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The ephemeral history of Earth’s youngest supra-
subduction zone type ophiolite from Timor
Yu-Chin Lin 1,2✉, Sun-Lin Chung1,3✉, Shigenori Maruyama4, Ade Kadarusman5 & Hao-Yang Lee1

Ophiolites occur widely in orogenic belts, yet their origins remain controversial. Here we

present a modern example with a geodynamic model from Timor, eastern Indonesia, where

Earth’s youngest supra-subduction zone (SSZ)-type ophiolitic fragments are exposed. Zircon

U-Pb ages and geochemical data indicate a short timespan (~10 to 8Ma) for the magmatic

sequence with boninitic and tholeiitic arc compositions. We interpret the Timor ophiolite as

part of the infant Banda arc-forearc complex, which formed with the opening of the North

Banda Sea and subsequent arc-continent collision along the irregular Australian continental

margin. Our study connects the occurrence of small, short-lived ocean basins in the western

Pacific with orogens around the globe where ephemeral SSZ-type ophiolites occur. These

orogenic ophiolites do not represent preexisting oceanic crust, but result from upper-plate

processes in early orogenesis and thus mark the onset of collision zone magmatism.

https://doi.org/10.1038/s43247-023-00973-5 OPEN

1 Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan. 2 Earth Sciences Department, Natural History Museum, London, UK. 3 Department of
Geosciences, National Taiwan University, Taipei, Taiwan. 4Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan.
5 Department of Geosciences, University of Indonesia, Jakarta, Indonesia. ✉email: yuchinlin@earth.sinica.edu.tw; sunlin@earth.sinica.edu.tw

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:308 | https://doi.org/10.1038/s43247-023-00973-5 | www.nature.com/commsenv 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-00973-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-00973-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-00973-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-00973-5&domain=pdf
http://orcid.org/0000-0002-7112-6554
http://orcid.org/0000-0002-7112-6554
http://orcid.org/0000-0002-7112-6554
http://orcid.org/0000-0002-7112-6554
http://orcid.org/0000-0002-7112-6554
mailto:yuchinlin@earth.sinica.edu.tw
mailto:sunlin@earth.sinica.edu.tw
www.nature.com/commsenv
www.nature.com/commsenv


Ophiolites are segments of oceanic crust and underlying
uppermost mantle that outcrop in orogenic belts that fol-
low continental margins. Most ophiolites display island arc

geochemical features suggestive of sea-floor spreading related to
subduction zone processes. These are referred to as supra-
subduction zone (SSZ) ophiolites1. SSZ-type ophiolites may form
during the initial stage of subduction1,2, and yield a magmatic rock
association similar to that of the Eocene Izu-Bonin-Mariana (IBM)
forearc3–5. The IBM forearc however, does not conform to the
short time period (<20 or even <10myr) between formation and
emplacement typical of most SSZ-type ophiolites2,3,6–13. Modern
SSZ-type ophiolites offer alternative examples that can be investi-
gated to understand their origins. The Timor ophiolite in the Banda
forearc, eastern Indonesia (Fig. 1), provides such an example. This
ophiolite is situated in an active arc-continent collision setting that
has persisted since the Late Miocene14,15.

The Timor ophiolite forms a belt that stretches from Timor to
Moa Island between the active Banda magmatic arc and
approaching Australian continent (Fig. 1). Common ophiolitic
components are observed, including basalt, dolerite, gabbro, and
ultramafic rocks, with intrusive granitic plugs that penetrate all
rock types. However, sheeted dikes are not present14,16. This
ophiolitic suite displays a “top to the north” sense of motion and is
separated from the underlying metamorphic massif by a series of
N-dipping low-angle normal faults in northern Timor17. Ductile
thrusting has been suggested along the boundary between the
metamorphic massifs and the underlying Australian Sequence17.
It is uncertain whether there is a metamorphic sole present. The
Mutis metamorphic complex, which underlies the peridotite, has
been proposed as a possible metamorphic sole18), however some
researchers have argued that it is too thick (>1 km) to be inter-
preted as a metamorphic sole16. The magmatic suite is composed

Fig. 1 Maps of SE Asia and Timor. a Simplified topographic map of eastern Indonesia, SE Asia. Thick black lines denote plate boundaries. b Map of the
Banda Sea region showing sample localities, main tectonic units, active volcanoes, and main thrust faults. The arrow shows the plate motion vector.
c Simplified geologic map of Timor and Moa islands (modified after16,29).
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mainly of arc tholeiitic basalt and high-Mg andesite, thus being
regarded generally as a product of island arc and forearc
magmatism14,16. This is consistent with the occurrence of the
Ocussi pillow basalts, which are believed to represent the remains
of submarine volcanic edifices14. K-Ar ages of pillow basalts and
dolerite dikes from these volcanics range from 6–2Ma19, with Ar-
Ar ages of ~6Ma14. Since these volcanic rocks are unconformably
overlain by Late Miocene (~7–6Ma) forearc sedimentary
rocks20,21, the above dates are thought to have experienced open-
system isotopic exchange and thus a minimum formation age of
~6Ma has been assumed14.

This Late Miocene age assumption and the arc-forearc magma
association have led workers to relate the generation of the Timor
ophiolite to a post-collisional lithospheric extension14 or coherent
opening of the Banda Sea20,21. The Banda Sea (Fig. 1b) consists
essentially of three extensional basins that opened stepwise from
the North Banda Basin (12–7Ma) to the South Banda Basin
(6.5–3Ma) and the Weber Trough (<3Ma)22,23. Such a sequential
opening was attributed to southward trench retreat and associated
rollback of the subducted Indo-Australian oceanic lithosphere (or
the Banda Embayment), with resultant upper-plate extension since
~15Ma after the Sula Spur started colliding with Sundaland24. The
extension split both the Sula Spur crust24 and Sundaland25. The
split Sundaland forearc fragments are widely distributed around the
Banda Sea region as well as in Timor (Fig. 1c), as the so-called
Banda Terrane21 or Banda Allochthon25. Slab rollback also led to

the formation of the Banda arc in north Timor, which started to
exhibit magmatic activity around ~8Ma22,26. The arc magmatism
around the Alor-Wetar segment ceased from ~3Ma26 (Fig. 1b),
owing to collisional push from the advancing Australian
continent27,28. This arc-continent collision resulted in southward
emplacement of magmatic and underlying ultramafic rocks in the
forearc region to form the ophiolite on Timor and Moa17,29.

We report zircon U-Pb age and whole-rock geochemical data
from magmatic rocks of the Timor ophiolite. These include 10-Ma
boninites fromMoa and 8-Ma tholeiitic arc rocks from Timor. Our
results suggest that these rocks formed in a near-trench spreading
environment during subduction re-initiation and rapidly emplaced
onto the Australian continent due to diachronous collisions
between Sundaland and the incoming Australian plate. Based on
the scenario in Timor, we propose that SSZ-type ophiolites found
in orogens worldwide should be classified as “orogenic ophiolites”
as they result from upper-plate processes during the beginning
stage of accretionary or collisional orogenies.

Results and discussion
Zircon U-Pb ages. Twelve samples of dolerite, gabbro, and pla-
giogranite from Timor and Moa Island were dated using zircon
U-Pb geochronology (Fig. 2a; see Supplementary Fig. S1 and Data
S1 for details). Six dolerite and gabbro samples fromOcussi, Timor,
that were collected along a continuous roadcut section (Fig. 2b)
gave a narrow weighted 206Pb/238U mean age range from ~8.7 to

Fig. 2 Zircon U-Pb age data and maps with sample localities of the Timor ophiolite. a Colored horizontal bands represent 206Pb/238U ages with ±2σ
uncertainties of each zircon date. Vertical black lines indicate the weighted mean 206Pb/238U ages of each sample; with dark grey boxes showing ±2σ
uncertainties calculated from mean square weighted deviation (MSWD) and light grey boxes showing the propagated ±2% errors for LA-ICPMS. Samples
are plotted bottom to top according to the spatial distribution from east to west. A density plot of the age distribution of all samples is given in the lower
part. b, c, d Geologic sketch maps with sample localities of Ocussi, Atapupu and West Moa areas, with dated samples underlined (West Moa map is
modified from Kaneko et al.17). The legends in (b) are simplified rock successions of the Timor ophiolite. The ophiolite rocks and overlying units are
probably fault-bounded16.
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8.1Ma (Fig. 2a and Supplementary Fig. S1). Two plagiogranite
samples from west Atapupu, Timor (Fig. 2c) gave identical ages of
~8.7Ma, while two spilite samples from east Atapupu (Fig. 2c) gave
slightly older ages of 10.2 ± 0.1 and 10.1 ± 0.2Ma (Fig. 2a). Further
east, a gabbro and a plagiogranite from western Moa Island
(Fig. 1c) yielded overlapping ages at 10.1 ± 0.1Ma and
10.3 ± 0.1Ma, respectively (Fig. 2d). These zircon U-Pb isotopic
results define two age clusters that show that the entire magmatic
suite formed within a short period, from ~10 to 8Ma (Fig. 2a).

Whole-rock geochemistry. All samples analyzed, except the two
spilites, were relatively well-preserved (LOI < 4 wt%; Supple-
mentary Data S2) with representative lava compositions. As the
spilites have extremely high Na2O contents (8.1 and 11.5 wt%)
with a highly chloritized groundmass (Supplementary Fig. S2),
they were excluded from detailed petrogenetic analysis. Our
geochemical data indicate that all basic samples (dolerite and
gabbro) from Moa are boninitic3,30, in contrast to samples from
Timor that plot in the medium-Fe field, typical of island arc
tholeiites (Fig. 3a). This result is consistent with our earlier
work16, which reported high-Mg andesites with compositions
ranging from low-Si to high-Si boninites3,30. The Moa boninitic
samples have the highest MgO and the lowest TiO2, relative to the
Atapupu gabbro samples (with intermediate values) and the
Atapupu basalts/dolerites and Ocussi tholeiitic samples that have
the lowest MgO and highest TiO2 (Fig. 3b).

The tholeiitic and boninitic samples differ markedly in their
REE and incompatible element patterns (Fig. 4). The dated
Ocussi dolerites and gabbros (SiO2= 50.8–54.8 wt%) show flat
REE patterns (Fig. 4a), almost identical to those of the undated
basalts from Ocussi (SiO2= 54.4–55.1 wt%) and Atapupu
(SiO2= 52.1–53.5 wt%). Their REE abundances are about ten
times above chondritic values (Fig. 4a, b). The Atapupu dolerite
and gabbro (SiO2= 52.8–55.7 wt%; no age data because of rare
zircon separates) possess lower REE concentrations compared to
the samples described above, with some displaying subtle La
enrichment relative to Ce (Fig. 4b). The Atapupu spilites and
plagiogranites both show negative Eu anomalies, indicative of
plagioclase crystallization. All samples from Moa, including
gabbros, dolerites, and plagiogranites, display spoon-shaped REE
patterns subparallel to each other with lower LREE abundance
(Fig. 4c) analogous to boninitic rocks from the Troodos
ophiolite31. Among the Moa samples, REE concentrations are
seen to increase with elevated SiO2, indicative of fractional
crystallization. The incompatible element patterns of all basic
samples show LILE enrichment (Ba, Th, U, Pb, and Sr) compared
to HFSE (Nb, Ta, Zr, and Hf) (Fig. 4d–f), which is consistent with
a subduction-related origin. Detailed geochemical and isotopic
characterization is beyond the scope of this paper and will be
given in a separate article under preparation.

Earth’s youngest SSZ-type ophiolite and its magma generation.
Our zircon age data obtained from dolerites, gabbros, spilites and
plagiogranites (Fig. 2), attest to their very brief magmatic histories
(~10–8Ma). This age range estimate is also consistent with the
stratigraphy of the ophiolite sequence, seen in the field to underly
Late Miocene (~7–6Ma) sedimentary rocks20. No magmatic
zircons were available for U-Pb dating from Timor basalts, and
we argue that these basalts are cogenetic with other magmatic
rocks in Timor, given their similarities in bulk rock geochemical
compositions (Figs. 3 and 4). The magmatism appears to have
started at ~10Ma with a boninitic composition, forming the rocks
exposed on Moa Island. It ended at ~8Ma with the tholeiitic arc
rocks that crop out in Atapupu and Ocussi (Fig. 2). The magmatic
progression observed in this region differs from the one proposed
for the IBM forearc crust, where forearc basalts are thought to
have formed before boninites32. However, the Timor magmatic
progression may be akin to those observed in the Troodos
ophiolite, where boninites and tholeiitic basalts are interbedded31.
The supra-subduction zone magmatic rocks discussed here were
soon transported to their present locations by arc-continent
collision around the Timor region. This process began as early as
~9.8 Ma and no later than ~5.5 Ma15,28, and gave birth to the
youngest known SSZ-type ophiolitic complex on Earth33. Note
that a magmatic duration of ~10–8Ma is broadly coeval with, but
slightly shorter than, the opening of the North Banda Sea
(~12–7Ma) and coincides with, or just predates the initiation of
Banda arc magmatism (~8Ma).

To examine the genetic relation between the Timor ophiolite
and associated magmatism in and around the Banda Sea region,
we utilize a MgO-TiO2 plot for basic rocks to discriminate their
tectonic setting (Fig. 3b and see Supplementary Methods and
Figs. S3–S5 for details). The 8-Ma tholeiitic rocks from Ocussi
and Atapupu plot closely to the Banda arc volcanics (<8Ma). But
in general, the former has higher MgO contents than the latter,
which argues for an infant intra-oceanic arc or proto-Banda arc
origin. In comparison, coeval rocks from the North Banda Sea
with higher TiO2 contents plot in the incipient spreading region,
indicating less water involved in their mantle source5. The 10-Ma
boninitic rocks from Moa plot in the forearc region. Notably,
these rocks, along with the Troodos boninites, exhibit significant

Fig. 3 Major element binary plots of the Timor ophiolite. a Plot of FeO*
versus MgO that divides the BADR series into tholeiitic (TH; high-Fe and
medium-Fe) and calc-alkaline (CA; low-Fe). Boninitic samples are also
plotted for comparison. Medium-Fe rocks are typical of island arc
tholeiites3. b Plot of TiO2 versus MgO with tectonic discrimination
boundaries (See Supplementary Figs. S3–S5 for details). Large symbols are
from this study, and small symbols are from literature data (Supplementary
Data S3).
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Nb-Ta enrichment relative to La in their incompatible element
patterns (Fig. 4f). This is interpreted to result from dehydration of
subducted pelagic sediments in the absence of rutile34. Therefore,
the Moa boninitic rocks likely resulted from the melting of a
refractory and hydrated mantle source. Since these boninitic
rocks are the first melt of the Timor ophiolite, we infer a
preexisting depleted mantle wedge as the mantle source.

The presence of a depleted mantle wedge in the region could be
attributed to prior subduction events. Considering the Banda Sea
opening since the Miocene, it is likely that the leading edge of the
Banda Embayment was subducted beneath the Sundaland margin
or, more precisely, a confined ocean basin during the Oligocene.
This may have resulted in the formation of the Dai tholeiitic arc
rocks approximately 32–25Ma35. The present forearc position of
Dai Island and the forearc fragments of Sundaland in Mutis,
Timor (Fig. 1) suggest that these rocks, along with the depleted
mantle wedge, may have split from upper-plate during the Banda
Sea opening to reach their current location25. Therefore, the 10-
Ma boninitic rocks in Moa likely formed due to re-melting of a
preexisting depleted hydrous harzburgite (mantle wedge) during
the extension of the Sundaland forearc lithosphere. In this case,
heterogeneous drifted forearc fragments could include lherzolites
that had undergone less depletion than the mantle beneath Moa.
Combined with the presence of lherzolites at Mutis, Atapupu, and
Dili, Timor16, the 8-Ma infant intra-oceanic arc around Atapupu
and Ocussi, Timor could be attributed to the melting of less
depleted lherzolite during progressive subduction stages.

Moa boninitic and Timor tholeiitic magmatism during 10–8Ma
shifted northward since 8Ma to form the Banda arc26. Since the
collision between the Australian continent and the Banda arc

around the Aileu, Timor region occurred during ~9.8 to 5.5Ma28,
it is likely that the arrival of buoyant subducted crust at the infant
arc or “proto-arc” caused the flattening of the subduction dip,
leading to a northward shift of the arc segment27,28. Therefore, it is
suggested that crustal rocks of the Timor ophiolite were formed in
the near-trench or forearc setting relative to the present-day Banda
arc, and were emplaced onto the Australian continental margin
within 5 million years of its formation.

A propagating collision-driven model for the Timor ophiolite.
Considering the regional tectonic framework that is characterized
by an irregular margin of a northward-colliding Australian con-
tinent (Fig. 1a), with initial contact at ~23Ma between the
incoming Sula Spur promontory and the Sundaland margin24, we
propose a propagating collision-driven model in four successive
stages (Fig. 5) as representative of the formation and rapid
emplacement of the Timor ophiolite:

(1) At ~15Ma (Fig. 5a): Post-collisional extensions started in
the region, giving rise to early stage of fragmentation in the
Sula Spur, as the consequence of subduction hinge retreat
into the Banda Embayment and accompanying slab
rollback24. Although the slab rollback may have been
affiliated with a change in a transform fault east of Sumba
to a west-dipping subduction36, we argue instead for a
preexisting Oligocene intra-oceanic subduction that formed
the Dai arc rocks35. This Oligocene subduction halted
because of the Sula Spur collision, and thus the ocean basin
became trapped and partially accreted to form the East
Sulawesi ophiolite37.

Fig. 4 Trace element plots of the Timor ophiolite. a, b, c Chondrite-normalized61 REE patterns and (d, e, f) MORB-normalized61 incompatible element
patterns of magmatic samples of the Timor ophiolite. Data of the Troodos boninites are from Woelki et al.31.
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(2) At ~8Ma (Fig. 5b): The trench retreat and slab rollback
caused not only the opening of the North Banda Basin
(~12–7Ma) but also the reactivation of the halted
subduction to account for the Banda magmatic arc system.
Regional extension propagated southward, resulting in the
splitting of the Banda Allochthon into fragments off the
Sundaland margin25, including the Sumba microcontinent,
the Mutis metamorphic complex, Dai arc rocks, and
associated mantle rocks. Meanwhile, subduction zone
magmatism began at ~10Ma with boninitic rocks forming
in the near-trench or forearc setting due to an elevated
geotherm related to sea-floor spreading that preferentially
melted a preexisting refractory and hydrated mantle
wedge. Later, this infant Banda arc evolved into its main
magmatic stage, forming tholeiitic arc rocks during ~8.7
to 8.1 Ma.

(3) At ~3Ma (Fig. 5c): Successive trench retreat and slab
rollback induced the regional collision between Timor and
indenter promontory of the approaching Australian con-
tinental margin at about 9.8–5.5 Ma28. This collision may
have caused a northward shift of the arc segment (~8Ma)
and ushered a new phase of seafloor spreading that opened
the South Banda Basin (~6.5–3Ma). This spreading may
have involved intra-arc rifting, leaving the remnant arc

complex preserved as the Banda Ridge in the north, while
the main Banda magmatic arc continued to develop in the
south23. Progressive accretion of the Timor-Moa infant arc
complex onto the Australian margin is responsible for its
rapid or even “near-coeval” emplacement of the ophiolite.
This arc-continent collision, in turn, terminated the arc
magmatism around the Alor-Wetar segment before ~3Ma.
However, subduction and arc magmatism are still occurring
on the eastern side of Alor-Wetar26.

(4) At Present (Fig. 5d): Along with the most recent stage of
rifting that formed the Weber Deep in front of the Banda
volcanic arc in the east, upper-plate extension propagated
westward in the Sunda backarc. This initiated Flores Basin
extension and Quaternary basaltic volcanism in southern
Sulawesi38,39. This extension is happening because the
Sunda slab, which has penetrated into the lower mantle40,
is retreating north of the Argo Abyssal Plain, similar to
what happened with the Banda slab in the east. Australia
advancing on the forearc side has caused a new phase of
arc-continent collision around Sumba21, and replicated
the scenario at Timor. Magmatic activity along the eastern
Sunda arc can be expected to cease soon after southward
accretion of its arc-forearc forms an enlarged Sumba
island.

Fig. 5 A propagating collision-driven model for generation of the Timor ophiolite. Four successive stages of paleogeographic reconstruction of the Banda
Sea region presented at (a) 15Ma, (b) 8Ma, (c) 3Ma, and (d) present, respectively (modified after24,25,28). See text for details.
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A Timor perspective on SSZ-type orogenic ophiolites. The Timor
example illustrates a modern scenario of slab rollback and near-
trench spreading in association with diachronous arc-continent
collision, controlled by an irregular continental margin41,42. The
inherited structure of the Australian plate and limited space for the
subducting embayment thereby caused the infant arc to collide
soon with the approaching Australian plate. According to thermo-
mechanical modeling results42, the lifespan of ophiolites formed in
this manner is mainly constrained by the duration of near-trench
spreading and stress transfer, less than 20 million years in general
or even shorter as in Timor. This offers a mechanism that not only
terminates the nascent arc-forearc magmatism but also produces
an “infant arc-forearc” type ophiolite with an ephemeral lifespan.
Under such a tectonic framework, these SSZ-type ophiolites that
consist of near-coeval sequences are generated by upper-plate
processes at the initial stage of orogenesis and thus can mark the
onset of collision zone magmatism.

SSZ-type ophiolites with brief magmatic records are present in
orogens worldwide, such as the Bay of Islands ophiolite within the
Appalachian7,43, the Coastal Range ophiolite from western
USA10,44, and those exposed widely along the elongated Tethyan
belt3,8,9,12,45 and SW Pacific margin10,44. According to the Timor
scenario, we propose to refer to these as “orogenic ophiolites”
because they result from upper-plate processes during accre-
tionary or collisional orogenies. Our Timor study, furthermore,
provides new insight into the presence of inherited mantle rocks
in SSZ-type orogenic ophiolites. The inherited mantle may have
recorded the petrogentic processes in earlier subduction events,
thus contributing to the geochemical heterogeneities in the
magmatic crustal unit. This finding aligns with the notable
observations from certain Tethyan ophiolites along the eastern
Mediterranean region31,46. Many of them contain crustal units
exhibiting diverse geochemical signatures, generally varying from
MORB-like to island-arc tholeiites and boninites similar to the
IBM forearc crust32. These Tethyan ophiolites, however, are
also characterized by short lifespans of magmatic histories that
require a specific tectonic setting we argue to resemble the Timor
scenario.

Our Timor model for the orogenic ophiolites agrees well with the
occurrence of small, short-lived ocean basins in the western Pacific
onmodern Earth. This process is seen to be cyclical in the Cenozoic
generation of SSZ-type ophiolites by recurrent intra-oceanic arcs
along the NE Australia-Pacific margin10. Another example is the
magma system in the Mathew and Hunter subduction zone
generated by a collision between the Vanuatu Arc and Loyalty
Ridge. This pre-arc, near-trench magma system is believed to
have formed in a sinistral strike-slip system where arc-parallel
extension is expected to eventually lead to the protolith complex of
a future ophiolite47. The presence of coeval backarc spreading
there47 also suggests analogues with the formation of the North
Banda Sea. SSZ-type ophiolites have been documented north
of Banda, in regions circumnavigating marginal Southeast
Asian basins, including Zambales, Luzon ~45Ma48, Palawan and
Mindoro ~35Ma49,50, and Eastern Taiwan 17–14Ma51,52. Their
lifespans, from magmatic formation to emplacement, was no
longer than 20 million years, which is consistent with the thermo-
mechanical modelling results42. In addition, the formation of these
ophiolites were related to previous collisions48,53, as observed in
Timor and along the NE Australia-Pacific margin10,47. None-
theless, each ophiolite is expected to have a unique origin related to
its specific geologic setting and geometry. How to correlate these
orogenic ophiolites with regional plate reconstruction40,54 is critical
to enhance our understanding of not only the birth and demise of
marginal basins in the region, but also the cyclic and interactive
subduction/accretion/collision processes that operated throughout
the global orogeny.

Methods
Zircon U-Pb geochronology. Cathodoluminescence (CL) images
of zircons were taken at the Institute of Earth Sciences of Academia
Sinica, Taiwan, to examine the internal structure of individual zir-
con grains and to select positions for laser analysis. In situ zircon
U-Pb dating was performed with an Agilent 7900 Q-ICP-MS cou-
pled to a Photon Machines Analyte G2 excimer laser ablation sys-
tem at the same institute following the analytical procedures in Chiu
et al.55. The spot size was ~35 μm. Zircon standard GJ-1 was used to
perform calibration, and two other zircon standards 91500 and
Plešovice were used for data quality control. Data of U‐Th‐Pb iso-
topic ratios were processed using GLITTER software version 4.456.
Common lead was corrected following Andersen57. Calculation and
plots for weighted mean U‐Pb dates and concordia diagrams were
performed by Isoplot v. 4.1558. Weighted mean dates are given with
2σ internal and external uncertainties; the former was calculated
from the mean square weighted deviation (MSWD), and the latter
was calculated with a propagated external uncertainty of 2% to
account for the long-term reproducibility of standards59. All studied
samples rarely contain inherited zircons (Supplementary Data S1).

Whole-rock major and trace elements analyses. For whole-rock
geochemical analyses, fresh-looking parts of rock samples were
carefully cut and then crushed by a jaw crusher. After hand‐picking
to remove unfresh portions, rock chips were pulverized by an agate
mill and FRITCH Planetary Ball Mill Puluerisette 5. The resulting
rock powders were fused using anhydrous lithium tetraborate
(Li2B4O7) as a flux (10 times the mass of the samples) to make glass
beads. Major element oxides of the glass beads were measured by a
Rigaku® RIX 2000 XRF spectrometer at the Department of Geos-
ciences, National Taiwan University. Loss‐on‐ignition was
obtained after heating at 900 °C for 4 h. Trace elements were
analyzed by the dissolution of the fused glass beads using an Agi-
lent 7500cx Q-ICP-MS at the Institute of Earth Sciences of Aca-
demia Sinica. Samples were first dissolved in Teflon beakers using a
HF‐HNO3 (1:1) mixture for more than 2 h at ~100 °C. The solu-
tions were evaporated to dryness, refluxed with 7 N HNO3 and
dried again, and finally dissolved in 2% HNO3 with an addition of
10 ppb Rh and Bi as the internal standards. The final sample/
solution weight ratio is 1:1500. The relative standard deviation is
generally better than 5% for most trace elements, as shown by the
statistics on duplicate analyses of the USGS standards (AGV‐2,
BCR‐2, BHVO‐2, and DNC‐1; Supplementary Data S4). Detailed
analytical procedures can be found in Lin et al.60. Tomore precisely
calibrate certain key trace elements with extremely low con-
centrations, e.g., Nb, La, and Ta, the dilution factors of the stan-
dards were adjusted, from x1500 to x150000, to construct
calibration curves best approximating the concentration ranges of
the samples. We note that the key element concentrations obtained
using the routine procedure and the adjusted calibration curves are
generally consistent or even identical within 2σ.

Data availability
The dataset used in this study are available at https://doi.org/10.6084/m9.figshare.
23641545.
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