCP2.6, to be more in line with a net-zero emissions type sce-
nario. To understand these sensitivities, QuickClim readily
facilitates the rapid reconstruction of thousands of climate
responses approximating the behaviour of the available CMIP
models to the explored pathways.

In each of the considered case studies, we not only characterise
the climate response by changes to its mean state, but also by
changes to measures of its variability, symmetry and extremity.
We analyse statistical changes to surface temperature, and also to
a broader set of climate variables required to more directly esti-
mate the influence of the climate on human health. For simplicity,
the concentration pathways explored herein have been designed
to be functions of time. In the discussion section we also illustrate
how QuickClim could equally be adopted to generate climate data
for scenarios as defined by integrated assessment models, span-
ning various settings for population growth, affluence and tech-
nological development.

Results
Climate estimation approach. As mentioned above, QuickClim
learns the relationships between atmospheric CO2e concentrations
and associated climate model output. The climate model data
ingested in this study comprises of the projections contributed to
the fifth Coupled Model Inter-comparison Project (CMIP5)27.
These projections were generated by multiple climate models
from various research centres worldwide, for a predefined set of
future scenarios, referred to as Representative Concentration
Pathways (RCP). Each RCP represents a possible future climate,
with a specific CO2e trajectory. In order of increasing levels of
warming, the three scenarios adopted herein are denoted by
RCP2.6, RCP4.5, and RCP8.5. A set of 15 general circulation
models supplied the climate variables required for this study, with
simulations run up to the year 2100 for all of the three afore-
mentioned RCPs. QuickClim simultaneously learns the relation-
ships between the CO2e concentrations and the desired climate
variables. The process is repeated for each individual CMIP5
model. This allows one to produce an ensemble of climate model
projections for a given arbitrary concentration pathway. The
approach can reconstruct fields of multiple climate variables at
once, so long as the surface air temperature (SAT) field is
available.

QuickClim is extensively described and validated in the
Methods section, with a brief overview provided below. Figure 1
illustrates the four key stages: model reduction; training;
projection; and reconstruction. In the model reduction phase,
an empirical orthogonal function decomposition41,42 is calculated
across all time and scenarios to extract the climate change related
spatial pattern (EOF1) and temporal evolution (PC1). During the
training, separate ML models (red, grey, and blue boxes) are
learnt linking the CO2e concentrations with the associated climate
change time series. In the projection phase these separate ML
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Fig. 1 QuickClim machine learning approach to generating space and time varying climate data for an arbitrary CO2e concentration pathway. The
QuickClim approach comprises of four phases: model reduction; ML training; projection; and reconstruction. The adopted ML approach is the Finite
Element Method Bounded Variation Vector Auto-regressive model with exogenous factors (FEM-BV-VARX)33,34. While CO2e concentrations are
presented here in terratonnes (Tt), the required ML input factor adopted in this study is the natural log of CO2e in gigatonnes. Note, any linear scaling of
this exogenous input factor from the beginning of the process, due to for instance a change of units, would have no impact on the performance.
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representations are combined in a manner weighted by the model
relevance. This combined ML model (purple box) is then applied
to calculate the temporal climate change response (PC1) to the
prescribed concentration pathway of interest. In the reconstruc-
tion phase the new projected temporal response is multiplied by
the original climate change related spatial pattern (EOF1). The
climate variability fields are then sampled from the original CMIP
scenario associated with the ML model most relevant in each
month. The final dataset is the sum of the climate change and
variability components.

Multiple case studies are undertaken in the following sections.
QuickClim is used to assess how carbon concentrations impact
measures of the climate shown to be important for the human
condition. We first explore the influence of the average
decarbonisation rate, with the envelope of pathways engulfing
the moderate decarbonisation scenario of RCP4.5. Next, we assess
the sensitivity of the climate to a series of concentration pathways,
all converging to the same end-of-century trajectory, akin to that
of RCP4.5. Finally, we determine the climate sensitivity for an
envelope of pathways converging to that of the net-zero emission
type scenario of RCP2.6. In all cases we quantify the decadal
statistics of SAT at a global scale. The response of wet-bulb-globe-
temperature (WBGT) is also highlighted, as it is a determining
factor in economic labour productivity19 and human health17.

Sensitivity to the average decarbonisation rate. Here we explore
the influence the decarbonisation rate has upon the climate.
QuickClim reconstructs the climate response to 100 prescribed
pathways with a range of decarbonisation rates, each attaining
constant atmospheric concentrations in different future years.
The longer the decarbonisation period, the larger the end-of-
century CO2e concentration. These pathways are illustrated by the
magenta lines in Fig. 2a, with a subset of these pathways dotted

for clarity. The CMIP5 pathways of RCP2.6, RCP4.5, and RCP8.5
are also included in this figure for reference. The annual change
in atmospheric CO2e concentration of the reconstructed path-
ways, is illustrated in Fig. 2b. Pathways with the most aggressive
decarbonisation attain a constant CO2e concentration within the
2040s, while the least aggressive pathways continue to grow at the
end of the century.

QuickClim produces spatio-temporally varying fields for all of
these 100 individual concentration pathways. Multi-variate
reconstructions are made of SAT, sea-level pressure and specific
humidity, for each of the CMIP5 models that provide all of these
variables. WBGT is then calculated from these reconstructed
variables. For each model and concentration pathway, the time
mean of SAT and WBGT is calculated over each decade. The
standard deviation, skewness and excess kurtosis are similarly
calculated, but on the climatological anomalies with a 5-year
centred moving averaged subtracted. This is done so that these
higher order statistics represent changes separate from the
seasonal cycle and any warming trends. Percentile maps are
calculated across the multiple concentration pathways for each of
the decadal statistics. These percentile maps are then averaged
over the output mimicking each of the CMIP models.

For each decade, Fig. 2c–f illustrates the globally averaged time
mean, standard deviation, skewness and kurtosis of SAT. Within
these plots, the solid black line is the median across all
concentration pathways, the dashed lines are the upper and
lower quartiles, and the magenta shaded region spans the 5th to
95th percentiles. For the decadal time mean, the median and
inter-quantile ranges all continue to grow toward the end of the
century, as the range across the carbon concentrations also grows
in time. The median of the globally averaged standard deviation
decreases toward the end of the century, as more of these
trajectories attain a constant atmospheric CO2e concentration.

Fig. 2 Influence of decarbonisation rate on the decadal statistics of SAT, for case study one. a Atmospheric CO2e concentration pathways (magenta),
with subset of pathways dotted for clarity, and including RCP8.5 (red dotted), RCP4.5 (grey dashed), and RCP2.6 (blue solid) pathways for reference; and
b annual change in atmospheric CO2e concentration, with same subset of pathways dotted for clarity. For SAT, the global average and CMIP model
ensemble average of the: c time mean; d anomalous standard deviation; e skewness; and f excess kurtosis; per decade. Legend in c, applicable to d–f.
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However, the uncertainty continues to grow in time, as quantified
by the expansion of the inter-quantile ranges. At the beginning of
the century the entire inter-percentile range of the globally
averaged skewness is negative, and increases to being centred at
zero by the end of the century. The globally averaged excess
kurtosis (i.e., kurtosis minus three) is positive throughout the
entire century, but is on a downward trajectory. The skewness
and excess kurtosis both tend toward zero, indicating a return to
Gaussian-like conditions. Their inter-quantile ranges also satu-
rates by mid this century. In Supplementary Fig. 1, we also
observe similar behaviour for SAT when averaged over: Africa;
Asia; Oceania; Europe; North America; and South America.

We now examine the spatial structure of the statistical range in
potential climate responses due to the various reconstructed
concentration pathways considered. For the decade centred at
2090, Fig. 3a illustrates the 5th percentile across the concentration
pathways, of the time mean WBGT. To accentuate the spread in
potential outcomes, Fig. 3b illustrates the difference between the
95th and 5th percentiles. This indicates enhanced warming in the
high latitude regions. Figure 3c, d present the standard deviation,
Fig. 3e, f the skewness and Fig. 3g, h the kurtosis. In each of these

plots the 5th and 95th percentiles are illustrated in the left and
right columns, respectively. All plots demonstrate large differ-
ences across the percentile range. The standard deviation has
potential for enhanced variability at the high latitudes. The 5th
percentile of the skewness is predominantly negative over the
entire globe, while the 95th percentile is almost exclusively
positive. For excess kurtosis the lower percentile is consistently
near zero, while the upper percentile is strongly positive over the
entire globe. Hence, depending on the decarbonisation rate, not
only is there potential for increased warming (via the mean), but
also increased variability (standard deviation), tendency toward
larger positive WBGT (skewness), and longer tailed probability
distributions (kurtosis). Observations made on the basis of
WBGT are also valid for SAT. The unknown future decarbonisa-
tion rate, adds to the total uncertainty of climate projections.
Other sources of uncertainty include climate variability and
choices made in the numerical modelling.

Sensitivity to the specific trajectory. As evidenced by the his-
torical record, the atmospheric CO2e concentration over the past
decades has not evolved smoothly in time. The carbon

Fig. 3 Wet-bulb-globe-temperature decadal statistics centred at 2090, for case study one. Time mean: a 5th percentile across all the concentration
pathways; and b 95th minus 5th percentile. The following are calculated from the climatological anomalies. Standard deviation: c 5th; and d 95th percentile.
Skewness: e 5th; and f 95th percentile. Excess kurtosis: g 5th; and h 95th percentile. All maps are averaged over the CMIP model ensemble.
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concentration is rather influenced by a manner of external fac-
tors, including but not limited to: global pandemics; economic
expansions; and recessions. During the decarbonisation of the
future global economy, the eventual concentration pathway,
could quite likely be more volatile than what has previously been
observed.

Recognising this, we assess another 100 concentration pathways,
all achieving constant concentrations mid this century. They also
all have the same fixed end-of-century CO2e concentration, but
with unique trajectories. The magenta shaded region in Fig. 4a
spans the 5th and 95th percentiles of the concentration pathways,
with the black lines illustrating all 100 individual trajectories. The
RCP2.6, RCP4.5, and RCP8.5 concentration pathways are again
included for reference. Figure 4b illustrates the annual changes in
the QuickClim concentrations in terms of the 5th to 95th percentile
range, and individual trajectories. In some of these trajectories the
CO2e concentration gradually increases year on year as they
approach the final end-of-century conditions. Certain trajectories,
however, overshoot and then decrease to the final CO2e

concentration. The 5th percentile of the annual reduction in
CO2e concentration across all of the scenarios is less than 20 Gt of
CO2e per year. This is approximately the level of carbon dioxide
removal assumed at certain stages of this century in various
integrated assessment model economic studies20,21.

The globally averaged SAT decadal time mean, standard
deviation, skewness, and excess kurtosis, are illustrated in
Fig. 4c–f. The median across the concentration pathways of all
the decadal statistics follow trajectories consistent with the
previous case study. The decadal mean increases, standard
deviation decreases, skewness increases from a negative value to
approach zero, and the excess kurtosis decreases while remaining

positive. However, for the global mean SAT, its inter-quantile
range is small in comparison to the change in its median
throughout the reconstructed time period. This is to be expected,
since the envelope of concentration pathways is much smaller in
this case study. On the other hand, for the standard deviation,
skewness and excess kurtosis, their respective uncertainties peak
in the 2040s, and are of the same magnitude as the change in their
medians over the century. Additionally, in 2040 the magnitude of
the inter-quantile range of the standard deviation and excess
kurtosis, is similar in magnitude to that observed in the previous
case study. This is despite the former case study spanning a much
wider range of CO2e concentrations. The above observations are
also true for the statistics averaged over the majority of
continental regions in Supplementary Fig. 2.

The statistical WBGT maps presented for the previous case
study, are calculated for this new ensemble of trajectories and
illustrated in Supplementary Fig. 3. These maps are for the decade
centred in 2040. All of the statistical responses have similar spatial
structure to those of the previous example. The inter-percentile
range of WBGT in Supplementary Fig. 3b illustrates a smaller
difference in the decadal mean response across the assessed
concentration pathways as compared to the previous case study.
This is also consistent with the smaller range in the globally
averaged decadal mean in Fig. 4c. However, the standard
deviation, skewness and excess kurtosis of WBGT indicates that
there are large differences between the 5th and 95th percentiles.
As such the choice of specific trajectory, can have a measurable
influence on the higher order statistics, even for a given fixed
average decarbonisation rate and fixed final CO2e concentration.

Finally, to explore concentration pathways perhaps more
compatible with a net-zero emissions scenario, we reconstruct a

Fig. 4 Sensitivity of the decadal climate statistics to concentration pathways with fixed average decarbonisation rate, and fixed end-of-century
atmospheric CO2e concentration, for case study two. a 5th to 95th percentile range of atmospheric CO2e concentration pathways (shaded magenta), with
individual pathways indicated (translucent black), including RCP8.5 (red dotted), RCP4.5 (grey dashed) and RCP2.6 (blue solid) pathways for reference;
and b 5th to 95th percentile range of annual change in atmospheric CO2e concentration (shaded magenta), with individual pathways indicated (translucent
black). For SAT, the global average and CMIP model ensemble average of the: c time mean; d anomalous standard deviation; e skewness; and f excess
kurtosis; per decade. Legend in c, applicable to d–f.
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family of different trajectories all converging to the RCP2.6
pathway by the end of the century. The carbon dioxide
concentration in RCP2.6 is similar to those of the first shared
socio-economic pathways in the sixth CMIP, which encompasses
net-zero emissions like scenarios43,44. The QuickClim pathways,
and associated globally averaged statistics are illustrated in Fig. 5.
All of the decadal statistics in Fig. 5c–f exhibit similar inter-
quantile ranges as compared to case study two. However, the
inter-quantile range of the time average mean is no longer
negligible, as compared to the milder increase in the median SAT
over the century. These observations are consistent with the
continental averages illustrated in Supplementary Fig. 4. Finally,
Supplementary Fig. 5 illustrates the same WBGT statistics as in
Fig. 3, but with statistics centred in 2040. These maps exhibit
similar spatial structure and magnitude to those of the second
case study. The choice of specific trajectory toward this net-zero
emissions type scenario, is again shown to have a measurable
influence on the decadal statistics.

Discussion
The pre-industrial era was a statistically stationary, stable, and
cooler world than the one we currently live in. The end-of-
century climate will almost certainly be warmer, but potentially
also statistically stationary. Our results show that the most
unstable time of high risk may in fact be now, as we adjust from a
pre-industrial climate to some new future stable one. This current
transition period corresponds to one where disruptions and even
tipping points might manifest in changes to rainfall patterns and
variations in major climate teleconnections. There may well be
relatively little time to adapt to such rapidly changing features of
the Earth system.

To summarise, QuickClim enabled the rapid and computa-
tionally cheap estimation of the physical climate response across
an extensive range of concentration pathways. This would not be
possible using numerical simulations of the climate alone. Three
case studies were performed. In the first case study, slower
average rates of decarbonisation, leading to higher end-of-century
atmospheric CO2e concentrations, were shown to produce higher
temperatures. Skewness and kurtosis were also shown to steadily
approach Gaussian-like conditions, with their uncertainties
saturating mid this century. In the second case study, for a fixed
average decarbonisation rate and fixed final CO2e concentration,
the climate variability was shown to be sensitive to the specific
concentration pathway. The inter-percentile ranges of the stan-
dard deviation, skewness and kurtosis, were of the same order as
the change of their medians over the century. This was also true
for the net-zero emissions type family of concentration pathways
in the third case study. Here, the inter-percentile range of the
mean was also of similar magnitude to its change over the century
due to the milder warming.

On the basis of these case studies, and the physical repre-
sentativeness of the climate model output, the take home mes-
sages are as follows. Climate variability and change are both
strongly dependent upon the average decarbonisation rate. The
specific trajectory for a given fixed decarbonisation rate, can also
have a quantifiable effect upon measures of the climate variability,
symmetry and extremity. This effect may also be present in the
mean climate change response if the warming is sufficiently mild,
as in net-zero emissions scenarios.

Determining a fair, equitable, and efficient pathway forward
toward net-zero emissions requires a holistic and consistent
assessment of both the climate and economy. Figure 6 illustrates

Fig. 5 Sensitivity of the decadal climate statistics to concentration trajectories converging to RCP2.6 toward the end of the century, for case study
three. a 5th to 95th percentile range of atmospheric CO2e concentration pathways (shaded magenta), with individual pathways indicated (translucent
black), including RCP8.5 (red dotted), RCP4.5 (grey dashed), and RCP2.6 (blue solid) pathways for reference; and b 5th to 95th percentile range of annual
change in atmospheric CO2e concentration (shaded magenta), with individual pathways indicated (translucent black). For SAT, the global average and
CMIP model ensemble average of the: c time mean; d anomalous standard deviation; e skewness; and f excess kurtosis; per decade. Legend in c, applicable
to d–f.
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the role that QuickClim could play in enabling such an assess-
ment of transitional and physical climate risk. In assessing tran-
sition risk, the emissions act as a constraint on the economic
system. The annual emissions are the product of the population,
embodied energy consumed per person (proportional to afflu-
ence), and the carbon intensity of the energy sources45,46—see
green boxes in Fig. 6. Associated concentrations are readily
ingested by QuickClim to generate compatible spatio-temporally
varying climate data. These QuickClim outputs can then be used
to assess: the climate induced population impacts15,17; affluence
reducing climate damage functions7,18,19; and the environmental
hazards. Physical climate risks are the intersection of the envir-
onmental hazards, location of the exposed assets and people, and
their vulnerabilities to these hazards47—see blue circles in Fig. 6.

While QuickClim can rapidly assess the climate response, we in
no way see it as a replacement for the general circulation models
used in CMIP. In fact, we envisage that this technology would serve
as a complementary tool, to quickly explore the large concentration
pathway parameter space. Pathways with particularly risky and/or
interesting QuickClim output, could be verified by one or more
general circulation models. Any new simulated datasets could then
be additionally ingested by QuickClim, which would further improve
its representation of the concentration pathway parameter space.

Finally, the case studies presented within are representative of
potential outcomes, but certainly do not encompass all potential
future risks. The motivation for developing QuickClim, is to
enable researchers, policymakers, and other stakeholders to
investigate future climate risks for economic scenarios to which
they might be particularly exposed. We propose that a greater
understanding of the potential risks of climate variability and

change can only help the global community in the decarbonisa-
tion effort over the coming decades.

Methods
As illustrated in Fig. 1, QuickClim comprises of four key stages:
model reduction; training; projection; and reconstruction. This
methods section includes a description and illustration of each of
these four stages for one given CMIP model, with additional
validation provided in Supplementary Note 2. An assessment of
the reconstruction process across all of the available CMIP
models is presented in Supplementary Note 3.

Model reduction. The first step is to reduce the dimension of the
problem via some form of model reduction. For a given climate
model, each surface field is a function of time t, and space
y= (λ, ϕ) of longitude λ, and latitude ϕ. Additionally, the data is
dependent upon the scenario s, which here is specifically
s≡ (s1, s2, s3)= (RCP2.6, RCP4.5, RCP8.5) of length Ns= 3. To
facilitate the discussion we define the state vector q(y, t, s), con-
taining at a minimum the SAT, as denoted by T(x, t, s), followed
by any other field variables required to be reconstructed. The
number of variables contained in vector q is denoted by Nq. It is
essential that SAT is included, since it has a strong relationship
between the concentrations and the response of the climate sys-
tem. The data sets are standardised according to

q0ðy; t; sÞ ¼ qðy; t; sÞ � ~qðy; oÞ
σðy; oÞ ; ð1Þ

where o is the calendar month of the year, with ~qðy; oÞ and σ(y, o)
the climatological average and climatological standard deviation

Fig. 6 QuickClim provides emissions trajectory specific climate data sets, enabling consistent transitional and physical risk assessments. Carbon
emissions are defined as the product of population, per capita energy consumption, and the carbon intensity of the energy sources. These emissions
influence the radiative forcing, which QuickClim can use to generate gridded fields of associated climate variables. These variables can then be used to
quantify environmental hazards, which are an essential element of physical climate risk.
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calculated across all time and scenarios. The resulting standar-
dised variables are all now non-dimensional. A empirical ortho-
gonal function (EOF) decomposition is then performed on these
standardised fields such that

q0ðy; tÞ ¼ ∑
Nmodes

n¼1
a½n�ðtÞΦ½n�ðyÞ; ð2Þ

where Nmodes is the number of modes used in the reconstruction,
with a[n](t) and Φ[n](y) the n-th principal component and n-th
EOF mode, respectively. Each EOF mode is a vector quantity
containing the SAT, followed by any other included field vari-
ables. This means that one set of EOF modes is used to compress
the data across all of the three scenarios. This is an essential
property, since we will be combining model representations and
output across the various scenarios. It is, therefore, important that
the reduction is applied consistently across these scenarios.

The decomposition is calculated by solving the eigenvalue
problem

Ca½n� ¼ Λ½n�a½n�; ð3Þ
where C is a covariance matrix, with a[n] and Λ[n] its n-th eigenvector
and eigenvalue, respectively42. The eigenvectors are scaled such that
Λ[n]= a[n] ⋅ a[n]/Ns/NT. The elements of C are given by

CkþNT j;iþNT l
¼ 1

NT
q0ðy; tk; sjÞ; q0ðy; ti; slÞ

D E
; ð4Þ

for i, k∈ [1,NT] and j, l∈ [1,Ns], with NT the number of samples.
The inner product in (4) is defined as

q0ðy; tk; sjÞ; q0ðy; ti; slÞ
D E

¼
R
V T 0ðy; tk; sjÞT 0ðy; ti; slÞ þ 1

Nq�1 ∑
Nq

v¼2
q0vðy; tk; sjÞ q0vðy; ti; slÞ

" #
dy;

ð5Þ
with V the integration volume. This inner product is designed such
that in instances where fields other than SAT are included, for a given
element in the covariance matrix, the SAT contributes half, with the
other half coming from the remaining variables. This ensures that the
model reduction process produces a first principle component (PC)
time series predominantly associated with the temperature field, for
which there is a strong association with the concentrations.

By construction of the inner product, each eigenvector is a
concatenation of the temporal evolution of each scenario where

a½n� ¼ a½n�ðs1Þ; a½n�ðs2Þ; a½n�ðs3Þ
� �

; ð6Þ
with each vector a[n](sj), containing the instances in the time
series a[n](t, sj), representing the evolution of the EOF mode n for
scenario j. The EOF patterns are recovered according to

Φ½n�ðyÞ ¼ 1
NTNsΛ

ðnÞ ∑
NT

k¼1
∑
Ns

j¼1
a½n�ðtk; sjÞ q0ðy; tk; sjÞ; ð7Þ

which exploits the orthogonality property 〈Φ[n](y),Φ[r](y)〉= δnr,
where δnr is the Kronecker delta function.

To illustrate the process a multi-variate EOF decomposition
was undertaken for the climate model BCC-CSM1-1, with key
properties consistent across all of the assessed CMIP5 models.
The surface variables included are SAT, zonal wind, meridional
wind, relative humidity, sea-level pressure, and precipitation flux.
SAT is the key variable in terms of determining the relationship
with the concentrations, and the other variables are included in
the EOF decomposition to ensure they are all reconstructed
consistently. The time series associated with each scenario per PC
is illustrated for modes 1, 2, and 3 in Fig. 7a–c, respectively. The
titles of these plots list the percentage of explained variance, with
the first mode containing 26.87%, followed by 2.21% and 1.83%

for the second and third most energetic modes. Clearly, mode
n= 1 captures the climate change signal with clear distinctions
between each of the scenarios. The RCP8.5 time series increases
most strongly, followed by that of the intermediate emission
pathway RCP4.5, and then the lowest emission pathway RCP2.6.
In contrast, for PCs of n= 2 and n= 3, a given mode has
negligible differences across each of the scenarios in terms of the
time mean and variance. This is also true for the higher order PCs
with n > 3.

The multi-variate spatial patterns are illustrated from the second
row downwards in Fig. 7. Modes 1, 2, and 3 are illustrated in the
left, middle, and right columns, respectively. The second row
contains the patterns associated with the surface temperature.
Mode 1 is clearly a climate change associated mode, exhibiting a
predominantly zonal structure, which is warming at all locations.
Mode 2 and 3 exhibit El Niño Southern Oscillation type structures
over the Pacific. The higher order modes (n > 3) have progressively
smaller scale spatial structures with shorter timescales. The
remaining rows in descending order illustrate the associated
patterns per mode for the zonal wind, meridional wind, relative
humidity, sea-level pressure and the precipitation flux.

In summary, the first PC is the only mode to have time series
exhibiting a clear statistical distinction between each of the
scenarios. Note, one might expect a climate change mode to have
larger warming at the poles and extra-tropics as compared to the
tropics. Recall, however, that these patterns have all been
normalised by the standard deviation of the field. The magnitude
of the variability of the surface temperature is less in the tropical
regions, which is why this nondimensionalised pattern has
increased magnitude in this region. The QuickClim reconstruc-
tion process in its entirety, however, does produce the expected
global warming patterns of increased warming at the poles, as
evidenced in Fig. 3b, Supplementary Figs. 3b and 5b.

Training. For each scenario, we now build ML representations
for the first PC time series dependent upon its associated CO2e

concentrations. We adopt the finite element method (FEM)
clustering approach, with bounded variation (BV) regularisation,
based on a distance metric governed by a vector auto-regressive
model with exogenous factors (VARX). This technique is referred
to as FEM-BV-VARX33,34, with the mathematical details pro-
vided in Supplementary Note 1. By combining FEM-BV-VARX
representations of each scenario in a judicious way, we can pro-
duce climate projections for any user defined exogenous carbon
concentration pathway. Note, that we also tested the generation
of FEM-BV-VARX representations for the higher order PCs, and
found the model coefficients associated with the exogenous
concentrations were negligible. We, therefore, require a con-
centration dependent projection of only the first PC.

The projection of the first PC time series, a[1](t, sj), must be
performed independently for each scenario sj. For clarity of
notation we define the scalar time series x(t)= a[1](t, sj). The goal
is to build a mathematical model for the time series x(t), subject
to an exogenous forcings u(t), characterised by a time-dependent
set of model parameters θ(t). Both x(t) and u(t) have
T+ 1 snapshots over the time interval [0, T]. In dealing with
time series consisting of trends, the main idea is to break the
problem down into a series of local time chunks (i.e., finite
elements) that are treated individually as being stationary. Within
a given local chunk of time the data is represented by one of
potentially multiple clusters governed by the auto-regressive
model

xðtÞ ¼ μðiÞ þ ∑
m

q¼1
AðiÞ
q xðt � qτÞ þ BðiÞuðtÞ; ð8Þ
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Fig. 7 Empirical orthogonal function decomposition for a given climate model.Modes 1 a, d, g, j,m, p, s, 2 b, e, h, k, n, q, t, and 3 c, f, i, l, o, r, u, illustrated
by their principle components time series a–c, and spatial patterns of the nondimensionalised surface variables: SAT d–f; zonal wind g–i; meridional wind
j–l; relative humidity m–o; sea-level pressure p–r; and precipitation flux s–u. Legend in a applicable to b, c.
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where m is the number of endogenous lags, μ(i) is a constant
coefficient, AðiÞ

q the endogenous coefficients, and B(i) the exogenous
coefficients of cluster i. Time-dependent probabilities (or model
affiliations), denoted by γ(i)(t), determine which of the multiple
clusters best represents that chunk of time. The γ(i)(t) affiliations
are non-negative at all times t and for all clusters i. At all times the
sum of γ(i)(t) over all clusters is equal to 1. The bounded variation
constraint incorporates additional information pertaining to the
temporal persistency, where the parameter p sets a lower bound on
the average duration between cluster transitions. The cluster
dependent parameter vector is then defined as

θðiÞ ¼ ðμðiÞ;AðiÞ
1 ;A

ðiÞ
2 ; ¼ ;AðiÞ

m ;B
ðiÞÞ;with ð9Þ

θðtÞ ¼ ∑
K

i¼1
γðiÞðtÞ θðiÞ; ð10Þ

the time varying global parameter set. In the following section, we
refer to this global parameter set for a given scenario s as θs(t).

In summary, for a given x(t) and u(t), the number of clusters K,
VARX orderm (i.e., memory length), and state persistence duration
p, constitute the set of hyper-parameters that must be chosen
beforehand when applying the above procedure. For simplicity, we
assume the same lag orderm for all K clusters. The FEM-BV-VARX
inputs and outputs are illustrated for the scenarios: RCP2.6 in
Fig. 8a, d, g; RCP4.5 in Fig. 8b, e, h; and RCP8.5 in Fig. 8c, f, i. These
plots are for the climate model BCC-CSM1-1, with K= 2,
m= 3 months and p= 3 months. For each of these scenarios, the

top row in Fig. 8 illustrates the endogenous climate model PC by
the dashed black line. The solid coloured lines are the exogenous
time series, which is given by the natural logarithm (ln) of the
associated CO2e concentrations. The ln of CO2e is proportional to
the radiative forcing acting on the atmosphere.

The relationship between this first PC and lnCO2e appears to
become more direct, as the scenarios become more carbon
intensive from left to right. For each scenario these time series are
the inputs in the FEM-BV-VARX optimisation problem. The
solution to this optimisation problem generates the cluster
dependent FEM-BV-VARX model coefficients listed in supple-
mentary table 1, and the time varying cluster affiliation sequences
illustrated in the middle row of Fig. 8. For clarity we have zoomed
in to a period between 2060 and 2070, to more clearly illustrate
the switching between clusters states. The time varying
parameters for a given scenario are calculated following (10).
That is, the cluster dependent coefficients in Supplementary
Table 1 are multiplied by the time varying affiliations of the
associated cluster, and then summed over all clusters. The bottom
row illustrates the climate model PC (dashed black line)
compared with the FEM-BV-VARX projection (solid coloured
line) of the associated scenario. The FEM-BV-VARX projection
adopts the time varying parameters along with the associated
exogenous lnCO2e time series.

Projection. Now that we have the ability to generate FEM-BV-
VARX representations of existing climate data sets, the question

Fig. 8 FEM-BV-VARX representation of the first principle component (PC1). For: RCP2.6 a, d, g; RCP4.5 b, e, h; and RCP8.5 c, f, i scenarios. a–c illustrates
the endogenous climate model PC1 (black dashed left axis) and the exogenous CO2e concentrations (colour solid right axis). d–f illustrates the cluster
affiliation sequences. g–i illustrates the climate model PC1 (black dashed) compared with the FEM-BV-VARX projection (colour solid).
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is how we can use this to generate climate model output for an
arbitrary user-defined pathway. To validate the approach we use
climate model output from only two of the three scenarios
(RCP2.6, RCP4.5, RCP8.5) in order to reconstruct the excluded
dataset. This will enable us to compare the FEM-BV-VARX based
reconstruction with the original excluded dataset. Below we
illustrate the process using the RCP2.6 and RCP8.5 scenarios to
reconstruct RCP4.5 for one particular climate model. Note,
excluding RCP4.5 from the initial model reduction process pro-
duces exceedingly similar spatial EOF patterns, as those calcu-
lated when all of the scenarios are included. The inclusion of
RCP4.5 in the model reduction stage, therefore, has negligible
impact on the following validation metrics.

Figure 9a illustrates the reconstruction of the FEM-BV-VARX
projections of RCP2.6 (blue line, as in Fig. 8g) and RCP8.5 (red
line, as in Fig. 8i) along with the PCs of the climate model output
(associated dashed black lines). These projections were under-
taken using the parameters listed in Supplementary Table 1, the
cluster affiliations illustrated in Fig. 8, along with their associated
exogenous CO2e concentrations. The target RCP4.5 PC (centre
dashed black line) is also included in this plot as a reference
between these two bounding scenarios. Figure 9b illustrates the
projection of these models, using the same model parameters, but
instead with the exogenous carbon concentrations of the
RCP4.5 scenario. We refer to these as out-of-sample projections.
The projection using the RCP2.6 model (blue) is lifted to
approach the target RCP4.5 PC, and the projection using the
RCP8.5 model (red) has fallen to also approach the RCP4.5 PC.
We now require an approach of combining these two estimates of
the RCP4.5 scenario.

We assume that the less a model projection diverts from its
original trajectory, as a result of the new RCP4.5 exogenous input,
the more representative it might be. As a measure of such a
diversion, the blue line in Fig. 9c illustrates a centred 3-year
moving averaging of the squared difference between the RCP2.6
PC and the model projection using instead the RCP4.5 exogenous

time series. The same calculation is performed for the model built
using the RCP8.5 data, illustrated by the red line. This distance
metric is denoted by ϵs(t) for scenario s. As the simulation
progresses and the exogenous factors begin to take effect. The
projections using the RCP4.5 concentrations become more
distinct from the PC of the scenario the model coefficients were
learnt from, and hence these distance measures increase. Toward
the latter period, in particular, the FEM-BV-VARX model built
using the RCP2.6 data has deviated to a lesser degree, and is
presumably the more representative model.

We then calculate a time series of weights, ws(t) for each
scenario s∈ (RCP2.6, RCP8.5), by normalising the distance metric
inverse at each instant in time, by its sum across the scenarios,
such that

wsðtÞ ¼ ϵ�1
s ðtÞ= ∑

s2ðRCP2:6;RCP8:5Þ
ϵ�1
s ðtÞ: ð11Þ

By construction these weights are non-negative and sum to one at
all instances in time, and are illustrated in Fig. 9d. The time
varying global parameter sets of each scenario are combined
using these weights to produce the final set of parameters

θ̂ðtÞ ¼ ∑
s2ðRCP2:6;RCP8:5Þ

θsðtÞwsðtÞ: ð12Þ

This time varying global parameter set along with the exogenous
RCP4.5 concentrations is then used to produce the projection of
the RCP4.5 scenario, denoted by x̂ðtÞ, and illustrated in Fig. 9e by
the magenta line.

Reconstruction and validation. Given the above projection of
the first PC, we can now create gridded output for all of the
climate variables involved in the initial EOF decomposition.
Gridded fields of the climate change component are then given
by

q0ccðy; tÞ ¼ x̂ðtÞΦ½1�ðyÞ; ð13Þ

Fig. 9 Reconstruction of RCP4.5 principle component using FEM-BV-VARX representations of RCP2.6 and RCP8.5 climate model output. a Projection
of RCP2.6 and RCP8.5 FEM-BV-VARX models using their associated exogenous concentrations, compared to PCs of all three scenarios (black dashed).
b Projection of RCP2.6 and RCP8.5 FEM-BV-VARX models using RCP4.5 exogenous concentrations. c Centred 3-year moving average of the squared
distance between the FEM-BV-VARX projections using RCP4.5 exogenous concentrations and the PCs of the associated scenarios (RCP2.6, RCP8.5) from
which the FEM-BV-VARX models were learnt. d Weights for combining time varying FEM-BV-VARX parameters. e FEM-BV-VARX projection of RCP4.5
(magenta) using the ws(t) weighted average of the RCP2.6 an RCP8.5 model parameters, compared to the first PC of each scenario (black dashed).
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Fig. 10 Comparison of original climate model output and reconstructed surface fields averaged over the simulation period. Original RCP4.5 data
a, d, g, j, m, p, s, reconstruction of the RCP4.5 scenario b, e, h, k, n, q, t, and original minus the reconstruction c, f, i, l, o, r, u, for the: a–c SAT; d–f zonal
wind; g–i meridional wind; j–l relative humidity; m–o sea level pressure; p–r precipitation flux; and s–u wet bulb globe temperature.
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where x̂ðtÞ is the FEM-BV-VARX projected first PC, and Φ[1](y)
are the EOF patterns of mode 1 as illustrated by the maps in the
first column of Fig. 7. To determine the climate variability
component, we return to the standardised data instances. At
each instant in time t, the scenario with the maximum value of
ws(t) is identified according to

s?ðtÞ ¼ argmaxswsðtÞ: ð14Þ
The climate variability component of the new dataset is then
defined as the data instance of scenario s⋆(t) minus the first PC
contribution, such that

q0cvðy; tÞ ¼ q0ðy; t; s?ðtÞÞ � a½1�ðt; s?ðtÞÞΦ½1�ðyÞ: ð15Þ
The complete data set is then given by the sum of the time
varying climate change and climate variability fields

q0newðy; tÞ ¼ q0ccðy; tÞ þ q0cvðy; tÞ: ð16Þ
Finally, we dimensionalise the fields by the associated clima-
tological average and standard deviation according to

qnewðy; tÞ ¼ q0newðy; tÞ � σðy; oðtÞÞ þ ~qðy; oðtÞÞ; ð17Þ
where o(t) is the calendar month at time t, and ⊙ denotes
element-wise multiplication between the vector components.

The time average of this reconstruction over the entire
simulation period, is illustrated in the middle column of Fig. 10.
The original RCP4.5 data is illustrated in the left column, again
time averaged over the same period. The original data minus the
reconstruction is illustrated in the right column. The associated
SAT fields are illustrated in the top row, and demonstrate
excellent agreement. As illustrated in the lower rows, the same is
also true for the other variables in the EOF decomposition,
namely the zonal wind, meridional wind, relative humidity, sea-
level pressure, and precipitation flux. We additionally assessed the
WBGT, which is a non-linear function of the SAT, relatively
humidity and sea-level pressure. This diagnostic was calculated
from the original data and also the reconstructed fields. It again
produces excellent agreement.

In Supplementary Note 2, the temporal properties and higher
order statistics are also shown to be well reproduced. FEM-BV-
VARX projection tracks the climate model output on the basis of
the globally averaged annual SAT in Supplementary Fig. 6a. The
probability distribution function and auto-correlation function of
the Niño4 index of the reconstruction matches that of the original
data, as respectively shown in Supplementary Fig 6b, c. This
indicates the dynamics associated with the El Niño Southern
Oscillation are adequately represented. Gridded fields of various
statistical moments of the SAT are also well reconstructed as
illustrated in Supplementary Fig. 7. Pattern correlation between
the reconstructed and original field is 1.00 for the time mean, and
0.98 for the standard deviation. Maps of skewness and kurtosis
also exhibit very similar spatial patterns.

In the method section thus far, the process using the RCP2.6
and RCP8.5 scenarios has been used to undertake a multi-variate
reconstruction of RCP4.5 for one particular climate model. We
consider this experiment as an interpolation of the climate in the
CO2e concentration space, since the RCP4.5 scenario is bounded
by RCP2.6 on the lower side and RCP8.5 on the higher side.
Supplementary Note 3 presents summary statistics for how well
this reconstruction approach also performs in an extrapolation
sense. We additionally attempt to reconstruct either RCP2.6 or
RCP8.5, using the other two non-bounding scenarios. We also
assess the performance of the interpolated and extrapolated
reconstructions for all of climate models simulating these three
scenarios. In these tests, only SAT was included in the model
reduction phase. Supplementary Fig. 8 shows that after account-
ing for the variability across the climate models, there is a high

degree of similarity between the reconstruction method, and the
original climate data for all scenarios.

In Supplementary Note 4, the sensitivity of the reconstruction
performance to the hyper-parameter selection is assessed. Recall
the hyper-parameters are the number of clusters (K), the memory
depth (m), and the persistence parameter (p). Supplementary
Fig. 9 illustrates that the class of models that produced the best
agreement between the climate data and the FEM-BV-VARX
reconstructions across the CMIP5 ensemble has K= 2 clusters,
m= 3 months and p= 3 months. This is the hyper-parameter set
used in the body of the manuscript and the methods section.
Note, reconstructions made in the case studies use of all three
scenarios to generate the arbitrary concentration pathways. As
such, one could consider the errors quantified in the validation
sections to be an overestimate of the projection errors expected in
the body of the manuscript.

Data availability
All of the CMIP5 climate data adopted within27 is available from https://pcmdi.llnl.gov/
mips/cmip5/data-portal.html. A compact pre-curated version of the CMIP5 data is
required to generate the figures in the manuscript and supplementary information has
been made publicly available48.

Code availability
The code developed to generate the data and produce all of the figures in the manuscript
and supplementary information has been made publicly available49.

Received: 25 March 2023; Accepted: 18 September 2023;

References
1. Raworth, K. Doughnut economics: seven ways to think like a 21st-century

economist (Chelsea Green Publishing, White River Junction, Vermont, 2017).
2. UN-DESA. The sustainable development goals report 2022. Tech. Rep. https://

unstats.un.org/sdgs/report/2022/SDG2022_Flipbook_final.pdf, UN-DESA,
New York, USA (2022).

3. Rockström, J. A safe operating space for humanity. Nature 461, 472–475
(2009).

4. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change (Cambridge University Press, United Kingdom and New
York, 2013).

5. O’Kane, T. J., Risbey, J., Franzke, C. J. E., Horenko, I. & Monselesan, D.
Changes in the metastability of the midlatitude southern hemisphere
circulation and the utility of nonstationary cluster analysis and split-flow
blocking indices as diagnostic tools. J. Atmos. Sci. 70, 824–842 (2013).

6. Ghil, M. & Lucarini, V. The physics of climate variability and climate change.
Rev. Mod. Phys. 92, 1–77 (2020).

7. Cai, Y., Bandara, J. S. & Newth, D. A framework for integrated assessment of
food production economics in south asia under climate change. Environ.
Model. Softw. 75, 459–497 (2016).

8. Gutierrez, L. Impacts of El Niño Southern Oscillation on the wheat market: a
global dynamic analysis. PLoS ONE 12, e0179086 (2017).

9. Ubilava, D. The role of El Niño southern oscillation in commodity price
movement and predictability. Amer. J. Agr. Econ. 100, 239–263 (2018).

10. Kitsios, V., De Mello, L. & Matear, R. Forecasting commodity returns by
exploiting climate model forecasts of the El Niño Southern Oscillation.
Environ. Data Sci. 1, E7 (2022).

11. Porfirio, L., Newth, D., Finnigan, J. & Cai, Y. Economic shifts in agricultural
production and trade due to climate change. Palgrave Commun. 4, 1–9 (2018).

12. Allan, C., Xia, J. & Pahl-Wostl, C. Climate change and water security:
challenges for adaptive water management. Curr. Opin. Environ. Sustain. 5,
625–632 (2013).

13. Squire, D. T. et al. Unprecedented compound climate extremes and Australia’s
2019/2020 megafires. J. Clim. Atmosph. Sci. 4, 64 (2021).

14. Gibb, R., Franklinos, L., Redding, D. & Jones, K. E. Ecosystem perspectives are
needed to manage zoonotic risks in a changing climate. BMJ 371, m3389
(2020).

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-01011-0

14 COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:355 | https://doi.org/10.1038/s43247-023-01011-0 | www.nature.com/commsenv

https://pcmdi.llnl.gov/mips/cmip5/data-portal.html
https://pcmdi.llnl.gov/mips/cmip5/data-portal.html
https://unstats.un.org/sdgs/report/2022/SDG2022_Flipbook_final.pdf
https://unstats.un.org/sdgs/report/2022/SDG2022_Flipbook_final.pdf
www.nature.com/commsenv


15. Bekkar, B., Pacheco, S., Basu, R. & De Nicola, N. Association of air pollution
and heat exposure with preterm birth, low birth weight, and stillbirth in the
us: a systematic review. JAMA Netw Open. 3, e208243 (2020).

16. Peters, A. & Schneider, A. Cardiovascular risks of climate change. Nat. Rev.
Cardiol. 18, 1–2 (2021).

17. Poon, E., Kitsios, V., Pilcher, D., Bellomo, R. & Raman, J. Projecting future
climate impact on national Australian respiratory-related intensive care unit
demand, heart lung and circulation. Heart Lung and Circulation 32, 95–104
(2023).

18. Dunne, J. P., Stouffer, R. J. & John, J. G. Reductions in labour capacity from
heat stress under climate warming. Nat. Clim. Change 3, 563–566 (2013).

19. Burke, M., Hsiang, S. & Miguel, E. Global non-linear effect of temperature on
economic production. Nature 527, 235–239 (2015).

20. Bertram, C. et al. NGFS Climate Scenarios Database: Technical
Documentation V2.2. Tech. Rep. https://www.ngfs.net/sites/default/files/ngfs_
climate_scenarios_technical_documentation__phase2_june2021.pdf, Network
for Greening the Financial System (2021).

21. Whitten, S. et al. Exploring climate risk in Australia the economic implications
of a delayed transition to net zero emissions. Tech. Rep., Commonwealth
Scientific and Industrial Research Organisation, https://ecos.csiro.au/wp-
content/uploads/2022/02/Technical-Report__Exploring-Climate-Risk-in-
Australia__20220204.pdf (2022).

22. Nordhaus, W. Geography and macroeconomics: new data and new findings.
Proc. Natl Acad. Sci. USA 103, 3510–3517 (2006).

23. Cai, Y., Newth, D., Finnigan, J. & Gunasekera, D. A hybrid energy-economy
model for global integrated assessment of climate change, carbon mitigation
and energy transformation. Appl. Energy 148, 381–395 (2015).

24. Earth Systems and Climate Change Hub. Scenario analysis of climate-related
physical risk for buildings and infrastructure: climate science guidance. Tech.
Rep. ESCC Hub Report No.21, National Environmental Science Program
(NESP) Earth Systems and Climate Change Science (ESCC) Hub for the
Climate Measurement Standards Initiative, https://www.cmsi.org.au/reports
(2020).

25. Hsiang, S. et al. Estimating economic damage from climate change in the
United States. Science 356, 1362–1369 (2017).

26. Dietz, S., Bowen, A., Dixon, C. & Gradwell, P. ‘Climate value at risk’ of global
financial assets. Nat. Clim. Change 6, 676–679 (2016).

27. Taylor, K., Stouffer, R. J. & Meehl, G. An overview of CMIP5 and the
experiment design. Bull. Am. Meterol. Soc. 93, 485–498 (2012).

28. Eyring, V. et al. Overview of the coupled model intercomparison project phase
6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9,
1937–1958 (2016).

29. McGuffie, K. & Henderson-Sellers, A. A climate modelling primer (John Wiley
and Sons, Oxford, UK, 2005).

30. Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled
atmosphere-ocean and carbon cycle models with a simpler model, magicc6 –
part 1: Model description and calibration. Atmos. Chem. Phys. 11, 1417–1456
(2011).

31. Mitchell, T. D. Pattern scaling: an examination of the accuracy of the
technique for describing future climates. Clim. Change 60, 217–242 (2003).

32. Nath, S., Lejeune, Q., Beusch, L., Seneviratne, S. I. & Schleussner, C.-F.
MESMER-M: an Earth system model emulator for spatially resolved monthly
temperature. Earth Syst. Dyn. 13, 851–877 (2022).

33. Horenko, I. On the robust estimatino of low-frequency variability trends in
discrete Markovian sequences of atmospheric circulation patterns. J. Atmos.
Sci. 66, 1941–1954 (2009).

34. Horenko, I. On the identification of nonstationary factor models and their
application to atmospheric data analysis. J. Atmos. Sci. 67, 1559–1574
(2010).

35. O’Kane, T. J., Monselesan, D., Risbey, J., Horenko, I. & Franzke, C. J. E. On
memory, dimension, and atmospheric teleconnections. Math. Clim. Weather
Forecast. 3, 1–27 (2017).

36. Quinn, C., O’Kane, T. J. & Kitsios, V. Application of local attractor dimension
to reduced space strongly coupled data assimilation for chaotic multiscale
systems. Nonlinear Process. Geophys. 27, 51–74 (2020).

37. Quinn, C., Harries, D. & O’Kane, T. J. Dynamical analysis of a reduced model
for the north Atlantic oscillation. J. Atmos. Sci. 78, 1647–1671 (2021).

38. Horenko, I. Finite element approach to clustering of multidimensional time
series. SIAM J. Sci. Comp. 32, 62–83 (2010).

39. Metzner, P., Putzig, L. & Horenko, I. Analysis of persistent nonstationary time
series and applications. Comm. App. Math. Comp. Sci. 7, 175–229 (2012).

40. Marchenko, G., Gagliardini, P. & Horenko, I. Towards a computationally
tractable maximum entropy principle for nonstationary financial time series.
SIAM J. Financial Math. 9, 1249–1285 (2018).

41. Lumley, J. L. The structure of inhomogeneous turbulence, 166–178
(Atmosphere Turbulence and Wave Propagation, Moscow: Nauka, 1967).

42. Cordier, L. & Bergmann, M. Proper Orthogonal Decomposition: an overview.
In Lecture series 2008 on post-processing of experimental and numerical data
(Von Karman Institute for Fluid Dynamics, 2008).

43. O’Neill, B. C. et al. The scenario model intercomparison project
(ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

44. Riahi, K. et al. The shared socioeconomic pathways and their energy, land use,
and greenhouse gas emissions implications: an overview. Glob. Environ.
Change 42, 153–168 (2017).

45. Matsuhashi, Y. & Kaya, N. A study on economic measures for CO2 reduction
in Japan. Energy Policy 21, 123–132 (1993).

46. Raupach, M. R. et al. Global and regional drivers of accelerating CO2
emissions. Proc. Natl Acad. Sci. USA 104, 10288–10293 (2007).

47. IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing
Climate, chap. Technical Summary, 37–70 (IPCC, online, 2019).

48. Kitsios, V. Quickclim demonstration input data. figshare Dataset, https://doi.
org/10.6084/m9.figshare.24069741.v2 (2023).

49. Kitsios, V. vassilikitsios/quickclim_fembvvarx: First release (v1.0.0). Zenodo,
https://doi.org/10.5281/zenodo.8307303 (2023).

Acknowledgements
This research was supported by the Artificial Intelligence for Missions initiative at the
Commonwealth Scientific and Industrial Research Organisation as funded by the federal
government of Australia.

Author contributions
V.Kitsios’ contributions include: conceptualisation, methodology development, data
curation, visualisation, investigation, writing, reviewing, and editing. T.J.O’Kane’s con-
tributions include: conceptualisation, methodology development, reviewing, and editing.
D.Newth’s contributions include: conceptualisation, reviewing, and editing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43247-023-01011-0.

Correspondence and requests for materials should be addressed to Vassili Kitsios.

Peer review information Communications Earth & Environment thanks the anonymous
reviewers for their contribution to the peer review of this work. Primary Handling
Editors: Kyung-Sook Yun and Clare Davis. A peer review file is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© Crown 2023

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-01011-0 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:355 | https://doi.org/10.1038/s43247-023-01011-0 | www.nature.com/commsenv 15

https://www.ngfs.net/sites/default/files/ngfs_climate_scenarios_technical_documentation__phase2_june2021.pdf
https://www.ngfs.net/sites/default/files/ngfs_climate_scenarios_technical_documentation__phase2_june2021.pdf
https://ecos.csiro.au/wp-content/uploads/2022/02/Technical-Report__Exploring-Climate-Risk-in-Australia__20220204.pdf
https://ecos.csiro.au/wp-content/uploads/2022/02/Technical-Report__Exploring-Climate-Risk-in-Australia__20220204.pdf
https://ecos.csiro.au/wp-content/uploads/2022/02/Technical-Report__Exploring-Climate-Risk-in-Australia__20220204.pdf
https://www.cmsi.org.au/reports
https://doi.org/10.6084/m9.figshare.24069741.v2
https://doi.org/10.6084/m9.figshare.24069741.v2
https://doi.org/10.5281/zenodo.8307303
https://doi.org/10.1038/s43247-023-01011-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsenv
www.nature.com/commsenv

	A machine learning approach to rapidly project climate responses under a multitude of net-zero emission pathways
	Results
	Climate estimation approach
	Sensitivity to the average decarbonisation rate
	Sensitivity to the specific trajectory

	Discussion
	Methods
	Model reduction
	Training
	Projection
	Reconstruction and validation

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




