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Bayesian weighting of climate models based on
climate sensitivity
Elias C. Massoud 1✉, Hugo K. Lee2, Adam Terando3,4 & Michael Wehner 5

Using climate model ensembles containing members that exhibit very high climate sensi-

tivities to increasing CO2 concentrations can result in biased projections. Various methods

have been proposed to ameliorate this ‘hot model’ problem, such as model emulators or

model culling. Here, we utilize Bayesian Model Averaging as a framework to address this

problem without resorting to outright rejection of models from the ensemble. Taking

advantage of multiple lines of evidence used to construct the best estimate of the earth’s

climate sensitivity, the Bayesian Model Averaging framework produces an unbiased posterior

probability distribution of model weights. The updated multi-model ensemble projects end-

of-century global mean surface temperature increases of 2 oC for a low emissions scenario

(SSP1-2.6) and 5 oC for a high emissions scenario (SSP5-8.5). These estimates are lower than

those produced using a simple multi-model mean for the CMIP6 ensemble. The results are

also similar to results from a model culling approach, but retain some weight on low-

probability models, allowing for consideration of the possibility that the true value could lie at

the extremes of the assessed distribution. Our results showcase Bayesian Model Averaging

as a path forward to project future climate change that is commensurate with the available

scientific evidence.
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Numerous climate modeling groups submitted coordinated
experiment output to the latest round of the Coupled
Model Intercomparison Project, phase 6 (CMIP6)1. These

climate model outputs are used to inform national (e.g., Fifth U.S.
National Climate Assessment, NCA5) and international assess-
ments (e.g., Intergovernmental Panel on Climate Change Sixth
Assessment Report, or IPCC AR6) regarding climate change and
its societal impact. While the information provided by CMIP6
models is critical for understanding the consequences of
anthropogenic greenhouse gas emissions and projecting future
climates, many of the models are considered ‘too hot’2), meaning
they simulate a warming response to the change in radiative
forcing that is too strong given other lines of evidence and our
physical understanding of the climate system3–8.

In response to this, various approaches have been proposed to
construct a climate model ensemble of transient projections that
are more consistent with assessed estimates of the Earth’s climate
sensitivity. These range from very rigorous and extensive
approaches to simple model culling exercises. For example, the
report submitted by the Working Group I (WG1) to the IPCC
AR6, combined multiple lines of evidence from observations,
theory, and the use of physically based energy-balance model
climate emulators to constrain 21st century global surface air
temperature projections9. The lines of evidence used in the IPCC
AR6 include feedback process understanding, climate change and
variability seen within the instrumental record, paleoclimate
evidence, and so-called ‘emergent constraints’, and importantly
do not include estimates of climate sensitivity from the climate
models. On the other end of the spectrum, Hausfather and
colleagues10 have suggested a method to reject CMIP6 model
projections of transient warming if they are outside the bounds of
the IPCC AR6 assessed likely range of Equilibrium Climate
Sensitivity (ECS) or the Transient Climate Response (TCR). They
showed that the ensemble mean projected global mean surface
temperatures of such a subset of CMIP6 models are closer to what
is assessed in the IPCC AR6 compared to the entire CMIP6
ensemble. Other studies are beginning to emerge that apply
similar methods of model rejection, or model culling, to reduce
the importance of the ‘hot models’ in their climate change
projections11.

The attractiveness of the model culling approach lies in its
simplicity, given that the WG1 method of using model emulators
is unlikely to be easily replicated across the numerous contexts in
which CMIP6 model outputs are now used. Furthermore, it
acknowledges that the use of the recently popularized alternative
approach known as ‘Global Warming Levels’12, is not likely to
meet the needs of many decision makers who are increasingly
reliant on transient climate simulations to assess time-dependent
risks (i.e., it is not enough to know what the consequences of 3 °C
global warming are, but also when they are likely to occur, con-
ditional on future emissions pathways). A notable drawback of
the model culling approach, however, is that rejecting models is
akin to applying a binary weighting scheme to the CMIP6
ensemble, with zero weight applied to the culled models, and
model democracy13 for the remaining ensemble members. Thus,
while simple and easy to implement, this somewhat heavy-
handed approach results in the potentially unsatisfactory out-
come of eliminating consideration of the information provided by
a significant portion of the ensemble14.

Here we provide an alternative approach to construct a
weighted CMIP6 ensemble projection that is consistent with the
IPCC AR6-assessed range of ECS and TCR, as well as the culled
ensemble work shown in ref. 10, without having to force the
exclusion of high-sensitivity models. We use Bayesian Model
Averaging (BMA)15–20 as a framework to constrain the CMIP6
ensemble projection based on the IPCC-assessed range of ECS or

TCR values, allowing information from all considered models to
be included in the final projection. In short, BMA is a method
that tries thousands of combinations by sampling different model
weights and compares the created model averages with a desired
target field, in this case a realistic ECS or TCR value. After
sampling thousands of combinations, the posterior combinations
(or the most optimal sets of model weights) are extracted and
used for post-processing. This ultimately avoids having to reject
any models that are considered ‘too hot’, since all models may
appear in any given set of weights.

Applying BMA in this context is a novel strategy that grants all
the models in the ensemble to ‘have a voice’ and provide infor-
mation to the estimated model average of ECS or TCR. Therefore,
this strategy is an advancement from simply eliminating ‘hot
models’ from the ensemble, as other studies have done and are
currently doing10,11. Furthermore, the novelty of this study is to
apply Bayesian model weighting to solve the ‘hot model’ problem,
or more generally to calibrate a set of models to a desired dis-
tribution of sensitivity, whereas previous works that have applied
model weighting have calibrated directly to observations such as
historical temperature or precipitation18,20,21. The value here is
that ECS and TCR are much more relevant for future climate
change than are past historical temperature observations, so
constraining models based on sensitivity will be more meaningful
in capturing simulated future climates (provided that the ECS and
TCR distributions are strongly informed by relevant observations
and evidence). Given the recent focus on the high sensitivity of
some CMIP6 models, a plausible outcome is that whichever
approach is adopted to address this issue is then applied to
projections of other fields (e.g., precipitation). Thus, our proce-
dure is partially motivated by a desire to preserve as much
information as possible from the ensemble that is consistent with
our physical understanding of the earth’s climate system.

Results and discussion
The community’s evolution with model weighting strategies. In
the last 20 years, there has been a transition from using simple
multi-model means to using weighted ones20,22–29. The central
idea is that with enough information to determine a weight for
each model, the projections based on model weights derived from
the model evaluation against observations have been shown to
have greater accuracy than an arithmetic multi-model mean, and
this has been determined in many studies13,22,25,30. For many
cases, Bayesian approaches were used to determine the model
weights4,17–20,22,31–36.

More recently, weighting based on model independence has
been an additional criterion to consider alongside model skill.
This consideration of model independence has emerged due to
models having common bases of model structure, parameteriza-
tions, and associated programming code, all of which can result in
a lack of independence between climate models13,17,18,21,37,38.
Earlier works utilized model skill and independence in empirical
formulas that determined the model weights based on vectorized
information of the skill and independence that were used as
inputs to the weighting equations21,37–39. Instead of using
empirical formulas, ref. 18 showed that independence information
can be estimated in the post-processing of the model weighting
exercise, and they determined model independence information
using the posterior distribution of the BMA weights estimated in
their studies. This was also done in ref. 19,20, where many
variations of model weighting strategies that utilized model skill
and independence information were implemented and compared.

Individual model sensitivity. ECS is an important quantity used
to estimate how the climate responds to radiative forcing and is
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an estimate of the eventual steady-state global warming given a
doubling of atmospheric CO2 concentrations. Based on multiple
lines of evidence, the IPCC AR6 assessed best estimate of ECS is
3 °C with a likely range of 2.5–4 °C (high confidence)40. This
estimate from AR6 is used as the target distribution for ECS in
our study and is shown as the black curve in Fig. 1c. Individual
CMIP6 models are expected to simulate a similar climate sensi-
tivity, yet some models are below, and other models are well
above this range41. Table 1 lists a set of 16 models and their ECS
values (also shown in Fig. 1a) from the CMIP6 archive that are
common to two forthcoming statistically downscaled datasets to
be used in scientific impact and assessment activities across North
America. The approach taken in ref. 10, when transient simulation
output is required, is to eliminate any models that are outside the
likely range of ECS (2.5–4 °C). Here, we propose an alternative
approach, which is to apply BMA and find an appropriate linear
combination of models that produces a good fit to the likely ECS
distribution.

By searching for various combinations of these CMIP6 models
that best fit the ECS distribution, rather than culling the models
that are ‘too hot’, we recast the information signal from each
model to varying degrees. These results are displayed in Fig. 1.

Each individual model’s ECS is shown graphically in Fig. 1a with
a red line indicating the mean target ECS value of 3 °C. Figure 1b
shows the BMA posterior distribution of weights that are
estimated for each model, with the mean of these distributions
also listed in Table 1. In essence, out of 15,000 samples of model
combinations, the distributions shown in Fig. 1b utilize 2/3 of the
model weights from the posterior samples, which allows the best
fit to the target ECS value and the expected ECS distribution,
shown in Fig. 1c. This enables the creation of a weighted
ensemble that is consistent with the assessed probabilistic
uncertainty around the true (and likely unknowable) ECS value
(distributions in Fig. 1c).

What is more, model independence is a desired trait when
applying any kind of model averaging18–21,37,39. The BMA
posterior samples can be used to estimate a level of independence
that each model is offering to the model average. The
independence scores for each model are listed in Table 1. Unlike
other methods that apply independence as a predetermined
metric37,39 independence here can be calculated after post-
processing the posterior BMA weights19–21 (Fig. 2a). Generally,
models with a high ECS tend to receive lower weights, and
models with lower weights also have lower dependence scores,

Fig. 1 Model weighting using ECS as the main fitting target. a Equilibrium Climate Sensitivity (ECS) for 16 Earth System Models (ESMs) from the CMIP6
archive. The red line here depicts the IPCC assessed central value estimate of ECS, which is 3 °C (dashed red lines show the upper and lower bounds of the
assessed ECS distribution). b BMA posterior distributions (blue box-and-whisker plots) of the model weights after using the assessed ECS distribution as a
fitting metric, with the mean BMA weights shown with the red stars. c The ECS value from each CMIP6 model (blue x) with the distribution from the raw
CMIP6 ensemble estimated from Monte Carlo sampling of the model weight space (blue curve), the target assessed ECS distribution (black curve), and
the final BMA estimated posterior distribution of ECS (red curve).
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and therefore, models with high ECS also tend to have lower
dependence scores (Fig. 2b–d). Furthermore, the BMA model
weights tend to drop linearly as the model ECS value moves away
from the peak estimated ECS of 3 °C (Fig. 2b). This result shows
that models outside the likely range of 2.5–4 °C tend to have
lower model weights.

When the set of posterior weights are applied, the result is a
weighted ensemble mean for each Shared Socioeconomic Path-
way (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) that lies very
close to both the IPCC assessed best estimate and the ref. 10 culled
multi-model mean. The results showing the future global mean

surface temperature projections are shown in Fig. 3a. Notably, the
95% uncertainty range of the end-of-century temperature
increase signal, shown in Fig. 3b, is also consistent with the
IPCC-assessed range for the four considered SSPs, whereas the
model-culling method still results in a wider ensemble range for
the SSP1-2.6 scenario.

Benefits of model weighting. The different emission scenarios
(SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are clear in what
they project for the future. In short, expected temperature

Table 1 Individual model weights and dependence scores based on ECS and TCR.

Model Name ECS BMA Weights
based on ECS

Dependence based
on ECS

TCR BMA Weights
based on TCR

Dependence based
on TCR

ECS
Screen

TCR
Screen

ACCESS-CM2 4.72 0.0412 −0.204 1.96 0.0708 0.0618 High
ACCESS-ESM1-5 3.87 0.0581 −0.0238 1.97 0.0715 0.0715
BCC-CSM2-MR 3.04 0.0723 0.1029 1.55 0.0639 0.0288
CanESM5 5.62 0.029 −0.3802 2.71 0.0494 −0.2283 High High
EC-Earth3 4.3 0.0498 −0.1122 2.3 0.0626 −0.0529 High High
FGOALS-g3 2.88 0.0716 0.0712 1.5 0.0608 −0.0075
GFDL-ESM4 3.9 0.0589 0.0042 1.63 0.0688 0.0569
INM-CM4-8 1.83 0.0646 −0.1322 1.3 0.0501 −0.1065 Low Low
INM-CM5-0 1.92 0.0649 −0.0809 1.41 0.0552 −0.0395 Low
IPSL-CM6A-LR 4.56 0.0449 −0.1757 2.35 0.0614 −0.0661 High High
MIROC6 2.61 0.0767 0.0947 1.55 0.0664 0.0407
MPI-ESM1-2-HR 2.98 0.0731 0.088 1.64 0.0686 0.0595
MPI-ESM1-2-LR 3 0.0755 0.1333 1.82 0.0737 0.1195
MRI-ESM2-0 3.15 0.073 0.1289 1.67 0.0712 0.0919
NorESM2-LM 2.54 0.0736 0.087 1.49 0.0596 0.0049
NorESM2-MM 2.5 0.0727 0.0551 1.22 0.0461 −0.1591 Low
Ensemble Mean 3.33875 1.7544
BMA mean 3.1431 1.7534

This table lists models from the CMIP6 ensemble that are considered in this study. The ECS and TCR values for each individual model are listed, along with the BMA mean weights (based on ECS or TCR),
and the dependence score estimated from the BMA posterior distributions (also based on ECS or TCR). The two columns on the right depict whether a model is higher or lower than the assessed ECS or
TCR range (models that have a high or low ECS or TCR were rejected in Hausfather et al.’s method). The 16 models included here are those included in the NCA 5th report. All models included here are
also included for all future scenarios.

Fig. 2 Relations between model weight, independence, and ECS scores. a This plot shows the bar graph of the model dependence scores estimated from
the BMA posterior distributions when using the ECS as a fitting metric. A higher (more positive) value indicates a model with higher dependence on other
models (i.e., a less independent model), while a lower (more negative) value indicates a model with less dependence (i.e., a more independent model).
These panels show scatter plots of each individual CMIP6 model and the relationship between (b) the BMA weight and the corresponding ECS value,
(c) the dependence score and corresponding BMA weight, and (d) the dependence score and corresponding ECS value. This figure highlights how models
that are ‘too hot’ have lower BMA weights and dependence scores, and this decrease in weight drops almost linearly with increasing ECS value.
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changes increase as the projected emissions increase. However,
the benefits of the different methods used to combine CMIP6
models is not so clear. For example, prior to the IPCC AR6, most
assessments simply used the arithmetic mean of multiple models,
which can lead to higher projections of warming than what is
realistically possible, since some of the models in the CMIP6
ensemble are deemed ‘too hot’. Therefore, the IPCC AR6
‘assessed warming’ trends are obtained by applying statistics to
determine the most reasonable projections that are consistent
with multiple lines of evidence for metrics such as ECS and TCR.
Furthermore, works such as ref. 10 simply reject models that fall
outside the likely ECS or TCR range, and create new multi-model
mean trends from the subset of models that have not been
eliminated.

The strategies taken by the IPCC AR6 and in works like ref. 10

produce new future climate estimates that are less exaggerated
than those produced using the raw CMIP6 multi-model mean, as
shown in Fig. 3. While the results from Hausfather et al. move the
curve closer to the IPCC AR6 trends, they do so at the expense of
rejecting some models (rejected models from their work are
pointed out in our Table 1, right columns). Whereas the BMA
approach maintains all the models in the ensemble and achieves
very similar results (see Fig. 3), both for the mean signal as well as
for the structural uncertainty of the estimate. This is achieved by
applying lower weights for models with ECS that are considered
either too low or too high (as shown in Fig. 2b) and applying
heavier weights for models that are closer to the expected
ECS value.

The original spread of the CMIP6 signal for end-of-century
change in global mean surface temperature is much broader
(almost twice the spread) compared to the estimate when ‘hot
models’ are downweighed or eliminated from the ensemble (i.e.,
Fig. 3b). The distribution from the original CMIP6 ensemble is
usually skewed in a way that makes the mean signal much higher
than for the methods that ameliorate the ‘hot model’ problem

(e.g., ~5.5 °C for SSP5-8.5 compared to below 5 °C, Fig. 3b).
Therefore, when the ‘hot model’ problem is addressed, either by
down-weighting, or culling, future global mean temperatures
are lower, and increases in temperature are less exaggerated. Yet,
the distribution of this estimate is not always ameliorated in the
same way.

Figure 3b shows the spread of each method’s future signals,
with both BMA and the IPCC AR6 assessed warming exhibiting
close alignment across all SSP scenarios, whereas the Hausfather
method of culling the hot models has a similar spread for most
scenarios, except for SSP1-2.6 which has an even higher spread
than the original CMIP6 ensemble. This increase in spread is an
odd finding in the ref. 10 effort, and we hypothesize that it could
be because by culling, or by eliminating, models that have a high
ECS value, and therefore by eliminating models that are ‘too hot’,
there is also an elimination of information of how these models
simulate climate in a scenario that has little increased warming,
i.e., the SSP1-2.6 scenario. This reinforces the idea that simply
rejecting models in an ensemble may not be the optimal or ideal
way to conduct a model averaging problem, since model culling
may work for ‘hotter scenarios’ but might break down for ‘cooler’
ones. We argue that the special benefit of BMA is that it provides
posterior information that provides probability densities on the
weights of each individual Earth System Model (ESM) in an
optimal manner, which allows all the models in the ensemble to
provide accurate information to the model average.

ECS and TCR. Our approach makes use of the ECS metric as a
main target for fitting the BMA model average. However, other
metrics can be useful in this regard as well, such as the TCR,
which is the mean global warming predicted to occur around the
time of doubling CO2 in ESM runs for which atmospheric CO2

concentration is prescribed to increase at 1% per year. Based on
multiple lines of evidence41, TCR has an assessed likely range of
1.4–2.2 °C (c.f. the IPCC AR6 WG1 technical summary).

Fig. 3 Future projections of global mean surface temperature based on ECS. a Increase in global mean surface temperature (°C) for the different SSP
scenarios considered and the different model averaging methods used. Dashed lines are the raw CMIP6 mean, light solid lines are from Hausfather et al.,
dark solid lines are the AR6 assessed warming levels, and dotted lines are the results produced in this paper from the BMA method when using ECS as a
fitting metric. b Increase in global mean surface temperature by the year 2100 and the uncertainty ranges of this estimate for each SSP scenario and each
model averaging method considered here. Results shown here have no temporal filtering. The BMA uncertainty bar plotted here is the top 95% of the full
posterior distribution of model weights.
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Therefore, we apply the BMA on the assessed TCR distribution to
produce a set of weights that optimize the model based TCR
estimate.

We produced a second set of results to mirror the outcome
from applying BMA on the ECS metric (the results of which are
shown in the main text, Figs. 1–3, Table 1), but we did so for the
TCR metric (the results of which are shown in the supplement,
Figs. S1–S3, Table 1). Like Fig. 1 that is based on the ECS metric,
supplemental Fig. S1 shows results based on the TCR metric,
including individual CMIP6 model TCR scores, the assessed TCR
distribution, and the estimated BMA model weights and
corresponding TCR distributions. Out of 15,000 samples of
model combinations for TCR, the distributions shown in Fig. S1B
utilize 3/4 of the model weights from the posterior samples, which
allows the best fit to the target TCR value and the expected TCR
distribution, shown in Fig. S1C. Supplemental Fig. S2 shows the
dependence scores based on applying BMA on the TCR metric, as
well as how these scores relate with the BMA model weights and
TCR scores. The final figure in the supplement, Fig. S3, shows the
projected increase in global mean surface temperature (°C) for the
different SSP scenarios considered and the different model
averaging methods used, and panel B of this figure includes both
the ECS (black dotted lines in Fig. S3B) and TCR-based
projections (colored dotted lines in Fig. S3B) for comparison
and shows that the results do not differ much between the two.

Like the results of applying BMA on ECS, doing so on the TCR
metric produces a weighted mean projection that is more in line
with all lines of evidence compared to that produced using the raw
CMIP6 multi-model mean. The results show that some models are
indeed ‘too hot’, but there are also models in the ensemble that are
‘not hot enough’, meaning they have an ECS or TCR value that is
lower than the assessed range. So, the BMA method downweighs
models that are either ‘too hot’ or ‘not hot enough’. This is
displayed in the scatter plots in Fig. 2b–d and Fig. S2B–D, which
show the highest weights are applied for those models with ECS
and TCR values near the peak (near 3 °C for ECS and 1.8 °C for
TCR), and the weights do drop linearly for ECS and TCR values
that are higher or lower than the peak value. However, even
though the weights drop for some models, there are no models
that have weights that are too low or too high. In other words, all
models generally have weights in the range of ~0.03–0.08. For
comparison with the equal weights approach (i.e., a simple model
mean), all models would have a weight of 1/16 or 0.0625 if equal
weights were applied. Again, this is the benefit of using BMA over
the other mentioned methods since all models can still provide
significant information to the model average when using the BMA
method. Moving forward, in climate assessment reports as well as
for other scientific analysis, we recommend the use of model
weighting (e.g., BMA-based methods) on metrics such as ECS or
TCR. This will facilitate a more rigorous calibration of informa-
tion that is used from models that are ‘too hot’ without having to
outright reject them from the ensemble.

While our approach is based on global mean temperature
changes, we suggest that these weights also could be used to
estimate projected changes and uncertainty in other fields, such as
precipitation. In other words, the BMA weights based on ECS or
TCR can be used to make projections for any climate field, where
the benefit would be that the response of these fields to
temperature would be accounted for, but the drawback is that
there would be no information about the quality of these fields
and therefore an evaluation would need to take place. We note
that IPCC AR6 also considered projections at “global warming
levels” at 1.5, 2.0, 3.0 and 4.0 °C above preindustrial levels. While
the high sensitivity models arrive at these levels too quickly, all
models were included in estimates of projected changes in the
IPCC AR6. We suggest that model weighting can also be used to

make weighted estimates of when these global warming levels are
reached.

Overall, allowing for the use of the full suite of state-of-the-
science ESMs to help inform societal responses to anthropogenic
climate change, rather than subjectively picking some out of the
ensemble and rejecting others, should be the preferred path
forward when estimating future climate change projections and
their impacts.

Conclusions
In conclusion, as an alternative to simple model culling, we
recommend the use of any model averaging approach that allows
the user to justify non-zero weights on all members of the model
ensemble. In this study, we have focused on ECS and TCR to
address the hot model problem. Previous studies targeted towards
specialized impact studies focused on other phenomena such as
drought42 or used an expert but arbitrary selection of observed
mean quantities as in ref. 39 targeted towards a skillful general-
purpose ensemble (we refer to this as the Sanderson approach).
However, the unreasonably large range of model climate sensi-
tivities in the CMIP6 ensemble requires attention to model
trends. Here we have used a BMA approach, but previous sta-
tistically based model weighting studies have used a simple
kernel-density estimation (KDE) approach42 or the Sanderson
approach39. With KDE, each ESM is weighted by the ratio of the
target density to the local sample density of models in ECS or
TCR space. The Sanderson approach implements the pre-
determined skill and independence scores of each model when
estimating the model weights.

We particularly recommend BMA to apply model averaging
when feasible, since the total-order distribution of the model
weights (and therefore the total-order distribution of the pro-
jected climate change signal) is estimated with BMA, whereas
with the KDE or Sanderson approaches, only the first-order
distribution of the model weights is estimated. In other words, the
BMA method allows for the estimation of the full distribution of
model weights given the evidence (i.e., the IPCC assessed dis-
tributions) and therefore the full uncertainty distribution,
whereas the KDE or Sanderson approaches nudge the model
weights in the direction of the optimal set of weights without the
estimation of the distribution. Furthermore, regarding model
independence, the BMA method allows for the estimation of
model independence during post-processing and provides infor-
mation on dependent model weights that are used for future
projections. This is important because we want to know the
dependence of each models’ contribution to the estimated model
average (and therefore the dependence of each models’ con-
tribution to the projected climate change signal with BMA). In
comparison, the Sanderson approach uses predetermined infor-
mation to estimate model independence and is based on the
model output space, not the model weights space. This is different
than the BMA estimation of model dependence because the
Sanderson approach uses information on which models have
similar model genealogy, shared code and parameterizations, or
similar model outputs, while BMA provides information on
which models have posterior weights that are correlated together
(and therefore which models are dependently contributing to the
projected climate change signal). What is more, the KDE
approach does not estimate model independence. For these rea-
sons, we highly recommend the use of the BMA method for
model averaging studies in climate sciences.

Methods—Bayesian Model Averaging (BMA)
BMA is different from other model averaging methods because it
explicitly estimates each model’s weight and associated
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uncertainty by maximizing a likelihood function that represents
the fit to the target distribution. In other words, BMA provides
model weights that produce linear model combinations of mul-
tiple models, and these combinations have a higher likelihood of
matching the target data compared to other model combinations.
In this study, using the optimized weights, BMA constructs the
mean and uncertainty distribution of the ECS (or TCR) metric.

The estimated model weights using BMA are defined as
wi;BMA ¼ w m1

� �
;w m2

� �
; ¼ ;w mk

� �� �
, for K models. In our

case, K= 16. The range of w mi

� �
is between 0 and 1, with a

weight of 0 for models that do not contribute any information
and a weight of 1 for models that fully contribute to the esti-
mation. The sum of any given combination of model weights is
equal to 1. The final estimate of the BMA model weights, or
wi;BMA, are utilized to constrain the ECS (or TCR) distribution
generated by the model average as well as the spread of uncer-
tainty in the projected climate change signal.

The likelihood for each of the sampled model weights depends
on how the generated ECS (or TCR) value from the combined
model average compares with the target ECS (or TCR) distribution.
The prior distribution of model weights is initialized as a Jeffreys
prior43 which transforms the normalized prior distribution of
model weights from a non-informative uniform distribution cov-
ering a smaller range of the model weight space to an informative
distribution covering a larger range (this ensures that model
weights are sampled from 0 to 1). The target ECS distribution is
assumed to follow a gamma distribution with parameters
a= 67.696 and b= 0.0476, which results in a target ECS dis-
tribution with a range of 2.5–4 °C and a peak near 3 °C (similar to
the likely range of ECS reported by the IPCC AR6). This target ECS
distribution is shown with a red curve in Fig. 1c, labeled as ‘Target
Distribution’. Then, the expected probability for the ECS values
generated by the different BMA sampled weights, i.e.,
ECSCMIPðwi;BMAÞ, is estimated using the gamma distribution
described above. This probability distribution is used to inform the
likelihood function in the BMA framework, i.e., Lðwi;BMAÞ, and this
likelihood function is maximized in search for the optimal set of
model weights (or optimal set of model combinations). Therefore,
the likelihood function becomes proportional to the difference
between the BMA generated ECS value and the target ECS dis-
tribution, i.e., Lðwi;BMAÞ ∝ [ECSTarget – ECSCMIPðwi;BMAÞ].

The same likelihood formulation can be applied for the TCR
metric, which has a target TCR distribution that follows a gamma
distribution with parameters a= 119.734 and b= 0.0147. This
results in a target TCR distribution with a range of 1.4–2.2 °C and
a peak near 1.8 °C. The target TCR distribution is shown with a
red curve in Fig. S1C of the supplementary section.

For each test (ECS and TCR), we apply heavy sampling
(n= 15,000 samples) on the possible model weight combinations
in search of model weights that maximize the likelihood functions
described above. This allows for the estimation of the optimized
BMA model weights, or wi;BMA, shown in Fig. 1b for ECS (and in
Fig. S1B in the supplementary section for TCR).

Since the BMA method estimates a distribution of model
weights, N (N»1) model combinations become possible, which
provides a solution to the model dependence issue. In other
words, consider that in the BMA framework there is a hypothe-
tical Model-1 and a Model-2 that are similar and therefore not
independent. Model-1 may have higher weights in some combi-
nations, and conversely, Model-2 might have higher weights in
other combinations. Consequently, if both models are rewarded
in the same set of weights, it is very likely that each model receives
a reduced weight since both models are providing similar infor-
mation to the model average. See Supplementary Section 2 of
Massoud et al., (2020) for additional details on how dependence is

inferred with the BMA method. For additional details on how the
BMA method is applied in this context, see Massoud et al., (2019,
2020) and Wootten et al., (2020, 2023).

Code availability
The code used to generate results for this study can be found on GitHub at https://github.
com/EliasMassoud1/BMA_ECS.
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