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Uncertainties and sensitivities in the quantification
of future tropical cyclone risk
Simona Meiler 1,2✉, Alessio Ciullo1,2, Chahan M. Kropf 1,2, Kerry Emanuel 3 & David N. Bresch 1,2

Tropical cyclone risks are expected to increase with climate change and socio-economic

development and are subject to substantial uncertainties. We thus assess future global

tropical cyclone risk drivers and perform a systematic uncertainty and sensitivity analysis.

We combine synthetic tropical cyclones downscaled from CMIP6 global climate models for

several emission scenarios with economic growth factors derived from the Shared Socio-

economic Pathways and a wide range of vulnerability functions. We highlight non-trivial

effects between climate change and socio-economic development that drive future tropical

cyclone risk. Furthermore, we show that the choice of climate model affects the output

uncertainty most among all varied model input factors. Finally, we discover a positive cor-

relation between climate sensitivity and tropical cyclone risk increase. We assert that

quantitative estimates of uncertainty and sensitivity to model parameters greatly enhance the

value of climate risk assessments, enabling more robust decision-making and offering a richer

context for model improvement.
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Tropical cyclones (TCs) are among the most devastating
natural hazards putting populations1 and assets2 at risk.
TC risks (or impacts) are a function of TC hazard, expo-

sure of people or assets to this hazard, and the respective vul-
nerability of the exposed people or the (built) environment3. Over
the last 50 years, TCs worldwide caused, on average, 28 billion
USD in economic losses every year4. In the future, TC impacts are
expected to increase even further with climate change and socio-
economic development1,5,6. Climate change is projected to drive
an increase in TCs of the highest category, enhance precipitation
rates, and amplify the destructive power of TC-induced flooding
by rising sea levels7. Concurrently, socio-economic development
yields an expansion of population8 and assets9 exposed to TCs.
Hence, it is crucial to support at-risk communities with trans-
parent information of future TC risk changes.

Quantifying future TC risks is particularly challenging because
it requires dealing with the absence of robust verification data10,11

and large, possibly cascading uncertainties in the model input
components and model structure12. To date, studies have focused
on changes in the physical properties of TCs (for example,
changes in intensity13 and frequency14) or future TC exposure8.
No study has performed a systematic and thorough uncertainty
and sensitivity analysis of future, global TC risk. We thus assess
the drivers and uncertainties of direct economic damages from
TCs in the future, considering wind as the driving physical
hazard. Importantly, we refrain from making a priori choices
regarding emission scenarios, particular global climate models
(GCMs), preferable narratives developed for the Shared Socio-
economic Pathways (SSPs)15, or optimized representations of
vulnerability. Instead, we include all available future TC hazard
simulations and socio-economic development scenarios and
represent vulnerabilities across a wide range to explore an
extensive future TC risk space. Therefore, the results presented
here go beyond the standard climate risk analyses, which often
only provide a comparably basic uncertainty estimation but
hardly ever include a thorough and systematic treatment of
uncertainty and sensitivity16,17.

To study uncertainties and sensitivities in future TC risk esti-
mates, we select from a list of scientifically justified inputs based
on alternative representations of the future climate and socio-
economic systems rather than defining a set of additive or mul-
tiplicative perturbation factors for each input factor whenever
possible. This approach has several advantages. First, it is inher-
ently difficult to precisely define all input uncertainties through a
set of perturbation factors. Often, such information is unavailable
because it is missing from future climate and socio-economic
model output documentation. Second, employing a limited yet
plausible range of input choices establishes a direct correlation
between our output and the specific combinations of inputs
employed to produce it. Lastly, we avoid assuming the likelihood
of specific input combinations and instead describe the results
based on the uncertainty and sensitivity observed across the
explored discrete settings. Consequently, we do not investigate all
uncertainties of the diverse models used to simulate such future
climate and socio-economic states (e.g., the TC downscaling
model or the GDP model for SSP projections). Instead, we focus
on the uncertainties of the three main physical climate risk model
components by sampling from a list of state-of-the-art future
representations of hazard, exposure, and vulnerability.

For the hazard, we use large sets of synthetic TCs18–20

downscaled from nine different GCMs and three warming sce-
narios of the CMIP6 generation (SSP245, SSP370, SSP585),
simulating TC activity of the historical period (1995–2014) and in
the middle (2041–2060) and end of this century (2081–2100).
This statistical-dynamical technique requires daily wind output in
addition to monthly mean thermodynamic quantities and was

applied for all GCMs of the newest generation, which provide this
data for all ensemble members. The technique is well-
established20,21 and has been shown to replicate key features of
the observed historical TC climatology19. Furthermore, we use
two different parametric wind models to derive 2D wind fields
along each TC track22,23. Note that we do not explore uncer-
tainties of the TC downscaling model itself; this is beyond the
scope of this study and was addressed elsewhere24. However, we
review the implications of this TC model choice in the discussion
section in more detail. For exposure, we use economic growth
factors from different SSPs15 to approximate socio-economic
development and analyze exposure uncertainties. We include all
five SSPs, each describing a different possible future scenario for
society; ranging from a world of low economic growth, low
population growth, and limited technological innovation (SSP1)
to a world of high economic growth, high population growth, and
rapid technological innovation (SSP5). For vulnerability, we test
uncertainties by varying the vulnerability function’s slope para-
meter of regionally-calibrated vulnerability functions25 across a
wide range. We combine these representations of hazard, expo-
sure, and vulnerability to estimate future TC risk increases and
quantify the uncertainties and sensitivities thereof using an open-
source probabilistic risk model (CLIMADA)26. We repeat the risk
calculations many times (>40,000), relying on a numerical Monte
Carlo scheme27 to cover all possible combinations of input factor
variations.

Our results highlight the full uncertainty distribution of model
outputs and how these variations can be attributed to variations
in input factors. This additional information is incredibly valuable
to identify the most important and uncertain drivers of TC risk
increase in a changing climate and evolving society. It can help
model developers focus research efforts on model inputs that
matter most for reducing uncertainty in the output. It may pro-
vide decision-makers with a much more representative range of
plausible future outcomes and thus a more transparent and
valuable information basis. Ultimately, our approach of analyzing
different types of uncertainties enables better-informed adapta-
tion decisions and mitigation strategies.

Results
Drivers of future tropical cyclone risk. We first assess the two
main drivers of future TC risk increase - climate change and
socio-economic development - independently and contrast them
with the total risk increase later. For the independent assessment
of the two TC risk drivers, we fix exposure at the reference state
(year 2005, see Methods) to quantify the contribution from cli-
mate change and, analogously, evaluate socio-economically-
driven risk change on historical hazard data. We express TC
risk by the standard metrics of expected annual damages (EAD)
and 100-year damage event (100-yr event in short). The former is
the integrated value of impacts across all probabilities and is thus
commonly used as a proxy for risk-based insurance premiums28.
The latter is an extreme event that is expected to occur once every
100 years, on average. In other words, it is an event with a 1%
chance of occurring in any given year. In this study, we focus on
four distinct global regions (Fig. 1a and Methods) and evaluate
the future TC risk increase relative to the respective, present-day
baseline reporting results as relative changes in percent.

We find that the median climate change-driven TC risk
increase is smaller than the contribution from socio-economic
development in all regions, both periods and risk metrics (Fig. 1).
For example, climate change yields a median TC risk increase
ranging from 0.3% (Southern Hemisphere) to 2.5% (Western
Pacific) for EAD in 2050 and 0.6% (Southern Hemisphere)
to 1.8% (North Indian Ocean) in 2090. On the other hand,
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socio-economic development causes EAD to increase by 0.8%
(North Atlantic/Eastern Pacific) to 2.5% (North Indian Ocean) in
2050 and 2.0% (North Atlantic/Eastern Pacific) to 7.1% (Southern
Hemisphere) in 2090 (Fig. 1b–e). We note that 100-yr event
values are comparable (Fig. 1f–i), and the complete results
overview can be found in Supplementary Table 1 & Supplemen-
tary Table 2. Climate change is, in most cases, the driver with the
higher uncertainty, which can be deduced from the width of the
interquartile range (IQR). Exceptions are results in the Southern
Hemisphere for both metrics in 2090 (Fig. 1d, h) and 100-yr event
values in the North Indian Ocean and Western Pacific in 2090
(Fig. 1g, i). Accordingly, extremes on both ends of the
distribution are more pronounced for climate change in these
cases too. Besides, climate change produces a risk decrease
(−0.1% to −0.7%), whereas socio-economic development nearly
always amounts to a risk increase (Supplementary Table 1 &
Supplementary Table 2), implying that climate change may offset
part of the socio-economically-driven TC risk increase in these
cases.

Next, we evaluate the total risk increase, including both
climate change and socio-economic development in the risk
calculation. Most notably, the total TC risk increase (Fig. 1, total;
right-most column) includes non-trivial effects between the two
key drivers and it is not the mere sum of its parts nor simple, a
posteriori multiplication of hazard and exposure (Fig. 1, sum;
inner right column). In contrast, the total TC risk increase from
the full risk calculation, including climate change applied to the

hazard and socio-economic development in the exposure from
the beginning, contains excess non-linearity that cannot be
accounted for by the simple multiplication of hazard and
exposure. Median values of total TC risk increase shown in Fig. 1
range from 2.4% (5.3%) in the North Atlantic/Eastern Pacific to
5.3% (21.7%) in the North Indian Ocean in 2050 (2090). The last
value (21.7%), for example, results from the interplay of the
individual contributions of climate change (1.8%) and socio-
economic development (6.8%) and is notably larger than the
product of the two drivers (10.1%), thus illustrating the excess
non-linear effects. This non-linearity also influences the
uncertainty of total TC risk increase (Fig. 1), which spans wider
ranges of possible EAD and 100-yr event values than for the two
single drivers and their product). It likewise affects the most
extreme values. For instance, the maximum TC risk increase
surpasses 400% (422% 100-yr event; 467% EAD) in the North
Indian Ocean by the end of the century (Supplementary Table 1
& Supplementary Table 2). Note that we focus on total risk
increases for the remainder of the study.

Sensitivity analysis of future tropical cyclone risk. The sensi-
tivity analysis helps to determine how uncertainties in total TC
risk change described in the last section can be attributed to
variations in model input factors10 (Table 1). These model input
factors encompass various representations of future TC hazard,
exposure, and vulnerability components and uncertainties
therein. Here, we present first- and total-order Sobol0 sensitivity

Fig. 1 Drivers of future tropical cyclone risk change. Relative change in tropical cyclone risk by 2050 (blue) and 2090 (orange) due to climate change
(CC), socio-economic development (SOC), the product of CC and SOC calculated from the sum of their log values (sum) and both drivers interacting
(total) with respect to the historical baseline. The relative change in expected annual damage (EAD) (b, c, d, e) and 100-yr event (rp100) values (f, g, h, i)
are reported for the four study regions (a) North Atlantic/Eastern Pacific (AP), North Indian Ocean (IO), Southern Hemisphere (SH), and North Western
Pacific (WP). Boxplots show the interquartile range (IQR) for the uncertainty over all input factors (see Methods), while the whiskers extend to 1.5 times
the IQR. More extreme points (outliers) are not shown. Statistical summary metrics of all boxplots are provided in Supplementary Table 1.
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indices29,30 of our total TC risk change estimations. First-order
sensitivity indices measure the effect of variations in a single input
factor, and total-order sensitivity indices the combined effect of
changes in multiple input factors on the model output31.

The input factor with the highest first-order sensitivity over
almost all regions, periods, and metrics is the choice of GCM
underlying the hazard model (GCM) (Fig. 2a). One exception is
found in the Southern Hemisphere for 100-yr event values at the
end of the century, where the SSP-informed GDP scaling of
exposure points (SSP exposure) exhibits the largest sensitivity.
This finding is also mirrored by the results in Fig. 1d, h for the
Southern Hemisphere, where socio-economic development is the
notably more uncertain TC risk driver than climate change.
Moreover, SSP exposure has the second-highest sensitivity index
in other regions. In contrast, all other input factors have little
influence on the model output.

In essence, total-order sensitivity indices broadly mirror the
ranking and distribution of first-order indices (Fig. 2b). Generally,
total-order sensitivity indices are higher than first-order indices,
which implies interactions between input factors. However, all
increases we find here are relatively small, meaning most
interactions between input factors are weak. We report that the

GCM model choice (GCM) still ranks as the most important
factor, and the SSP-based scaling of the exposure layer (SSP
exposure) is the second most important. Furthermore, we
discover very small sensitivities for the wind model choice (Wind
model), the two hazard sub-sampling variables (Event subsam-
pling base/future), and the Lit (m) and Pop (n) exponent
variations32 (Exposure urban/rural weighting). Note, that the
latter allows emphasizing densely populated and rural areas
differently (see Methods). Finally, the input factor describing the
slope parameter of impact functions (Vulnerability function
midpoint) has a small to moderate effect on risk output. However,
we emphasize that this importance changes if we report TC risk
in absolute values (Supplementary Fig. 1), in which case this input
factor (Vulnerability function midpoint) controls a substantial
share of the output uncertainty. Still, the GCM choice (GCM)
retains a notable effect but is no longer the single key driver of the
output uncertainty.

Uncertainty of future tropical cyclone risk apportioned to
GCMs. We disentangle key input factors of the TC risk model to
evaluate uncertainty in TC risk increase in more detail. In the last

Table 1 Input factors and their variability space.

Input factor Variable name Type Range

Hazard: GCM GCM discrete 1–9
Hazard: Emission scenario SSP hazard discrete 1–3
Hazard: Wind model Wind model discrete 1–2
Hazard: Bootstrapping Event subsampling base/future continuous 80% of every year
Exposure: SSP-based GDP scaling SSP exposure discrete 1–5
Exposure: GDP model GDP model discrete 1–3
Exposure: m, n scaling LitPop Exposure urban/rural weighting discrete 1–9; m= [0.5, 1.0, 1.5], n= [0.5, 1.0, 1.5]
Impact functions Vulnerability function midpoint continuous within IQR of regional TC calibration25

Fig. 2 First- (S1) and total-order (ST) sensitivity indices. First- (a) and total-order (b) Sobol0 sensitivity indices for future (2050, 2090) TC risk change
expressed as %-change in expected annual damage (EAD; upper bar) and 100-yr event values (rp100; lower bar) over the four study regions (cf. Fig. 1a)
North Atlantic/Eastern Pacific (AP), North Indian Ocean (IO), Southern Hemisphere (SH), and North Western Pacific (WP) and all input factors (see
Methods and Table 1 therein). Results are grouped by input factors (different colors); Vulnerability function midpoint describes the impact function; Wind
model; GCM, SSP hazard, Event subsampling base, Event subsampling future pertain to the hazard component; GDP model; SSP exposure, Exposure urban/
rural weighting relate to the exposure.
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section, we showed that the GCMmodel choice (GCM) affects the
output uncertainty of the relative change in TC risk most among
all varied input factors. Here, we further investigate the role of
this important modeling choice by exploiting the advantages of
uncertainty analyses. We evaluate the entire distribution of out-
put values, including all sources of uncertainties from different
input factors (Table 1), split up by the nine GCMs (GCM),
ordered by their transient climate response (TCR; Supplementary
Table 6 and grouped by emission scenario (SSP hazard) (Fig. 3).
The corresponding results for the 100-yr event (Supplementary
Fig. 2) are comparable, and we thus limit the results’ description
here to the EAD.

We discover two broad GCM clusters. TC event sets
downscaled from one model cluster (FGOALS, MIROC6,
MPI6, MRI6, UKMO6) yield a low TC risk increase (≤10%),
event sets based on the remaining models (CESM2, CNRM6,
ECEARTH, and IPSL6) a medium to high-risk increase (≥10%).
Particularly, simulations from the IPSL6 model stand out with
the most substantial growth of TC risk (Fig. 3). Moreover, TC
risk change estimates from the first GCM cluster (low-risk
change) are more narrowly constrained. In contrast, models
from the second cluster produce results with a much wider delta
EAD range.

The selection of emission scenarios for future TC projections
(SSP245, SSP370, SSP585) shapes the distribution of TC risk
change estimates much less than the GCM choice (Fig. 3), which
is also mirrored by the low sensitivity indices for the respective
input factor (SSP hazard) described in the last section (Fig. 2).
Notably, results for the GCM cluster of low TC risk increase are
similar for all three hazard emission scenarios (Fig. 3). Generally,
model simulations for the SSP370 hazard/SSP3 exposure
combination (green colored) form the low end of the results
and the SSP585 hazard/SSP5 exposure combination (blue
colored) the high end (Fig. 3). Furthermore, differences between
emission scenarios are more pronounced by the end of the
century (Fig. 3b, d, f, h) in contrast to the middle of the century
(Fig. 3a, c, e, g), which again reflects the interplay of diverging
hazard and exposure projections further out into the future.
Consequently, end-of-century TC risk changes are more
uncertain and of greater magnitude than mid-century simula-
tions. Lastly, the Southern Hemisphere results (Fig. 3e, f) broadly
reflect outcomes described for the other regions. However, it is
the region where GCM differences are smallest. There, other
input factors (co-)shape the output uncertainty more strongly.
Again, this finding aligns with the sensitivity indices reported in
the last section.

Fig. 3 TC risk change from different global climate models (GCMs) and emission scenarios. Model simulations of the expected annual damage (EAD)
change by 2050 (a, c, e, g) and 2090 (b, d, f, h) attributed to the nine GCMs and three emission scenarios underlying the TC hazard sets (see Methods).
GCMs are ordered by increasing transient climate response (TCR) values (Supplementary Table 6), which are shown as black stars on a secondary y-axis.
Model realization of matching hazard and exposure scenarios are marked in color (SSP245 in red, SSP370 in green, SSP585 in blue) with diamond-shaped
markers delineating the median of their distribution. Results are shown over the four study regions North Atlantic/Eastern Pacific (AP), North Indian Ocean
(IO), Southern Hemisphere (SH), and North Western Pacific (WP) (cf. Fig. 1a).
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Tropical cyclone risk change relationship to climate sensitivity.
Here we link the TC risk change values resulting from TC events
sets downscaled from different GCMs with the climate sensitivity of
the respective model. We suggest that the intermodel differences we
found and described in the last section “Uncertainty of future
tropical cyclone risk apportioned to GCMs” may be related to
climate sensitivity. It is known that some CMIP6-generation GCMs
run hotter than others33,34. Specifically, some models of the newest
generation exhibit a higher climate sensitivity than in previous
generations, which lies outside the range of “likely” (or “very likely”)
values as defined by authors of the Sixth Assessment Report (AR6)
of the Intergovernmental Panel on Climate Change (IPCC).

We present a striking relationship between climate sensitivity
and TC risk values. TCR and equilibrium climate sensitivity
(ECS) values for the nine GCMs, including a screen if the models
fall into the likely range of projected TCR or ECS (Supplemen-
tary Table 6), are compared to the two distinct model clusters
identified in the last section. TC event sets downscaled from
GCMs with climate sensitivity values in the likely range
generally belong to the cluster of models we identified to
produce low TC risk increases (Supplementary Table 6). The
UKMO6 model constitutes the sole exception. It has a high
climate sensitivity but generates low TC risk increases (Fig. 3).
This qualitative assessment is supported by positive correlation
coefficients calculated for TCR and TC risk values (Supplemen-
tary Table 7). The highest correlation is found between TCR
values and EAD changes in the North Atlantic/Eastern Pacific in
the middle of the century (0.71), the lowest correlation is
between TCR and 100-yr event changes in the Southern
Hemisphere at the end of the century. Besides, we calculated
correlations between TCR and global TC risk changes because
climate sensitivity is a global measure. The correlation
coefficients are 0.39, 0.46, 0.48 and 0.54 for change in 100-yr
event in 2090, 100-yr event in 2050, EAD in 2090 and EAD in
2050 respectively. Hence, on a global scale, the correlation is
highest for changes in EAD in the mid-century and decreases
with time and for the change in 100-yr damage values.

Discussion
Our results confirm that considering the effect of climate change
alone yields an incomplete picture of future TC risk (Fig. 1).
Consequently, it is important to include socio-economic devel-
opment because climate impacts manifest as non-linear interac-
tions between the two components. Hence, we find that also the
uncertainty associated with future TC risk projections increases
non-linearly when considering the two drivers together.

The average contribution of climate change and socio-
economic development to the total future TC risk increase is of
the same order of magnitude in all Northern Hemisphere regions
(Fig. 1 & Supplementary Table 1 & Supplementary Table 2). But
climate change is the notably more uncertain risk driver for most
regions, both future periods and risk metrics, than socio-
economic development (Fig. 1). We attribute the reason for this
uncertainty to variations in GCMs used to downscale TCs from
(Figs. 2, 3) and found the varying climate sensitivity of these
GCMs as an important contributor to the dissimilar TC event sets
(Section “Tropical cyclone risk change relationship to climate
sensitivity”).

The case where climate change is not the more uncertain risk
driver is for Southern Hemisphere end-of-century risk changes.
In contrast, socio-economic development is the substantially
more uncertain driver there (Fig. 1d, h & Supplementary Table 1
& Supplementary Table 2). From our study, we learn that the
magnitude of socio-economically-driven risk change in the
Southern Hemisphere at the end of the century is substantially

larger (more than an order of magnitude) than the one of climate
change. We furthermore see that the input factor for the SSP-
based exposure scaling is the most important driver for the
output uncertainty in this case (Fig. 2). We thus hypothesize that
the SSPs describing the socio-economic growth factors by the end
of the century diverge more strongly between scenarios in the
Southern Hemisphere than in the other regions - explaining the
uncertainty. Additionally, Southern Hemisphere SSPs may
include narratives for stronger growing economies than in the
North - explaining the magnitude. Furthermore, in the Southern
Hemisphere, there are island states (like Indonesia) where the
entire country’s GDP is exposed to TCs in contrast to large
countries in the Northern Hemisphere (e.g., USA, China) whose
coastal areas are exposed to TCs but areas further inland are not
affected. Accordingly, the Southern Hemisphere is also the region
where inter-GCM differences are lowest (Fig. 3) and the corre-
lation to climate sensitivity is weakest (Supplementary Table 7).

Next, we discuss the findings and implications of the GCM
choice (GCM) as a major determinant of output uncertainty in
TC risk assessment (Fig. 2). By investigating the uncertainty space
of event sets downscaled from the nine different GCMs in more
detail, we found two distinct model clusters: One producing low
TC risk increases, the other medium to high TC risk increases
(Fig. 3). We suggest that these intermodel differences can partly
be explained by climate sensitivity (Section “Tropical cyclone risk
change relationship to climate sensitivity”). This correlation may
not be surprising as TC potential intensity generally scales line-
arly with global warming35. Furthermore, TC potential intensity
is a strong predictor for TC genesis potential indices36–38. Cli-
mate sensitivity thus helps drive TC hazard frequencies and
intensities, the two critical hazard characteristics for TC risk. We
are therefore not surprised to see that GCMs with frequencies and
intensities below the multimodel mean broadly constitute the
model cluster yielding low TC risk increases (FGOALS, MIROC6,
MPI6, MRI6, UKMO6), whereas the GCMs with above-average
frequencies and intensities form the second cluster (CESM2,
CNRM6, ECEARTH, and IPSL6) with medium-high TC risk
increases (Supplementary Table 3, Supplementary Table 4 &
Supplementary Table 5). Yet, it remains to be investigated if this
finding is generalizable beyond the particular statistical-
dynamical TC model used in this study. We acknowledge the
presence of epistemic uncertainty regarding the response of TC
frequency to global warming. The TC downscaling method19

used in this study indicates increased genesis rates with global
warming, especially in the northern hemisphere20, in contrast to
the majority of GCMs that show decreases7. However, caution is
needed when comparing the downscaling TC model to a con-
sensus greatly influenced by GCMs with horizontal grid spacings
too coarse for tropical cyclone resolution39. Notably, one NOAA
Geophysical Fluid Dynamics Laboratory (GFDL) model demon-
strates decreasing TC frequencies under global warming at a
50 km grid spacing, while reducing the grid spacing to 25 km
alone leads to increasing genesis rates40. Similarly, the TC
downscaling model by Lee et al. (2020)41 indicates varying fre-
quency changes depending on the version of Genesis Potential
Indices employed.

Besides, TC risk also depends on the track TCs take, which is
not clearly related to climate sensitivity. Additionally, we did not
know before our study if future TC risk change was mainly driven
by climate change, socio-economic development, or the two
drivers more or less equally. If the total risk were dominated by
socio-economic development, we might not have found such a
clear connection between TC risk increase and climate sensitivity.
Indeed, our discussion of the magnitude of socio-economically-
driven risk change at the end of the century Southern Hemisphere
supports this statement.
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In conclusion, the relationship between TC risk increase and
climate sensitivity is an important discovery: we may use the
climate sensitivity of GCMs as a first indicator for TC risk
increase. Yet, some inter-GCM variations may arise from natural
climate variability rather than only in response to increased
greenhouse gas concentrations. Specifically, we used single
ensemble members from each GCM and hence, any inter-GCM
comparison of climate change signals will be affected by different
phases of natural variability too. Moreover, it remains to be
investigated if this finding is generalizable beyond the particular
statistical-dynamical TC model used in this study.

These findings certainly prompt further research opportunities
for TC hazard modelers. However, they are also a representation
of the maturity of TC hazard modeling as a field, which is
important from a risk modeling perspective. In contrast to the
other key components of risk modeling - exposure and vulner-
ability - hazard simulations are substantially more advanced. We
have many skillful models and approaches available to simulate
future TCs19,41,42. But this availability is unmatched on the side of
exposure and vulnerability. Hence, we should not confuse low
sensitivity indices for exposure- and vulnerability-related input
factors (Fig. 2) with low importance for TC risk assessment in
general. The comparably low sensitivity indices for exposure and
vulnerability may simply result from a limited capability to
simulate socioeconomic development and changing vulner-
abilities. Specifically, in this study, we neglect possible changes in
vulnerability in the future because such competencies are largely
nonexistent. Moreover, our choice to report the relative TC risk
change and not a change in absolute terms masks the importance
of the impact function-related input factor for the output
uncertainty further (compare Fig. 2 & Supplementary Figure 1).
For exposure, we used SSP-based GDP growth factors to
approximate socio-economic development. However, the SSPs
were not designed to be used in a spatially explicit fashion15,
which is required for our type of risk assessment. Also, the GDP
scaling ignores spatial patterns in socio-economic growth like
urbanization.

These limitations consequently restrict our possibilities to
inform the input factors central to the uncertainty and sensitivity
analysis. In this study, we limit the input factors to all available,
plausible representations of the future climate and socio-
economic system. Hence, as long as such models for future
exposure and vulnerability are missing, they remain blind spots in
our assessment of future TC risk changes. The results from our
sensitivity analysis suggest that hazard uncertainty needs to be
reduced, and there is no question that more research is needed in
this direction. However, our interpretation is that model maturity
and complexity are not even across the three components, and
therefore we recommend focusing future research efforts on
better understanding and representing socio-economic develop-
ment in a spatio-temporally explicit way. In parallel, improved
vulnerability representations, including changing aspects of vul-
nerability in the future, would advance TC risk assessment fur-
ther. Nonetheless, we note that TC risk estimates vary based on
the chosen TC hazard model24. Similar to the epistemic uncer-
tainty discussed for changing TC frequency in a warming climate,
uncertainties exist among TC hazard models. For example, future
TC risk calculations based on a fully statistical TC model42 yield
comparable findings for assessing future TC risk drivers but differ
in the results of the sensitivity analysis due to the differences in
the underlying modeling approach and model structure43. More
generally speaking, in the context of uncertainty and sensitivity
analysis, the choice of model and its meta-parameters represent
normative uncertainty12,44. This includes, for instance, using a
risk model based on hazard, exposures, and impact functions;
selecting output metrics of interest; focusing on specific large-

scale regions. While most of these uncertainties are not per se
quantifiable and thus not reported as results, they can be iden-
tified and discussed systematically44, particularly regarding the
fitness for purpose. The here chosen model setup is designed to
study uncertainties in societal TC risk at a national scale, rather
than focusing on TC climatology. This justifies the choice of basin
boundaries based on countries’ borders which encompass TCs
originating in different basins with distinct characteristics of TC
formation, intensification, and movement, and the choice of
relative change in EAD and 100-y events as risk metrics. The
results presented here are only meaningful within the context of
this study design choice, and extrapolation to other purposes
should be treated with restraint.

Ultimately, we caution against deriving strong policy state-
ments given that the uncertainty parametrization is subject to the
abovementioned limitations and biases, and only those input
factors included in the study design can be analyzed for their
sensitivity. However, we can still draw important, potentially
policy-relevant conclusions from our analysis. We suggest using a
variety of GCMs to tailor future TC risk assessments for different
levels of risk aversion. For instance, to study TC risk at the very
hot tail of the global model temperature change distribution, we
can pick a TC event set downscaled from a GCM with high
climate sensitivity. The probability of ECS exceeding 5° C is
higher than 5% after all45. Considering such scenarios is impor-
tant for conservative risk assessment and may be combined with a
storyline approach to analyze and communicate high-impact TC
in the climate change context46,47.

In conclusion, our study setup allows analyzing different types
and sources of uncertainty in the same quantitative framework.
Our results increase the information value of future TC risk
assessment and thus provide a more transparent basis for
decision-making than conventional analyses.

Methods
Study regions. We compare the increase of future TC risk over
four main global regions shown in Fig. 1a and previously defined
by Meiler et al. (2022)24 and also used in a study of analogous
setup but different TC hazard model43. The regions broadly
reflect distinct TC areas with a focus on the landmasses affected
by the respective TC activity in contrast to regionalizations
focused on the ocean basins of TC origin. Because we focus on the
socio-economic impacts of TCs on nations as a whole, we include
TCs originating in two basins for the USA, Mexico and other
Central American countries with both Atlantic and Pacific
coastlines. Yet, we note that TC frequencies and other shifts in TC
climatology are basin-specific. Landfalling TCs originating in the
North Atlantic are much more frequent and thus play a major
role for the region in contrast to TCs forming in the Eastern
Pacific. The diverse shifts in TC climatology in a warming climate
for both basins are encompassed by the TC event set we employ.
Whether changes arise from shifts in TC climatology in either
basin is of secondary importance, as we quantify effects on the
country’s overall GDP. While we capture these variations, we do
not separate them. Hence, we combine the North Atlantic and
Eastern Pacific into one region (AP) and evaluate TC risk in all of
the Southern Hemisphere (SH) combined, applying the same
logic as in the AP region. The North Indian Ocean (IO) and
Western Pacific (WP) complete our geographical split.

Synthetic tropical cyclone tracks. Synthetic TC tracks are gen-
erated using a statistical-dynamical downscaling method devel-
oped by Emanuel et al. (200618, 200819). This method builds on
three components to simulate TCs: initialization using a random
seeding technique, propagation of the TCs via synthetic local
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winds from a beta-and-advection model, and TC intensity
simulation along each track by a dynamical intensity model
(CHIPS, Coupled Hurricane Intensity Prediction System)48. We
note that a detailed model description and evaluation can be
found in Emanuel et al. (2008)19. For this study, the TC model is
driven by climate input data from nine different GCMs (Sup-
plementary Table 8) and three emission scenarios (SSP245,
SSP370, SSP585) from the CMIP6 generation. Climate models
include a range of scenarios for future greenhouse gas emissions
and atmospheric concentrations based on the socio-economic
development described in the SSPs (Section “Socio-economic
growth data”. In previous climate model generations, they were
defined under the Representative Concentration Pathways
(RCPs); in the newest generation, they follow the notation of the
socio-economic projections. Together, the SSPs and resulting
scenarios simulated in the GCMs provide a framework for
exploring the potential impacts of different socio-economic and
environmental futures on the global climate system. The model is
run for a present climate reference state (1995–2014) and two
future periods in the middle (2041–2060) and the end of this
century (2081–2100). For each simulated year, 500 TCs are
generated by the three steps described above. Driven by the
boundary conditions of the different GCMs (e.g., sea surface
temperatures and wind shear), a changing number of the initial
seeds survive to become TCs. The TC frequency for each simu-
lated year is then determined by the fraction of initial seeds and
the final generated count of 500 events per year after calibrating
with a constant as provided with the event set.

Socio-economic growth data. We derive economic growth fac-
tors from different SSPs to approximate socio-economic devel-
opment. These factors are acquired from the SSP database, which
aims to document the quantitative projections of SSPs and related
Integrated Assessment scenarios (for an overview see Riahi et al.,
201715). SSPs comprise five trajectories that examine how global
population, economic growth, technological development, gov-
ernance and social norms might change over the next century. A
range of different SSP elements have been quantified (e.g.,
population growth, urbanization, economic development) con-
sidering the main characteristics of the SSP future development
pathways. Here, we focus on economic development only,
reported as GDP projections. For GDP, three alternative inter-
pretations of the SSPs have been developed by different teams
(the Organization for Economic Co-operation and Development
(OECD)49, the International Institute for Applied Systems Ana-
lysis (IIASA)50 and the Potsdam Institute for Climate Impact
Research (PIK)51). All resulting GDP projections were built
on the same guiding assumptions for interpreting the SSPs
regarding the key determinants of economic growth; however,
they differ in the employed methods and outcomes. For this
study, we query the SSP database for GDP growth factors for the
years 2050 and 2090 for each country and all five SSPs from
the three models15. Note, that the years 2050 and 2090 constitute
the central time points of the respective future TC simulations for
the middle and end of this century (see previous section).

Risk model CLIMADA. CLIMADA is an open-source risk
model, which was created to simulate the interaction of climate
and weather-related hazards, the exposure of assets or popula-
tions to this hazard, and the specific vulnerability of exposed
infrastructure and people in a globally consistent fashion26,52.
The model is developed and maintained as a community project,
and the Python 3 source code is openly and freely available under
the terms of the GNU General Public License Version 326,52. In
this study, we use CLIMADA v3.253 to calculate the increase in

direct economic damage from TCs in the middle and end of this
century compared to a present-day baseline. We compute spa-
tially explicit damage values on a global grid at 300 arc-seconds
(~10 km) resolution.

Tropical cyclone hazard data. The TC hazard layer in CLI-
MADA is described by a 2D-wind field obtained from coupling
TC track sets with a parametric wind model. Here, we apply two
different wind models based on parameterizations following
Holland (2008)22 and Emanuel and Rotunno (2011)23 to all TC
track sets described above. Both parametric wind models com-
pute the gridded 1-minute sustained winds at 10 meters above the
ground as the sum of a circular wind field and the translational
wind speed that arises from the TC movement. The wind models
differ in their derivation of the (absolute) angular velocity from
the parametric wind profile. For both wind models, the decline of
the translational component from the cyclone center is incorpo-
rated by multiplying it by an attenuation factor1.

We calculate the wind fields at a resolution of 300 arc seconds
(~10 km) for this study. The hazard variable used in CLIMADA is
the lifetime maximum wind speed at each spatial location; values
below 34 kn (17.5 ms−1) are discarded.

Asset exposure data. Exposure data for direct economic risk
assessment contains information on asset value exposed to
hazards. We create a dataset of spatially explicit, gridded asset
exposure value using the LitPop method. LitPop distributes
national estimates of total asset value to the grid level, pro-
portional to the product of nightlight intensity (Lit) and
population count (Pop)32. The present-day, reference exposure
layer is computed at a resolution of 300 arc-seconds (~10 km)
and the 2005 Gross Domestic Product (GDP) value (in USD).
Note, that the present-day TC track sets (1995–2004) are cen-
tered around the exposure reference year 2005. Future projec-
tions of exposed asset values are constructed by scaling these
reference asset values at every grid point with the growth factors
derived for the two future time periods, five SSPs, and three
models described above (Section “Socio-economic growth
data”). The distribution of assets is thus static and is indepen-
dent of future changes to the climate, the environment, and the
socio-economic factors.

Impact functions. In the field of risk assessment, we use impact
functions to describe vulnerability; in other words, the rela-
tionship between hazard intensity and the amount of damage it
causes to assets. Impact functions are thus the critical link
between hazard and exposure to calculate absolute direct
damages for TC events at exposed locations. Here, we use sets
of regionally calibrated impact functions25, which build on the
idealized sigmoidal impact function suggested by Emanuel
(2011)54. Eberenz et al. (2021)25 grouped countries of similar
vulnerability into nine distinct regions and fitted impact func-
tions to reported damage data in these regions to account for
the heterogeneous picture of TC risk across the globe. In this
study, we use impact functions that were calibrated on historical
records25 and not synthetic TC tracks. We furthermore note
that we focus on wind-driven risks in this study and neglect the
explicit representation of TC risks from storm surges or TC
rainfall-driven flooding. However, these sub-hazards are
implicitly captured by the impact functions because they were
calibrated to total damage values.

Uncertainty and sensitivity analysis. We use the uncertainty and
sensitivity quantification (unsequa) module of CLIMADA12 to
compute the model uncertainties and sensitivity indices reported
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in this study. This module seamlessly integrates the SALib -
Sensitivity Analysis Library in Python package55 into the CLI-
MADA risk model, hence supporting all sampling and sensitivity
index algorithms implemented therein. In general, the workflow
of this module follows the steps of common uncertainty and
sensitivity quantification schemes10,17. Here we describe the key
steps in more detail.

First, we define the input factors and their variability space.
Table 1 lists all input factors and the corresponding input
parameter ranges, which describe the probability distributions of
these random variables. Specifically, we define four input factors
characterizing the hazard component of our risk model. We draw
from a discrete distribution of (i) GCMs driving the TC model
boundary conditions (GCM); (ii) emission scenarios (SSP
hazard); (iii) wind models to calculate the 2D wind field (Wind
model); and (iv) sub-sample 80% of the events in every year of the
synthetic TC event set to represent natural variability (Event
subsampling base, Event subsampling future). The exposure
variable consists of three input factors. We sample from a discrete
list of (i) GDP growth factors derived from five different SSPs
(SSP exposure); (ii) three models used to translate the SSPs into
economic growth factors (GDP model); and (iii) we generate
exposure layers after nine different formulations of the Lit (m)
and Pop (n) components to explore the uncertainty of the LitPop
method. In more detail, varying the two exponents allows us to
weight densely populated and rural areas differently. A higher
value of n (Pop component) emphasizes highly populated areas,
and a lower value the sparsely populated areas (Exposure urban/
rural weighting). Note, that the total asset value remains constant.
Finally, we vary the slope parameter (Vulnerability function
midpoint) of the impact function, which describes the wind speed
at which the function’s slope is steepest and a damage ratio of 50
% is reached. We inform the range of this parameter by the IQR
of the regionally calibrated impact functions in Eberenz et al.
(2021; cf. Fig. 5)25.

The next step is to draw samples of the input parameter values
according to their respective uncertainty probability distribution.
In this study, we use the Sobol0 sampling algorithm29,30 to draw
211 samples, which translates into 40960 input factor combina-
tions. The TC risk calculation is then executed for each
combination, yielding a distribution of model outputs, which
can then be analyzed and visualized. In this study, we evaluate the
uncertainty in TC risk increase of the EAD and the 100-yr event.
Finally, the quantification of the relative influence of the input
factors on output variability is achieved by calculating sensitivity
indices. We apply a variance-based method, the Sobol0 quasi-
Monte Carlo sequence29. Sobol0 indices describe the ratio of the
marginal variances to the total variance of the output metric. In
this study, we evaluate first- and total-order indices. The former
measures the direct contribution from each input parameter to
the output variance, and the latter the overall contribution from
an input parameter considering its direct effect and its
interactions with all the other input parameters.

Data availability
The synthetic TC data are the property of WindRiskTech L.L.C., which is a company that
provides hurricane risk assessments to clients worldwide. Upon request
(info@windrisktech.com), the company provides datasets free of charge to scientific
researchers, subject to a non-redistribution agreement. For this study, we used the
Python (3.8+) version of CLIMADA release v3.2.053. Source code is openly and freely
available under the terms of the GNU General Public License Version 326,52.

Code availability
Code to reproduce the results of this paper is available at a GitHub repository with the
identifier https://doi.org/10.5281/zenodo.807335356.
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