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Vegetation resilience does not increase
consistently with greening in China’s Loess Plateau
Zhuangzhuang Wang 1,2, Bojie Fu 1,2✉, Xutong Wu3, Yingjie Li 4, Yuhao Feng 5, Shuai Wang 3,

Fangli Wei1,2 & Liwei Zhang6

Recent concurrent processes of vegetation greening and reduced resilience (the capacity to

recover from disturbances) worldwide have brought many uncertainties into sustainable

ecosystems in the future. However, little is known about the conditions and extent to which

greening affects resilience changes. Here we assess both vegetation dynamics and resilience

in China’s Loess Plateau from 2000 to 2020 using satellite-based vegetation data and an

early warning indicator. Our results reveal an overall greening trend in vegetated areas, while

resilience shifted from gains to losses at a breakpoint in 2010. Vegetation greening generally

contributed to resilience gains, whereas increased temperature and precipitation variability

contributed to the resilience loss observed in 2011–2020. These findings provide empirical

evidence that vegetation greening does not necessarily correspond to an increase in resi-

lience. We therefore recommend integrating resilience indicators into ecological restoration

and conservation efforts to gain a more comprehensive understanding of vegetation states

and support effective ecosystem stewardship.

https://doi.org/10.1038/s43247-023-01000-3 OPEN

1 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085
Beijing, China. 2 University of Chinese Academy of Sciences, 100049 Beijing, China. 3 State Key Laboratory of Earth Surface Processes and Resource Ecology,
Faculty of Geographical Science, Beijing Normal University, 100875 Beijing, China. 4 Natural Capital Project, Stanford University, Stanford, CA 94305, USA.
5 Institute of Ecology, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China. 6 School of Geography and Tourism of Shaanxi
Normal University, 710119 Xi’an, China. ✉email: bfu@rcees.ac.cn

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:336 | https://doi.org/10.1038/s43247-023-01000-3 | www.nature.com/commsenv 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-01000-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-01000-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-01000-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-01000-3&domain=pdf
http://orcid.org/0000-0002-3520-0825
http://orcid.org/0000-0002-3520-0825
http://orcid.org/0000-0002-3520-0825
http://orcid.org/0000-0002-3520-0825
http://orcid.org/0000-0002-3520-0825
http://orcid.org/0000-0002-9920-9802
http://orcid.org/0000-0002-9920-9802
http://orcid.org/0000-0002-9920-9802
http://orcid.org/0000-0002-9920-9802
http://orcid.org/0000-0002-9920-9802
http://orcid.org/0000-0002-8401-0649
http://orcid.org/0000-0002-8401-0649
http://orcid.org/0000-0002-8401-0649
http://orcid.org/0000-0002-8401-0649
http://orcid.org/0000-0002-8401-0649
http://orcid.org/0000-0002-1720-9084
http://orcid.org/0000-0002-1720-9084
http://orcid.org/0000-0002-1720-9084
http://orcid.org/0000-0002-1720-9084
http://orcid.org/0000-0002-1720-9084
http://orcid.org/0000-0003-1595-9858
http://orcid.org/0000-0003-1595-9858
http://orcid.org/0000-0003-1595-9858
http://orcid.org/0000-0003-1595-9858
http://orcid.org/0000-0003-1595-9858
mailto:bfu@rcees.ac.cn
www.nature.com/commsenv
www.nature.com/commsenv


Terrestrial vegetation plays a crucial role in regulating the
exchange of carbon, water, and energy between the land
and the atmosphere1,2. It provides valuable ecosystem

services such as carbon storage and soil conservation that support
human well-being3. Long-term satellite data have revealed a sig-
nificant global greening trend in vegetated areas since the 1980s,
driven primarily by human land-use management (e.g., revege-
tation in China), climate change and CO2 fertilization2,4. The
persistence and functionality of vegetation ecosystems are highly
tied to their capacity to withstand and recover from natural and
human-induced perturbations (i.e., their resilience)5. However,
recent studies suggest that the changing climate has reduced
vegetation resilience worldwide5–8, particularly in critically valu-
able tropical forests9–11. Concurrent processes of vegetation
greening and resilience loss raise uncertainties regarding the
future of vegetation ecosystems12. Yet, empirical relationships
between vegetation dynamics and changes in resilience have not
been well investigated. Key questions remain regarding the spe-
cific conditions and extent to which vegetation greening may
contribute to resilience changes13. Addressing these knowledge
gaps is vital for gaining a comprehensive understanding of the
dynamics that shape terrestrial plant ecosystems and for for-
mulating effective management strategies6,12.

Vegetation greening (or browning) at a location refers to sta-
tistically significant increases (or decreases) in average leaf size,
plant density, or changes in species composition2. Traditional
studies on vegetation dynamics primarily focus on smooth and
monotonic changes in vegetated ecosystems14. However, these
methods solely represent the mean state of a system and may not
reflect the non-linear dynamics underpinning resilience11.
Higher-order statistical characteristics that respond more sensi-
tively to destabilization than the mean are urgently needed to
quantify resilience11,15. A promising approach to address this
challenge is the use of early warning indicators (EWIs) to detect
critical transitions16,17. Theoretical and empirical studies have
shown that a loss of resilience can be identified through increased
temporal autocorrelation and variance in the state of a
system7,18,19. These indicators reflect a decline in recovery rates
due to the critical slowing down of system processes that occur at
thresholds18–20. By applying the EWIs with satellite-based vege-
tation indices, recent studies have reported the emerging signals
of reduced resilience in vegetated areas globally, indicating a high
risk of abrupt transition when facing external disturbances5–7,11.

Intuitively, vegetation greening, such as increased vegetation
productivity and density, is often associated with improved
physiological functions that can enhance vegetation’s capacity to
withstand and recover from disturbances5. However, concurrent
observations of global vegetation greening2,4 and signals of
declined vegetation resilience worldwide5–7,9,11 suggest that
vegetation greening does not necessarily correspond to an
increase in resilience. Opposite changes between vegetation
dynamics and resilience can arise from various factors. First,
when greening is dominated by a single plant species and/or
exotic species, vegetated ecosystems may experience declined
resilience due to reduced functional and response diversity and
maladaptation of exotic species to local conditions21–25. Second,
the presence of greener vegetation does not necessarily indicate
the overall health of an ecosystem, as it is constrained by the
carrying capacity of the system itself26–28. The biogeophysical
effects of greening can negatively impact vegetation growth
conditions2,29. For instance, in drylands with limited water
availability, dense vegetation and greening can deplete large
amounts of soil moisture and thus alter surface-water
availability26,29–31. This can potentially increase drought occur-
rence and create a positive feedback loop between drying and
vegetation degradation32. Third, the positive effects of greening

on resilience can be offset by climate change-induced alterations
in background climate and increased climate variability5,6. These
factors highlight the complex and context-dependent relation-
ships between vegetation dynamics and resilience changes in a
changing world.

Resilience assessments can complement traditional studies on
vegetation dynamics, particularly when conducting ecological
restoration work33. While scientists and policymakers often focus
on the greening levels of vegetation ecosystems, their resilience
has been largely neglected33,34. Neglecting resilience can lead to
unexpected consequences. For instance, despite short-term
increases in vegetation cover and greenness, resilience loss can
result in forest dieback and sudden increases in tree mortality
when even a small disturbance is encountered12,35. Under-
standing and identifying the controlling factors of vegetation
resilience is important for implementing targeted protection and
management policies for vegetated ecosystems6,36. Recent studies
have shown that vegetation resilience tends to be greater in
regions with higher water availability and is lower in regions with
more pronounced inter-annual precipitation variability5,10,36.
However, previous studies primarily used the space-for-time
method to analyze the controlling factors of vegetation resilience,
and few factors were considered in the analyses10,36. The tem-
poral correlations of resilience with multifaceted climatic factors
and their relative importance have received less attention.

The Loess Plateau in China is an ecologically vulnerable area
that has experienced severe vegetation loss, soil erosion, and land
degradation37. Efforts to restore the degraded ecosystems have
been undertaken by the Chinese government since the 1970s,
with the implementation of various landscape engineering and
ecological restoration measures38. Among these measures, the
Grain for Green project, initiated in 1999, has proven particularly
successful39. This project aims to prevent soil erosion, alleviate
flooding, and store carbon by increasing forest and grassland
cover on previously cropped hillslopes, as well as converting
cropland, barren hills, and wasteland into forested areas40. Over
the past two decades, ecological restoration efforts have resulted
in a visible “greening” trend across the Loess Plateau41–43, with
the vegetation cover increasing from 32% in 1999 to 64% in
201944. However, to our knowledge, studies on vegetation resi-
lience have not been conducted, limiting the comprehensive
understanding of changes in the vegetation states.

In this study, we aim to assess both vegetation dynamics and
resilience change in China’s Loess Plateau to determine if
greening is accompanied by an increase in resilience. To measure
vegetation resilience, we used the temporal changes of the lag-1
autocorrelation (AR(1))19. This metric was calculated in sliding
windows from the detrended and deseasonalized monthly kNDVI
(kernel Normalized Difference Vegetation Index; a recently
improved vegetation index) data from February 2000 to
December 202011,36,45 (Methods). We then analyzed the spatial
correspondence of the tendency of vegetation dynamics and
resilience metric AR(1), as well as their temporal correlations. In
addition, we conducted an attribution analysis to investigate the
effects of environmental factors on resilience changes and their
relative importance.

Results
Inconsistency of vegetation dynamics and resilience change.
Averaged across the Loess Plateau, we observed an increasing
trend in mean kNDVI values (τ= 0.991, P < 0.001) (Fig. 1a),
indicating an overall greening of vegetation. The spatial dis-
tribution of the kNDVI tendency showed that more than 80% of
vegetated grids had experienced greening over two decades
(Figs. 1b, 2b, c). However, it is important to note that vegetation
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Fig. 1 Temporal patterns of vegetation dynamics and resilience across 2000–2020 and between decade 2000–2010 and 2011–2020. a Temporal
trajectories of vegetation dynamics and resilience. Continuous lines refer to the regional mean kNDVI (green) and AR(1) (orange), and shaded areas
represent the corresponding 95% confidence interval magnified by a factor of 10 for visual purposes. For comparison, the kNDVI values are calculated as
the mean using the same 5-year sliding window as AR(1). Note that the mean kNDVI and AR(1) values are plotted at the end of each sliding window. b and
c Histogram of grid-level Kendall τ values for the kNDVI and AR(1) time series, respectively, comparing data for the first decade (2000–2010) and the
second (2011–2020). d–f Cumulative density distribution of the relationship between kNDVI Kendall τ and AR(1) Kendall τ at the grid scale from
2000–2020 (d), 2000–2010 (e), and 2011–2020 (f). Number labels in four quadrants represent the percentage of pixels of a certain quadrant. Grid cells
with non-significant Kendall τ (P > 0.05) were not included in the figures for visual purposes.
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resilience did not increase consistently in parallel with greening.
The mean AR(1) time series showed a transition from a negative
trend (τ=−0.949, P < 0.001) to a positive trend (τ= 0.856,
P < 0.001) at the breakpoint in December 2010, representing a
shift from resilience gains to resilience losses (Fig. 1a). Notably, a
higher proportion (42.1%) of vegetated grids experienced resi-
lience loss in the second decade (2011–2020) compared to the
first decade (20.24%, 2000–2010) (Figs. 1c, 2e, f).

These findings on resilience signals are robust as they are based
on data from a single sensor (the Moderate Resolution Imaging
Spectroradiometer —MODIS) and a recently improved vegeta-
tion index (kNDVI)5,45. We validated the reliability of these
resilience signals by employing alternative methods for detrend-
ing the kNDVI time series and varying the window length for
calculating the AR(1) (Supplementary Figs. 3–5). Remarkably,
when using variance as the resilience metric instead of AR(1),
similar transitions from widespread resilience gains to resilience
losses were observed (Supplementary Figs. 6, 7). These consistent
signals provide substantial evidence for notable trajectories in
vegetation resilience, which are intimately linked to the stability
and sustainability of vegetation ecosystems.

Examination of the spatial correspondence between vegetation
dynamics (greening and browning) and resilience change
revealed that in the first decade, 64.09% of vegetated grids
exhibited a positive kNDVI trend coupled with a negative AR(1)
trend (Fig. 1e). This indicates that a considerable portion of
vegetated areas experienced both greening and an increasing in
resilience. However, in the second decade, this proportion
decreased to 42.08%, which was less than the proportion of
vegetated grids (49.25%) that exhibited both greening and
resilience loss (Fig. 1f). The temporal correlations between the

kNDVI and AR(1) time series mirrored the spatial correspon-
dence of their trend (Fig. 3), validating the finding that the
relationship between vegetation dynamics and resilience has
changed over the study period. The proportion of vegetated grids
with a significant negative correlation (P < 0.05) between kNDVI
and AR(1), indicating concurrent vegetation growth and
increased resilience or vice versa, decreased from 59.1% in the
first decade to 41.43% in the second decade (Fig. 3d). Overall, our
results suggest an inconsistency between vegetation dynamics and
resilience change.

Potential climatic drivers of vegetation resilience change. The
areas exhibiting declined resilience (i.e., increasing AR(1) ten-
dency) were predominantly found in semi-arid and dry sub-
humid regions with an annual precipitation range of
391 mm–620mm (Fig. 4). To explore the drivers of vegetation
resilience, particularly the causes of resilience loss in the second
decade (Figs. 1c, 2f), we conducted a multiple linear regression
analysis to assess the effects of climatic factors and their relative
importance (Fig. 5). Their spatial patterns were shown in Sup-
plementary Figs. 8, 9. Negative regression coefficients indicate
inversely proportional relationships between climatic factors and
AR(1) values, that is, scenarios where an increase in a climate
variable had a commensurate decrease in AR(1), meaning it
improved resilience.

Mean precipitation showed an overall positive effect on
vegetation resilience across both decades (Fig. 5a), especially in
the second decade (75.66% of vegetated grids), implying that
areas with higher precipitation tended to become more resilient
over time. However, the relative importance of mean
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precipitation in explaining resilience change declined in 60.34%
of vegetated grids during the second decade (Fig. 5b), suggesting
the influence of other climatic factors. On average, the mean
temperature had a negative effect on vegetation resilience in a
larger number of areas during the second decade, with its relative
importance increasing in 53.99% of vegetated grids (Fig. 5). This
observation could be attributed to the elevated mean temperature
observed during this period (Supplementary Figs. 10, 11).

Overall, precipitation variability and temperature variability
had a negative impact on vegetation resilience (Fig. 5a).
Interestingly, the relative importance of precipitation variability
increased in 57.85% of vegetated grids from the first to the second
decade (Fig. 5b). The potential evapotranspiration showed a shift
from a negative to a positive effect on vegetation resilience, with
its relative importance increasing in 62.18% of vegetated grids.
Moreover, the aridity index, commonly used to measure water
availability, had an overall negative effect on vegetation resilience,
with negative effects observed in 68.08% of vegetated grids in the
second decade (Fig. 5a). These findings suggest that more areas
with high evapotranspiration and aridity, indicating low water
availability, increased in resilience, which aligns with the observed
spatial changes in resilience (Fig. 4a, b).

Discussion
The persistence and functionality of vegetation ecosystems are
crucial for global and regional development, as they contribute to
climate change mitigation and provide essential ecosystem
services2,5. Our study reveals an overall greening trend in the
vegetated land of the Loess Plateau from 2000 to 2020 (Fig. 1a).
However, we observed a shift in resilience from gains to losses at a
breakpoint in December 2010 (Fig. 1a). Importantly, in the sec-
ond decade, a larger proportion of vegetated grids experienced
both greening and resilience loss (Figs. 1d–f, 3). This study
expands upon previous research that has focused solely on
vegetation dynamics or resilience by providing empirical evidence
that greening does not necessarily correspond to an increase in
resilience2,4,7,10,11,36. Our results highlight the value of resilience
indicators in capturing important information about vegetation
states that cannot be identified through simpler methods that
characterize the mean state of a system. Consequently, we
recommend integrating resilience indicators into assessments of
ecological restoration effectiveness to achieve more comprehen-
sive ecosystem stewardship.

Low-resilience ecosystems are highly vulnerable to environ-
mental perturbations and tend to have slower recovery rates after
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disturbances, increasing the risk of a critical transition to an
alternative state6. Recent studies suggest the temporal loss of
resilience can serve as an early warning signal for predicting forest
mortality46. In our research, we have used high-resolution satel-
lite data to identify several regions where resilience has decreased
despite increases in greening, particularly in the last decade
(Fig. 2). In light of the extensive greening observed in the Loess
Plateau, recent research has emphasized the importance of
prioritizing efforts to enhance the stability and sustainability of
vegetated ecosystems to preserve the achievements of ecological
restoration37,39. Our findings provide supportive evidence for this
argument from a resilience perspective, and they also offer
valuable insight for informing future ecological restoration poli-
cies by identifying regions with resilience loss that require special
attention and protection.

It is important to acknowledge the potential and limitations of
the resilience indicators used in this study6,16,47. The resilience
indicators (AR(1) and variance) build upon the theory of “critical
slowing down” and can be used to estimate resilience in situations
where controlled experiments are not feasible and external per-
turbations are infrequent, particularly in the context of large-scale
ecosystems7,16. These indicators rely on readily available long-
term satellite-based vegetation index datasets48. In particular,
recent studies have provided evidence supporting the use of
AR(1) and variance as metrics for assessing vegetation resilience
by comparing them with empirically estimated recovery rates
following disturbances7,36. However, it is crucial to recognize that
the resilience signals detected by the “critical slowing down”
indicators should be viewed as early warning tools rather than
precise predictors of critical transitions47. The occurrence of
resilience loss does not necessarily imply that these regions will
undergo immediate critical transitions47. To enhance the practical
value and policy relevance of resilience indicators, further

research is needed to investigate the predictive relationship
between these indicators and specific critical vegetation
transitions5. This will contribute to a more comprehensive
understanding of resilience dynamics and provide valuable
insights for future decision-making processes.

Our results demonstrated that greening does not always cor-
respond to an increase in vegetation resilience or both are not
simply linearly related. In the first decade, a large portion (64.09%)
of the vegetated area experienced both greening and an increase in
resilience (Fig. 1e). This result is further supported by temporal
correlations between mean kNDVI and AR(1), where negative
correlations were observed in 59.1% of the vegetated grids during
the first decade (Fig. 3d). The increased vegetation resilience
coinciding with greening in the first decade is probably due to
enhanced plant productivity, improved habitat conditions given a
specific period, and reduced anthropogenic disturbances resulting
from ecological protection policies5,11. However, it is important to
discuss why there is a shift from widespread resilience gains to
losses from the first decade to the second decade along with
greening (Figs. 1c, 2f). Considering the influence of climatic fac-
tors on resilience and their changing relative importance, our
findings indicate that increasing precipitation variability and
increasing temperature likely contributed to the resilience loss in
the second decade (Fig. 5). A recent study has reported that
regions with higher water availability tend to exhibit greater
vegetation resilience, whereas areas with pronounced precipitation
variability show lower resilience36. Since the Loess Plateau is lar-
gely located in semi-arid regions, water availability is the main
limiting factor for vegetation health and growth37. The combi-
nation of evaporation, transpiration exacerbated by a warming
climate, and increasing precipitation variability can intensify water
scarcity, thus impairing physiological functions and the ability of
vegetation to adapt to disturbances such as droughts5,10,36.
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Changes in vegetation, such as greening or browning, can alter
the dynamic equilibrium of the atmosphere-soil-vegetation
interaction, leading to ecohydrological effects that impact eco-
system sustainability2. While our study focused on the influence
of climatic factors on resilience changes, further research is
necessary to fully understand the underlying mechanisms driving
the inconsistent changes observed in vegetation dynamics and
resilience. Previous studies have highlighted the negative impacts
of overplanting, the introduction of exotic plant species, and
inadequate management practices on soil moisture in revegetated
regions26,30,37,49. Recently, an ecohydrological model demon-
strated that the current vegetation cover in many parts of the
Loess Plateau (average 0.48) has already exceeded the equilibrium
vegetation cover determined by climate (average 0.43), particu-
larly in the central and eastern areas26. Interestingly, the regions
exhibiting resilience loss in the second decade (Fig. 2f) aligned
with the areas exceeding the climate-defined equilibrium vege-
tation cover26. Moreover, we observed a shift from resilience
gains to losses at a breakpoint coinciding with greening. This
suggests the existence of a potential inflection point where
greening no longer contributes to resilience gains. However,
further investigation is needed to determine the specific levels of
greening (density) and reasonable plant communities for optimal
resilience.

Conclusions
Pervasive transitions in ecosystems have been observed and are
expected to escalate in a changing world, highlighting the need to
assess ecosystem resilience as a global priority9,12,14,35,50–52. In
this study, we evaluated vegetation dynamics and resilience in
China’s Loess Plateau from 2000 to 2020. Our findings reveal an
overall greening trend in vegetated areas during this period, while
resilience shifted from gains to losses in December 2010, marked
by a breakpoint. This empirical evidence demonstrates that
vegetation greening alone does not necessarily correspond to a
consistent increase in resilience. Although further research is
necessary to fully grasp the mechanisms driving resilience
changes, our analysis suggests that warming and precipitation
variability likely contribute to the resilience loss observed in the
second decade.

Resilience indicators can offer valuable insights into vegetation
states that might not be discernible through simple approaches
like linear regression. Incorporating these indicators into ecolo-
gical restoration assessments can guide the identification of
priority regions with resilience loss, the determination of optimal
vegetation density, and the selection of resilient species commu-
nities. To achieve more comprehensive ecosystem stewardship,
we recommend integrating resilience indicators into assessments
of ecological restoration effectiveness. This integration will pro-
vide a deeper understanding of ecosystem dynamics and enhance
decision-making processes for ecological restoration practices.

Methods
Study area. The Loess Plateau is located in central China and is
the largest and thickest loess deposit in the world, spanning
~640,000 km2 (Supplementary Fig. 1). It is characterized by a
temperate continental monsoon climate with an annual mean
precipitation of 400 mm37. The LP comprises arid, semi-arid, and
semi-humid areas distributed from northwest to southeast,
respectively, though the majority of the Loess Plateau is in a semi-
arid zone38. Due to cropland expansion, sparse vegetation, and
the erosion susceptibility of loess, the Loess Plateau has histori-
cally faced severe soil erosion and land degradation38,53. To
restore the degraded landscape, the Chinese government imple-
mented the Grain-to-Green Program in the Loess Plateau in

199940. Over more than two decades of ecological restoration
efforts, significant greening has been reported in most areas of the
Loess Plateau41–43. However, despite these achievements in eco-
logical restoration, there remain uncertainties regarding the
vegetation ecosystems in the Loess Plateau, particularly in the face
of rapid global environmental change37. Specifically, there is
limited knowledge about changes in vegetation resilience that
occur alongside greening. Therefore, the objective of our study is
to assess both vegetation dynamics and resilience from 2000 to
2020 and investigate whether resilience increases in conjunction
with greening.

Data preparation. Monthly NDVI data with a resolution of 1 km
from February 2000 to December 2020 were obtained from the
Moderate Resolution Imaging Spectroradiometer sensor (MOD13A3
Version 6). This dataset was utilized to analyze both vegetation
dynamics and resilience in the Loess Plateau due to its high spatial
resolution and continuous measurements by a single sensor. Next,
the collected NDVI data were processed to derive kNDVI using a
simplified Eq. (1)45. kNDVI is a newly proposed unified vegetation
index that has demonstrated closer alignment with primary pro-
ductivity, resistance to saturation, bias, and phenological cycles, as
well as improved robustness to noise and instability across spatial and
temporal scales compared to alternative products such as NDVI and
near-infrared reflectance of vegetation5,45. Therefore, we chose
kNDVI as the preferred metric to evaluate the state of the vegetation
ecosystem in this study.

kNDVI ¼ tanhðNDVI2Þ ð1Þ

A key assumption of resilience indicators based on critical
slowing down is that changes in the ecosystem should occur
naturally rather than being forced by human land-use changes
over time7,36. To minimize the influence of anthropogenic land
use on resilience signals, we excluded anthropogenic and non-
vegetated landscapes (e.g., urban areas, cropland)7,36. We focused
on vegetated land, specifically grassland and forest, that remained
unchanged from 2000 to 2020 based on a land cover dataset
(Supplementary Fig. 1). The land cover data, obtained from Yang
et al.54, had a spatial resolution of 30 m, which we resampled to a
1 km resolution using the NEAREST method in ArcGIS
desktop55. China’s national boundary was obtained from the
standard map service of China’s Ministry of Natural Resources
(http://bzdt.ch.mnr.gov.cn/). The Loess Plateau boundary data
was obtained from Loess Plateau SubCenter, National Science &
Technology Infrastructure of China, National Earth System
Science Data Sharing Infrastructure56. The Yellow River shapefile
data was acquired from Resource and Environment Science and
Data Center57.

To calculate the resilience metric AR(1), equidistant data is
required19. Therefore, we examined the missing values in each
kNDVI time series and found that locations with complete
kNDVI time series accounted for 99.03% of the vegetated land
(Supplementary Fig. 2). Interpolating missing values could
introduce spurious changes in AR(1), as the interpolated values
may resemble the existing values rather than representing any
actual change in the underlying process or resilience7,19. Given
that locations with incomplete kNDVI time series constituted
only a small fraction of the vegetated land (0.97%), we simply
excluded these areas and instead focused solely on locations with
complete kNDVI time series when calculating resilience metrics.

To investigate the influence of climate factors on vegetation
resilience, we used monthly precipitation, temperature, and
potential evapotranspiration data obtained from the National
Earth System Science Data Center and the National Science &
Technology Infrastructure of China58. These data were available
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at a spatial resolution of 1 km for the period 2000–2020. The
aridity index was quantified as precipitation divided by potential
evapotranspiration59. Higher values indicate more humid condi-
tions, while lower values indicate higher aridity59. To assess the
impact of the mean climate state on vegetation resilience, we
calculated the mean values of precipitation, temperature,
potential evapotranspiration, and aridity index within a sliding
window, similar to the approach used for calculating AR(1).
Likewise, we calculated the variability of precipitation and
temperature within the same sliding window to investigate the
impact of climate variability on vegetation resilience.

Vegetation dynamics and resilience. The rate of return to
equilibrium, following a (small) perturbation, tends to slow down
as systems approach critical transitions17. This phenomenon,
known as “critical slowing down”, can be detected by examining
changes in the correlation structure of a time series19. The sim-
plest measure of slowing down is autocorrelation, specifically
autocorrelation at-lag-1. An increase in autocorrelation at-lag-1
indicates that the system’s state has become increasingly similar
between consecutive observations, reflecting a decline in recovery
rates19. There are various methods to calculate autocorrelation at-
lag-117–19. In this study, we employ a conditional least-squares
method to fit a linear autoregressive model of order 1, denoted as
AR(1), using the following Eq. (2)19:

Ztþ1 ¼ ARð1ÞZt þ εt ð2Þ

Where Zt is the subset of the ecological state series (i.e., kNDVI
time series in this study). Ztþ1 is the first-order lag time series.
AR(1) is the autoregressive coefficient. εt is the residuals obtained
by the ordinary least-squares method. The AR(1) provides a
robust indicator for “critical slowing down” before bifurcation-
induced transitions and has been widely used in vegetation
resilience assessments6,7,10,11,36.

Prior to estimating the resilience metrics, it is necessary to
remove trends from the kNDVI time series11,19. Trends indicate
nonstationary conditions that can potentially impact the
resilience metrics in unwanted ways19. We utilized the STL
(Seasonal and Trend decomposition using Loess) decomposition
technique, implemented through the stl() function in the ‘stats’
package (v4.2.1) in R60. This decomposition method separates the
kNDVI time series in each grid cell into an overall trend, a
seasonal component, and a residual component11. For our
resilience estimation, we exclusively utilized the STL residual
component, representing the de-seasoned and de-trended kNDVI
time series11,36. In the stl() function, we kept the s.window
parameter as ‘periodic’ and varied the t.window (trend window)
parameter to test the robustness of resilience estimates to the
choice of trend window. Note that we compared analyses using
both the stl() function and the stlplus() function and obtained the
same results (Supplementary Fig. 3). To estimate the vegetation
resilience indicator AR(1), we employed the ar.ols() function
from the ‘stats’ package (v4.2.1) in R60. The AR(1) coefficient was
measured using a sliding window with a length equal to
60 months, thereby generating a time series of AR(1) coefficients
for each location.

To assess the robustness of the resilience estimates, we adjusted
our investigation in three ways to estimate how our results may
have been influenced by our method of analysis. Firstly, we varied
the size of the trend window (t.window parameter) in the stl()
function, and the outcomes of alternative detrended time series
can be found in Supplementary Fig. 4. Secondly, we explored
the impact of varying the sliding window length during
the calculation of AR(1) using the ar.ols() function, and the
results for different sliding window lengths are depicted in

Supplementary Fig. 5. Lastly, we examined changes in variance
over time as an additional indicator of critical slowing down to
compare against AR(1)18,61. The findings for the variance
indicator are presented in Supplementary Figs. 6, 7. These results
convincingly indicate that our resilience estimates remain robust
across different detrending methods, sliding window lengths, and
resilience indicators.

In this study, vegetation dynamics refer to the changes in the
mean state of vegetation ecosystems. To facilitate a comparison
between vegetation dynamics and resilience changes, we com-
puted the mean kNDVI time series within the same sliding
windows as the AR(1), ensuring temporal alignment. This sliding
window approach generated a time series representing the mean
values of kNDVI. In addition to calculating the resilience metric
AR(1) and mean kNDVI values for the entire 2000–2020 period,
we also performed similar calculations for two consecutive and
independent decades: 2000–2010 (the first decade) and
2011–2020 (the second decade). This facilitated a comparative
analysis. To assess regional changes, we calculated the mean
AR(1) and kNDVI for all grid cells at each time point,
transforming the data from a grid-scale to a regional-scale
format (Fig. 1a). In addition, we calculated the 95% confidence
intervals to measure uncertainty associated with the mean values.

Analyses. To assess the trends of AR(1), we employed Kendall’s τ,
a rank correlation coefficient commonly utilized for estimating
resilience tendencies in recent studies5,6,11. The advantage of
using Kendall’s τ is its ability to make resilience trends compar-
able across different regions6. We used the cor.test() function
with the Kendall method from the R package ‘stats’ (v4.2.1) and
set the confidence level at 0.95 to measure the tendency of
AR(1)60. A significant positive (negative) value of Kendall’s τ
(P < 0.05) indicates an increasing (decreasing) tendency of AR(1),
which corresponds to a loss (gain) of resilience and an increased
(decreased) risk of critical transitions when exposed to dis-
turbances. For comparison, we employed the same method to
determine the tendency of the mean kNDVI time series. A sig-
nificant positive (negative) value of Kendall’s τ (P < 0.05) indi-
cates an increasing (decreasing) trend of mean kNDVI values,
corresponding to a greening (browning) trend.

We utilized the ‘bfast’ function in R package ‘bfast’ (v1.6.1) to
detect abrupt change points in the mean AR(1) time series at a
regional scale62. Given that the mean AR(1) time series exhibited
a U-shape pattern (Fig. 1a), we set the ‘breaks’ parameter to 1 to
limit the maximum number of breaks to be calculated. To analyze
changes in vegetation dynamics and resilience at the grid scale, we
used histogram plots to examine the frequency distribution of
Kendall τ values for the kNDVI and AR(1) time series.
Specifically, we compared the data for two distinct decades,
namely 2000–2010 and 2011–2020 (Fig. 1b, c). The spatial
patterns and area proportions for the Kendall τ values of the
kNDVI and AR(1) time series were depicted in Fig. 2. To examine
the relationships between vegetation greening/browning and
resilience, we first created a cumulative density distribution plot
between AR(1) Kendall τ and kNDVI Kendall τ (Fig. 1d–f). In
addition, we analyzed the temporal correlations between AR(1)
series and kNDVI series at each grid cell using the ‘cor.test()’
function with the Pearson method60 (Fig. 3).

To analyze changes in vegetation resilience with respect to
climatic factors, we initially calculated the annual mean values of
precipitation, temperature, potential evapotranspiration, and
aridity index from 2000 to 2020. These climate variables were
divided into 50 gradients. Next, we determined the median value
of the AR(1) Kendall τ within each climate gradient (Fig. 4). To
investigate the impact of climate factors on vegetation resilience,

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-01000-3

8 COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:336 | https://doi.org/10.1038/s43247-023-01000-3 | www.nature.com/commsenv

www.nature.com/commsenv


we used multiple linear regression models to quantify the
direction and intensity of the influence of each climate variable
on the AR(1)14. A separate multiple linear regression model was
constructed for each grid location, with the AR(1) time series as
the dependent variable and 6 explanatory variables including
mean precipitation, mean temperature, precipitation variability,
temperature variability, mean potential evapotranspiration, and
mean aridity index. The scale() function in R package base
(v4.2.1) was applied to scale the variables to a mean of 0 and
reduce unit variance to improve model convergence60. In
addition, we utilized the ‘calc.relimp()’ function from the R
package ‘relaimpo’ (v2.2.6) to determine the relative importance
of factors in the regression models63. Finally, we extracted
regression coefficients, P values, and relative importance for each
environmental factor. Vegetation grids with non-significant
regression coefficients were excluded from subsequent analysis
(Fig. 5). The spatial patterns of regression coefficients and relative
importance for each climatic variable are shown in Supplemen-
tary Figs. 8, 9. All analyses mentioned above were conducted in R
environment (version 4.2.2)60.

Data availability
Monthly NDVI data with a resolution of 1 km from February 2000 to December 2020 were
acquired from MODIS (MOD13A3 Version 6, https://lpdaac.usgs.gov/products/
mod13a3v006/). Land use/cover data with a 30m resolution in 2000 and 2020 was obtained
from Zenodo (https://zenodo.org/record/5210928). Monthly precipitation, temperature, and
potential evapotranspiration with a resolution of 1 km from January 2000 to December 2020
were acquired from National Earth System Science Data Center, National Science &
Technology Infrastructure of China: precipitation (http://www.geodata.cn/data/datadetails.
html?dataguid=192891852410344&docId=1069), temperature (http://www.geodata.cn/data/
datadetails.html?dataguid=164304785536614&docId=1737), potential evapotranspiration
(http://loess.geodata.cn/data/datadetails.html?dataguid=34595274939620&docId=69).
China’s national boundary (GS(2020)4619) was obtained from the standard map service of
China’s Ministry of Natural Resources (http://bzdt.ch.mnr.gov.cn/). The Loess Plateau
boundary data was obtained from Loess Plateau SubCenter, National Science & Technology
Infrastructure of China, National Earth System Science Data Sharing Infrastructure (http://
loess.geodata.cn/datapplication/OrderStepList.html?dataguid=23394955913595). The Yellow
River shapefile data was obtained from Resource and Environment Science and Data Center
(https://www.resdc.cn/DOI/DOI.aspx?DOIID= 44).

Code availability
Code for analysis and drawing main figures can be found at https://github.com/geowaa/
Vegetation_Greening_Resilience.
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