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Increased amplitude of atmospheric rivers and
associated extreme precipitation in ultra-high-
resolution greenhouse warming simulations
Arjun Babu Nellikkattil 1,2✉, June-Yi Lee 1,2,3✉, Bin Guan 4,5, Axel Timmermann 1,6, Sun-Seon Lee 1,6,

Jung-Eun Chu 7 & Danielle Lemmon1,6,8

Atmospheric rivers play an integral role in the global water cycle, but predicting their future

changes remains uncertain due to inter-model and inter-detection-method differences. Using

ultra-high-resolution Community Earth System Model simulations and a novel detection

algorithm based on geometric shape extraction, we quantify global changes in atmospheric

rivers and the associated precipitation events in response to doubling and quadrupling of

atmospheric CO2 concentrations. We find that, atmospheric rivers are projected to become

more frequent and more likely to be associated with extreme precipitation events, increasing

their contribution to global mean precipitation. While the water vapor transport within these

structures follow Clausius-Clapeyron scaling, the changes in maximum precipitation intensity

resemble other saturated atmospheric environments like tropical cyclone cores. The

increased amplitude of atmospheric rivers and the associated increase in mean and extreme

precipitation have important implications for future water management and adaptation

policies.
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Atmospheric Rivers (ARs) are narrow, filament-like struc-
tures that transport large amounts of water vapor across
the globe1,2. They often form ahead of the cold fronts of

an extratropical cyclonic circulation accompanied by a low-level
jet on the equatorward side and strong convection along the
front, constituting large-scale cloud systems with persistent pre-
cipitation. ARs undergo vigorous upward motion along topo-
graphic barriers like mountains or coastlines where they make
landfall, leading to torrential downpours. At any given instant,
about four or five ARs per hemisphere provide much of the
poleward water vapor transport across the midlatitudes3. When
time-averaged, over 90% of the total annual poleward water vapor
transport in the midlatitudes is controlled by ARs that account
for only 10% of the total global surface area4. AR genesis and
activity also modulate the global mean atmospheric energy bud-
get via sensible and latent heat transports5.

Understanding ARs and determining their response to
greenhouse warming is extremely important as they play a
fundamental role in global and regional hydroclimate6. From a
global perspective, ARs account for up to 35% of the annual
mean precipitation7 and around 50% of the extreme pre-
cipitation and surface wind events in the midlatitudes8.
Regionally, ARs substantially modulate mean and extreme
precipitation along land-falling coastal regions, such as the U.S.
west and east coasts9–12, European west coast13–15, South
American coastline16, and Australasia summer monsoon
regions17–20. ARs also influence the intensity of snowfall and
snowpack variability over many land-falling regions21–24. The
mean hydroclimate over these areas are shaped by ARs in the
present as well as past climates25–27. More recently, it has been
found that ARs influence the ice melting in the polar regions
and glaciers, owing to consistently strong precipitation and
long-wave feedbacks associated with AR cloud cover. The
complex interplay between ARs, clouds, and ice sheets leads to
different outcomes in different regions, such as anomalous
snow accumulation over East Antarctica28, surface melting over
West Antarctica29, reduction of sea-ice in both the Antarctic
and the Arctic30,31, and extreme melting of Greenland ice
sheet32. Thus, ARs play an important and intricate role in
global and regional climate feedbacks.

Recent modeling efforts have advanced our understanding of
the dynamics, forced responses, and impacts of ARs. These stu-
dies suggest that the frequency of ARs will increase, and their
landfall locations will shift poleward in response to anthropogenic
greenhouse warming33,34. Additionally, due to increases in
atmospheric moisture, ARs are expected to carry more moisture
and increase the associated likelihood of extreme precipitation,
particularly over regions with elevated terrain6,35–38. While con-
siderable progress has been made in the simulation, prediction,
and projection of ARs using climate models, coarse-resolution
models still have large biases in representing the spatio-temporal
characteristics of ARs as well as their interaction with topographic
features39. These model deficiencies are closely related to biases in
the representation of midlatitude storm tracks and jet
streams40,41. Although more work needs to be done to definitively
conclude whether ARs are better represented in higher resolution
models, AR frequencies are suggested to be highly influenced by
the horizontal grid resolutions used in climate models42. For
example, model simulations with higher horizontal resolutions
are expected to represent more realistic precipitation
patterns43–45 and frontal-scale midlatitude air-sea
interactions46,47, thus better capturing the interactions between
ARs and complex topography6. Moving forward in under-
standing AR dynamics and reliable projections, then, requires
reconciling findings from both coarse and high-resolution mod-
eling studies.

While developments in high-resolution modeling have much
potential to advance our understanding of ARs, current scientific
consensus on new findings is elusive as non-negligible differences
in present and projected AR features have been attributed to
fundamental differences between AR detection algorithms
(ARDTs)34,48,49. The majority of pre-existing ARDTs use abso-
lute or relative thresholds based on climate variables, such as
integrated water vapor content (IWV) or integrated water vapor
transport (IVT) (hereafter thresholds), along with few shape, size
and location constraints to identify ARs in the present
climate50,51. Studies on reanalysis data sets that use detection
methods with absolute thresholds show a high concentration of
ARs along the warm western boundary current region in the
global oceans and an asymmetric distribution of ARs between the
Northern and Southern Hemispheres52–54. By contrast, reanalysis
studies that use thresholds relative to the mean state, as a function
of space and time, show a more symmetric distribution of ARs
between the two hemispheres and detect considerably more ARs
over land7,26,55,56. Differences in results obtained between these
two methods are likely attributable to the uneven spatial dis-
tribution of mean water vapor between hemispheres, which is
inherently captured differently by absolute and relative thresh-
olds. Even given the relative consistency between reanalysis data
sets in representing present climate, as compared to historical
model simulations, building consensus on AR characteristics is
difficult as the analysis is extremely sensitive to ARDTs49.

The sensitivity of results from AR analysis to ARDTs is even
greater when estimating the changes in AR characteristics
between various mean climate states, such as between different
models and different climate change scenarios. Compared to
interpreting AR characteristics in the present climate, analyzing
projected AR changes in future climate becomes even more
complicated as methods can be based on historical thresholds
(i.e., absolute or fixed relative schemes) or based on mean state
thresholds (i.e., relative schemes)34. For example, model studies
that use methods based on historical thresholds tend to project
ARs as much longer and wider, with small changes in mean
strength and precipitation in response to greenhouse gas (GHG)
warming33,34. Conversely, model studies using relative mean state
thresholds tend to project ARs as greatly strengthened in both
IVT and precipitation, with smaller changes in their length and
width57. The proliferation of the number and type of ARDTs has
led to multiplicitous and conflicting interpretations of projected
changes, obscuring scientific consensus on AR characteristics in
present and future climate.

To simplify the study of present and future AR changes,
alternative methods without dependence on climate variable
thresholds are being explored by the community, with some
studies highlighting the potential benefits of machine learning or
image processing techniques58–60. To develop a robust ARDT in
mind, we use a methodology that reframes the basis of thresholds
away from climate variables like IVT or IWV towards shape-
based metrics that are not empirically derived from climate data,
and thus may be less sensitive to underlying changes in climate
mean states (see “Scalable Feature Extraction and Tracking
(SCAFET)” in “Methods” section).

Considering the potential of high-resolution modeling to
improve our understanding of ARs, and the conflicting AR
analysis that appears to arise from IVT and IWV threshold-
dependence, this study addresses externally forced changes in
ARs and the associated precipitation in response to anthro-
pogenic GHG warming using (1) ultra-high-resolution (UHR)
fully coupled simulations, and (2) a novel detection method based
on a local geometric shape extraction, namely Scalable Feature
Extracting and Tracking (SCAFET)61. We analyze present-day
(PD), CO2 doubling (2CO2), and quadrupling (4CO2)
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simulations from the UHR Community Earth System Model
(CESM) version 1.2.2 with about 0.25∘ and 0.1∘ horizontal reso-
lution for atmosphere and ocean, respectively62. See the “Meth-
ods” section for description of the data, model and methods used
in this study. ARs within CESM UHR simulations and reanalysis
are detected using SCAFET, and are validated against the
observed features and the projected changes in AR characteristics
from other studies (sections “ARs in the present climate simu-
lation” and “AR responses to greenhouse warming”). Their role in
inducing extreme precipitation is then discussed in the following
section (see “Extreme precipitation associated with ARs”).

Results
ARs in the present climate simulation. Using SCAFET, we
compare the 20-year mean spatial distribution of daily AR fre-
quency in the CESM UHR PD simulation with the observed high-
resolution counterpart obtained from the European Centre for
Medium-Range Weather Forecasts (ECMWF) Reanalysis Version
5 (ERA5). The CESM UHR PD simulation well captures the
observed global distribution of the climatological AR frequency
(Fig. 1a, b). The maximum values of the AR frequency are found
along the storm track regions in the midlatitudes (contours in
Fig. 1a, b). AR frequencies are also high over the warm western
boundary currents and the currents’ extensions throughout the
year. These AR structures are associated with the frequent
moving-extratropical cyclones (ECs) in that region. The integral
role of ARs in regulating midlatitude water cycle is likewise
observed in the CESM UHR PD and ERA5 datasets, where ARs
account for a considerable portion of the precipitation (1d, e).
ARs exhibit an equator to poleward migration during the
respective summers for both hemispheres, and a pole to equa-
torward migration during the respective winters (Supplementary
Fig. 1). Not only does the PD simulation analyzed with SCAFET
captures the climatological AR frequency and the fraction of AR
precipitation as in ERA5, but it is also comparable to the results
derived from various other databases using a variety of ARDTs
(see Fig. 97, Fig. 149, Supplementary Figs. 2 and 3).

As observed by recent studies, we find that the spatial pattern
of mean AR frequency is largely insensitive to the spatial
resolution of the simulations used63,64 (see Supplimentary Fig. 4).
As the parameters used for AR detection in low resolution (LR)
datasets are same as that with the high resolution (HR), this also
demonstrates the ability of SCAFET to detect ARs from datasets
with varying resolution. However, the HR simulations show a
more realistic representation of the precipitation and convection
characteristics compared to LR counterparts65. Consistent with
these studies, the CESM UHR PD simulation presented here
shows more accurate representation of the AR characteristics as
compared to analogous LR simulations (Supplementary Fig. 5).
The differences between HR and LR AR characteristics are
considerable in the extreme attributes. Since extreme precipita-
tion is an important facet of ARs, HR simulations and resolution-
insensitive detection algorithms should be used in future studies
into the mechanism and the impacts on extreme precipitation.

Whereas the overall patterns in AR frequency between
SCAFET and other ARDTs are comparable, SCAFET tends to
detect weaker ARs more than most canonical ARDTs and thus
detects a higher overall AR frequency (see also Supplementary
Figs. 2 and 3). The detection of a large number of weak ARs is
expected, as the algorithm does not set a minimum threshold on
IVT. AR-like objects are identified from the IVT fields by
extracting ridge, and dome-shaped objects within the data. A
scale-insensitive, bounded varibale called Shape Index (SI)66 is
used to segment the IVT field into various shapes. In essence,
regions with SI > 0.375 will be labeled as ARs, given that they are
precipitating, large, elongated and have a coherent vapor
transport (see "Methods" for further details). Although the
algorithm sets an absolute (independent of both space and time)
threshold, unlike other ARDTs that sets absolute thresholds
(Supplementary Figs. 2a–c), we get a hemispherically uniform
distribution of ARs similar to ARDTs based on relative thresholds
(Supplementary Figs. 2e–g). Thus, although the algorithm cannot
theoretically define an AR, it puts forward a unique perspective in
its detection. Excitingly, such a framework can be extended to the
detection of other climate and weather features61.

Fig. 1 The mean AR statistics in CESM ultra-high-resolution (UHR) PD simulation compared with ERA5 reanalysis. Fraction of AR days per year
(nondimensional) in the CESM UHR PD simulation (a), ERA5 (b), and their difference (c), and the ratio of AR precipitation to annual mean precipitation
(nondimensional) in the CESM UHR PD simulation (d), ERA5 (e), and their difference (f). The model climatology is calculated from the daily mean data of
the last 20 years of the PD simulation, and the observed climatology is obtained for the 20 years of 2000–2019. The cyan contours in a and b show the
column integrated eddy kinetic energy in Mega Joules (MJ).

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00963-7 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:313 | https://doi.org/10.1038/s43247-023-00963-7 |www.nature.com/commsenv 3

www.nature.com/commsenv
www.nature.com/commsenv


The most notable difference between ERA5 and the CESM
UHR PD simulation is the location of the maximum AR
frequency and associated precipitation (Fig. 1c, f). This
discrepancy could be due to model biases in the location and
extent of the jet streams and associated storm tracks in the
simulation (Supplementary Fig. 6). Despite minor inter-data and
inter-detection-method differences, there is good agreement in
AR characteristics between ERA5 and the CESM UHR PD
simulation using SCAFET, and little divergence in this analysis
from the other ARDTs (see Supplementary Figs. 2 and 3). The
choice of the reanalysis datasets will not affect observed biases as
detection of ARs is not sensitive to the absolute values of the IVT
and is similar to relative threshold based ARDTs63 (Supplemen-
tary Fig. 7).

The mean climatology of AR frequency exhibits considerable
similarity to the means of other synoptic-scale weather systems
such as storm tracks, warm conveyor belts (WCBs), ECs, and
atmospheric fronts (AFs). Maximum AR frequencies are
manifested on the equatorward side of active storm track regions
(Fig. 1a, b contours). Storm track activity is directly proportional
to the track density of ECs, and the starting and ending points of
the WCBs match well with the genesis and lysis locations of the
cyclones67–69. Also, the distribution of AFs tends to strongly
correlate with the AR activity (see Fig. 270). From a cyclone-
centered view, ARs can be viewed as vestiges of a poleward
moving extratropical storm71,72, with robust co-occurrences and
moderate correlations between AR and storm strength73,74.
Connecting all these features, ARs are generally formed along
the equatorward side of strong cyclonic circulations, extending
from WCB genesis locations along with the warm sector of AFs.
Importantly, the SCAFET framework well-captures this dynamic
link between ARs and synoptic-scale features.

AR responses to greenhouse warming. By combining the
novelty of both the CESM UHR simulations and the local geo-
metric shape-based detection method, SCAFET, we aim to more
reliably quantify the AR responses to GHG forcing. Our results
indicate that changes in the 20-year mean of AR frequency under
2CO2 and 4CO2 relative to the PD simulation are highly regional
(Fig. 2a, b). Overall, mean AR frequency manifests a robust linear
response to increased GHG forcing. Over the jet exit regions in
North Pacific, North Atlantic, and South Pacific, there is a sta-
tistically significant reduction in the mean AR frequencies,
though only for the 4CO2 scenario. The spatial patterns in the
Southern Ocean, especially over the Southern Indian and Atlantic
basins resemble a poleward shift in the mean AR frequencies. The
Indian and East Asian monsoon regions display a slight poleward
shift in the mean AR distributions. Large increases in AR fre-
quency are also observed along the near-equatorial regions in
North Pacific and North Atlantic, the southwestern part of North
America, the northwestern part of Europe, and western Africa. A
homogenous upsurge in AR frequencies can also be seen across
the Arctic region, with pervasive influence on icesheet and sea ice
dynamics across the domain. Other regions like Australia and
Central Asia (east of the Caspian Sea) see large-scale reductions in
AR activity. The global mean of AR frequency is projected to
increase by about 6% and 12% in the 2CO2 and
4CO2 simulations, respectively, relative to the PD simulation. In
line with previous studies, our findings indicate a general increase
in the average frequency of ARs in response to GHG-induced
warming, although notable regional reductions are observed.

Estimated global mean changes in AR frequency are consider-
ably less than those cited in previous studies. For example, one
study using historical thresholds projected an increased global
mean AR frequency of about 50% by the end of the 21st century

in the RCP 8.5 scenario33. Application of the same detection
method using historical thresholds for the CESM simulations
quantifies a 42% and 61% increase in global mean AR frequency
in the 2CO2 and 4CO2 simulations, respectively, exhibiting
projections that are more than 5 times larger than the SCAFET-
derived estimation (Supplementary Fig. 8a, b). If the same
detection method is applied with the mean state thresholds (not
shown), the increase in global mean AR frequency is estimated to
be 11% and 19% in the 2CO2 and 4CO2 simulations, respectively,
which is still considerably larger than the SCAFET-derived
estimation of 6% and 12%. The large discrepancy in results
between SCAFET and canonical ARDTs may in part be because
SCAFET is not affected by the homogenous increase in IVT from
global warming, while threshold-based detection methods are
fundamentally affected. Utilizing TempestExtremes54 to calculate
the responses of ARs to GHG warming shows results that are
closer to the changes obtained from SCAFET (Supplementary
Fig. 8c, d). This is because, to detect ARs, TempestExtremes
applies thresholds on the Laplacian of the IVT field, which by
definition is the divergence of the spatial gradient and is thus
similarly insensitive to homogenous mean state increases in IVT.
By contrast, ARDTs that use historical or present day IVT or
IWV thresholds identifies larger AR areas as they do not account
for a future mean state that has ubiquitously higher specific
humidity34. By increasing the minimum thresholds for IVT or
precipitation in the SCAFET, similar patterns of AR frequency
changes can be observed compared to conventional ARDTs
(Supplementary Fig. 9). Ultimately, the choice of AR detection
method depends on the specific research question being
addressed.

Reconciling the patterns of projected AR frequency changes
between modeling studies is difficult not only because of different
threshold-dependent ARDTs but also because AR projections
depend on variable thermodynamic and dynamic physical
quantities, like specific humidity and wind speed. Modeling
studies have shown that a 1 °C increase in global mean
temperature corresponds to about a 7% increase in water vapor
content and CESM UHR simulations also show that the lower
tropospheric mean specific humidity (1000 hPa to 700 hPa)
globally increases by about 7.3% and 8% globally per 1 °C global
warming in 2CO2 and 4CO2 scenarios, respectively75. The
changes in wind magnitude and direction are less certain and are
dependent on the regional and model characteristics. A
combination of these climatological changes modulates the the
spatial pattern of IVT, and by extension the spatial pattern of AR
frequency. To separate out the influence of humidity increases
and wind changes, we split total IVT changes (ΔIVT) into the
thermodynamic (

R
VΔqdp) and dynamic (

R
qΔVdp) compo-

nents, hereafter TIVT and DIVT respectively (see the “IVT
decomposition” in “Methods” for complete decomposition of
IVT). By separating the thermodynamic and dynamic compo-
nents, we explicitly show how SCAFET delineates projected AR
characteristics from the underlying dynamics and mean state
trends that modulate projected changes in AR frequency.

To demonstrate how TIVT and DIVT affect the mean IVT
and hence the distribution of AR frequency, we take the vector
projection of TIVT and DIVT onto mean IVT from PD
(Fig. 2e–h). In linear algebra the vector projection of a vector a!
onto another nonzero vector b

!
is defined as a � b= bj j. Positive

values of the scalar product indicate that the changes act to
reinforce the mean circulation in PD while negative values imply
that the changes are in the opposite direction of the mean
circulation and result in the weakening of the total transport.
ARDTs that are based on historical or relative thresholds estimate
AR frequency changes that are sensitive to both components, and
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thus AR frequency is largely increased following TIVT (Supple-
mentary Fig. 8a, b). However, SCAFET is more responsive to
changes in DIVT, similar to other ARDTs that either use a
relative or second-derivative threshold (Supplementary Fig. 8c,
d). Regions where both TIVT and DIVT act to strengthen the
mean circulation show the largest increase in AR frequency, as in
the Southern Ocean (Fig. 2e–h). In most regions where the DIVT
changes are opposing the TIVT changes, AR frequency often
seems to follow the mean DIVT, particularly over the
midlatitudes. As the wind response to GHG warming is highly
model dependent, mean AR frequencies obtained using SCAFET
may vary between models (Supplementary Fig. 10). Examining
the zonal and meridional components separately also tells the
same story in that AR frequency changes are modulated by
DIVT, though the meridional components are inessential in

explaining the overall pattern (Supplementary Figs. 11–14).
Compared to other ARDTs, AR frequency is more modulated
by DIVT in our scheme due to the fact that SCAFET identifies
regions with local maxima in IVT regardless of its absolute
value. In other words, SCAFET by construct not only identifies
regions with high water vapor content but also the low level jet
structure associated with it, which is represented by DIVT.

The precipitation changes associated with ARs are consistent
with the changes in AR frequency (Fig. 2c, d). Globally, the
contribution of AR precipitation to mean annual precipitation
increases by 6%(2.4%/°C) and 15%(3%/°C) in 2CO2 and
4CO2 scenarios respectively, which was also seen in previous
studies76. The greatest increases in AR precipitation occur over
high and midlatitudes (Fig. 2c, d), closely following the projected
changes in total precipitation62 (Supplementary Fig. 15).

Fig. 2 Projected changes in AR characteristics, thermodynamic and dynamic components of integrated water vapor transport (IVT). Future changes in
the annual fraction of AR days (a, b), AR precipitation to annual mean precipitation ratio (c, d) from 2CO2 (a, c) and 4CO2 (b, d) experiments in
comparison to PD. Stippling in a–d denotes significant changes at α= 0.05 level in a two-tailed t-test (n= 20). The vector projection of thermodynamic
(e, f), and dynamic (g, h) components onto the mean IVT from PD are shown as shading.
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Additionally, we find that ARs are projected to become stronger
by 15%(6%/°C) and 34%(7%/°C) in 2CO2 and 4CO2 simulations
respectively, consistent with the Clausius-Clapeyron scaling75

(Fig. 3a). The mean precipitation within the ARs increases by
4%(1.6%/°C) and 10%(2%/°C) congruent with the hydrological
sensitivity estimated from other coupled climate simulations77

(Fig. 3b) while the maximum precipitation within ARs shows
amplification by 12%(5%/°C) and 30%(6%/°C) for 2CO2 and
4CO2 scenarios, respectively (Fig. 3c). These changes in maximum
precipitation within ARs are similar to responses observed in
other saturated atmospheric environments like tropical cyclones78.
Although the changes in mean AR precipitation is dependent on
the AR boundary which in turn is highly sensitive to the choice of
ARDT, maximum AR IVT and precipitation are largely
insensitive to the detection methods used. AR duration shows
an extension of 1.6% and 2.3% in 2CO2 and 4CO2 scenarios
(Fig. 3d). Moreover, ARs tend to become 1.5% and 3% longer,
bigger, and more elongated in 2CO2 and 4CO2 simulations
(Fig. 3e–g). However, these geometric parameters are highly
sensitive to the ARDT used. For instance, results obtained using
historical thresholds show larger increases in length, width, and
area with only moderate changes in mean AR IVT and
precipitation34. Results obtained using mean state thresholds
show moderate changes in geometric parameters and a generous
increase in IVT, similar to our results57. Local shape-based
methods like SCAFET have the potential to reduce the ambiguity
in projected changes of ARs arising from IWV or IVT threshold-
based ARDTs while also successfully capturing the changes in
important AR characteristics such as mean IVT and the associated
precipitation.

Extreme precipitation associated with ARs. Extreme precipita-
tion (XP) is defined as daily precipitation greater than the 95th
percentile of daily precipitation within the CESM UHR PD
simulation and ERA5 reanalysis, respectively. In other words, the
definition of extreme precipitation does not change between
present and future scenarios. To examine the link between ARs
and extreme precipitation events, we calculate the conditional

probability of extreme precipitation given the presence of an AR,
or P(XP∣AR). As expected, the presence of an AR leads to an
increased probability of extreme precipitation everywhere
(Fig. 4a, b). Notably, ERA5 and CESM UHR PD identify the same
regions for the risk of AR-induced extreme precipitation,
although the CESM UHR PD simulation slightly overestimates
the probability of AR-induced extreme precipitation. The
increased probability is most visible along the coastlines where
ARs make landfall and the winds hit perpendicular to regions
with a strong topographic gradient (Supplementary Fig. 16a). For
example, there are some regions in which the presence of an AR
makes precipitation 10 times more likely, such as over the
southwestern coast of the U.S., western Greenland, and around
the Antarctic coastline (Fig. 4a, b). Other hotspots for AR-
induced extreme precipitation are the Iberian Peninsula, the
Scandinavian mountains in Norway, the Andes mountains, the
Ural mountains, the Hindukush mountains, western Australia,
and western South Africa. Expansion of the subtropical dry belt in
response to GHG warming leads to a regional reduction of mean
precipitation and of AR-induced extreme precipitation in those
regions (Fig. 4c–e, Supplementary Figs. 15 and 16). By contrast,
the probability of extreme AR precipitation increases substantially
on the poleward side of the subsidence regions. The largest
increases are seen along the windward side of mountain ranges
perpendicular to the large-scale circulation (Fig. 4c–e). To
reiterate, ARs and associated mean and extreme precipitation
play an important role in ice, precipitation, and cloud feedbacks,
and better quantifying the impacts of AR-induced extreme pre-
cipitation events on sea ice, ice sheets and permafrost regions will
be of paramount importance for future studies in understanding
Earth’s hydroclimatic response to GHG warming.

Conclusions
We combined the novelty of CESM UHR simulations and
application of a novel, local geometric shape-based ARDT that is
independent of IVT or IWV thresholds to estimate and analyze
projected changes in AR characteristics. The results are consistent
with previous studies indicating an increase in the mean

Fig. 3 Changes in the distribution of AR properties. Probability density function of AR (a) mean integrated water vapor transport (IVT), (b) mean
precipitation (PRECT), (c) maximum precipitation, (d) duration, (e) area, (f) length, and (g) the ratio of length to width for ERA5 (black), PD (blue), 2CO2
(orange), and 4CO2 (red). The vertical lines represent the median value of the distribution. Y-axis for all plots are represented in log scale.
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frequency (by 6% and 12%) and annual mean precipitation
associated with ARs (by 6% and 15%) in response to increased
atmospheric CO2 concentrations (for 2CO2 and 4CO2 simula-
tions). The mean precipitation increases within ARs matche the
mean hydrological sensitivity77 while the maximum precipitation
intensity shows similar changes as in other hydrometeorologically
saturated conditions78. Owing to the increased atmospheric water
vapor content under global warming, we also observe a
strengthening of ARs (as measured by mean IVT) by 15%(6%/°C)
and 34%(7%/°C) in 2CO2 and 4CO2 simulations respectively,
approximately following the Clausius-Clapeyron scaling (7%/°C).
This leads to a slight enlargement of ARs in warmer conditions,
but, this enlargement is much smaller than what is reported in
other studies using ARDTs based on historical thresholds33,34.

Defining ARs from historical thresholds in a warmer and
wetter world results in the identification of a much larger area of
conglomerated AR events, with lower mean AR precipitation and
strength compared to the threshold independent or relative or
second-derivative threshold based methods. Furthermore, the
application of historical thresholds to future warming scenarios
corresponds to a reduction in the number of AR-like structures
per time step, as multiple AR-like structures are clumped together
in a single conglomerate against the backdrop of scopious, basin-
wide increases in mean IVT. By comparison, detection methods
based on relative thresholds or local-shape indicate ARs slightly
increase in area but with a relatively large enhancement in AR
strength and mean precipitation. Additionally, they also project a
rise in the number of AR events per instant as AR structures are
isolated from the elevated background mean state34. According to
our analysis, changes in AR frequency identified using SCAFET
are tightly linked to the mean circulation changes in response to
increased GHG forcing. Moreover, the UHR simulations are
expected to better resolve the synoptic scale circulation patterns
compared to coarser resolution simulations. Our results also
appear to capture the interaction of AR circulation systems with
the landfalling topography. These aspects of UHR simulations
help us to more reliably project and explain AR-associated pre-
cipitation characteristics. The accumulated, mean, and extreme
precipitation associated with ARs increase in response to
increased GHG concentrations. Combining estimated AR fre-
quency and precipitation changes may inform future water

management policies as consensus builds on projected changes
under global warming.

Importantly, the lack of coherence between IVT and IWV
threshold-dependent detection methods fundamentally stems from
the lack of a quantitative definition for ARs, though this is difficult
to systematically apply globally and in perpetuity. To address the
ambiguity in defining thresholds for ARs, we develop SCAFET and
use the local geometric shape of IVT magnitude to detect strong
local maxima and coherence within water vapor transport to
identify AR-like conditions. Detection algorithms for cyclones, AFs,
and other phenomena may encounter comparable challenges when
attempting to estimate future changes in their frequency and the
associated precipitation79–81. This is because they are also expected
to be responsive to variations in the mean state, which presents
exciting opportunities for further investigation and improvement.
When analyzing synoptic-scale dynamics that overlie different
mean states, especially between present and increased CO2 sce-
narios, using a local shape-based feature extraction algorithm could
be useful for building scientific consensus going forward. The
ARDT introduced in this study is now expanded into a general
feature extraction and tracking method framework allowing us to
more objectively quantify (background-state independent) future
changes in synoptic-scale phenomena61.

Methods
ERA5 reanalysis. European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis Version 5 (ERA5) data82 is used
to validate the capability of the CESM UHR PD simulation in
capturing AR characteristics and associated precipitation in the
present climate. We use daily mean data of zonal velocity (U),
meridional velocity (V), and specific humidity (Q) from 1000 hPa
to 300 hPa for calculating integrated water vapor transport (IVT)
and daily mean precipitation (PRECT) for 20 years (2000–2019)
with a horizontal resolution of 31 km and 37 vertical levels. IVT
is a vector quantity given by,

IVTx ¼ � 1
g

Z 300hPa

1000hPa
qUdp ð1Þ

Fig. 4 Probability of extreme precipitation given an AR. Probability of extreme precipitation (95th percentile of daily mean precipitation) given the
presence of an AR, P(XP∣AR), for ERA5 (a) and CESM UHR PD simulation (b), respectively. Changes in the probability of AR-induced extreme precipitation
for 2CO2 (c) and 4CO2 (d) simulations. The zonal mean of the probability with lines representing ERA5 reanalysis (blue), present day (orange), 2CO2
(green), and 4CO2 (red) simulations are plotted as e.
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IVTy ¼ � 1
g

Z 300hPa

1000hPa
qVdp ð2Þ

IVTj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVTx2 þ IVTy2

q
ð3Þ

Ultra-high-resolution CESM1.2.2 simulations. This study ana-
lyzes fully coupled ultra-high-resolution simulations of the
Community Earth System Model83 version 1.2.2 (CESM UHR)
with 3 different CO2 concentrations: (1) the present-day value
(PD, CO2= 367 ppm), (2) double CO2 (2CO2, CO2 = 734 ppm)
and (3) quadruple CO2 (4CO2, CO2 = 1468 ppm) to represent
present climate and enhanced GHG conditions. All three simu-
lations use the Community Atmosphere Model (CAM5)84 with
spectral element dynamic core at a horizontal resolution of
around 0.25∘ and 30 vertical layers, and the Parallel Ocean Pro-
gram version 2 (POP2)85 at a horizontal resolution of 0.1∘ and 62
vertical levels as the atmosphere and ocean components,
respectively. The land component is the Community Land Model
version 4 (CLM4)86, and the ice component is the Community
Ice Code version 4 (CICE4)87. The configuration has been suc-
cessfully used in many previous studies44,62,65,88,89. The PD
simulation was run for 140 years, while 2CO2 and
4CO2 simulations were run for 100 years after branching out
from PD at year 71. For AR detection, we use U, V, Q, and
PRECT (same as ERA5) for the last 20 years of each simulation.

Scalable Feature Extraction and Tracking (SCAFET). Although
there is a wide variety of peer-reviewed ARDTs50, this study uses a
novel local geometric shape-based method to identify ARs, with
broader applications for extracting synoptic-scale features for dif-
ferent background states61. As discussed in the main text, the aim of
the new method is to rethink how the thresholds are used for
feature extraction. In contrast with many existing ARDTs, we use
local geometric shape of a field to extract AR structures instead of
applying IVT or IWV thresholds directly. The method uses Shape
Index (SI), a measure of the local shape of a field irrespective of the
magnitude or the total curvature to identify features of interest. We
expect this method to reduce the sensitivity of the estimated AR
response to global warming with regard to the types and values of
the thresholds used, as unlike climate variable thresholds, shape-
based thresholds are not empirically derived for each unique data
set and mean state. The representative vector field used for AR
detection is IVT. The major steps in the algorithm are explained
below. The result after the execution of each step is illustrated in
Supplementary Fig. 16. The detected ARs compare very well with
results obtained using existing ARDTs in representing not only the
mean distribution (Supplementary Fig. 2) but also in event detec-
tion (Supplementary Fig. 18).

1. Scale-space Selection: The first step in the algorithm is to
suppress variability in scales much smaller than the feature
to be extracted. For atmospheric rivers, a simple, grid-aware
Gaussian smoothing (see https://unidata.github.io/MetPy/
latest/api/generated/metpy.calc.smooth_gaussian.html)
suppresses variability smaller than 1000 kms.

2. Shape Index Extraction: In classical differential geometry,
eigenvalues of the Hessian of a field are used to measure
local curvature of the surface. Here, we use eigenvalues of
the Hessian of IVT magnitude to construct a Shape Index
(SI) depicting the local shape of the surface as follows66.

SI ¼ 2
π
tan�1 k2 þ k2

k2 � k1

� �
ð4Þ

Where k1 and k2 are the two eigenvalues satisfying k1 ≥ k2
for the Hessian matrix of IVTj j given by,

H IVTj jð Þ ¼
∂2 IVTj j
∂x2

∂2 IVTj j
∂x∂y

∂2 IVTj j
∂y∂x

∂2 IVTj j
∂y2

2
4

3
5 ð5Þ

The SI is a unitless, bounded quantity between -1 to 1,
independent of the absolute magnitude or resolution of the
scalar field. This invariance is crucial as it ensures that the
SI focuses solely on the nature of curvature, independent of
its magnitude or size. A traditional ARDT may use the
absolute magnitude7 of the field or its curvature58 to
identify AR like structures while SI would characterize all
ridge structures on the IVTj j as ARs. The basic philosophy
of SI can be summarized as “all circles are circles regardless
of its radius".The SI provides a single-value representation
that captures different shapes: values close to -1 represent
concave surfaces, values near +1 indicate convex shapes,
and the intermediate range corresponds to transitional
shapes like flat or saddle-shaped regions. This intuitive
interpretation makes the SI an effective tool for character-
izing and analyzing local shapes across a wide range of
applications. To obtain AR-like structures, the SI threshold
of 0.375 is chosen to extract local shapes such as ridges,
caps, and domes. Additionally, points where the IVT
deviates by more than 45∘ from the local ridge are also
removed to ensure coherence in the transport direction.
The local ridge is aligned in the direction of the eigenvector
corresponding to k2.

3. Filtering: A variety of geometric and physical characteristics
of the objects obtained from the previous step are
estimated. Later, weak structures are removed by fixing a
minimum mean precipitation of 1mm/day for each object.
Other filters are applied to eliminate small
(area < 2 × 106km2), short (length < 2000km) and circular
(eccentricity < 0.75) structures. AR-like structures asso-
ciated with the Inter-Tropical Convergence Zone (ITCZ)
are removed by masking out objects centered between 20∘S
and 20∘N.

4. Tracking: The distance between filtered objects for each
adjacent timestep is calculated based on their centroids. The
closest objects among them are identified as the progression
of one AR. If the distance traveled is greater than 4000km
per day, the object is considered to be separate. Objects with
a duration of less than two days are removed from the
analysis.

IVT decomposition. IVTx is decomposed into mean and
anomaly as follows

IVTx ¼ � 1
g

Z pt

ps

ð�qþ q0Þð�uþ u0Þdp

¼ � 1
g

Z pt

ps

�q�uþ q0u0 þ �qu0 þ q0�udp
ð6Þ

Where �u, and �q are the monthly mean zonal velocity and specific
humidity respectively and u0, and q0 are anomalous zonal velocity
and specific humidity with respect to monthly means. The
pressure levels are integrated from ps= 1000 hPa to pt= 300 hPa.
The same pressure bounds are also chosen for the IVT calculation
in AR detection.
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For a particular mean state, the time averaged IVTx is
calculated as,

IVTx ¼ � 1
g

Z pt

ps

�q�uþ q0u0 þ �qu0 þ q0�u dp

¼ � 1
g

Z pt

ps

�q�uþ q0u0
ð7Þ

The change in IVTx between two mean states is calculated as,

ΔIVTx ¼ IVTx2 � IVTx1

¼ � 1
g

Z pt

ps

�q2�u2 þ q02u
0
2 � �q1�u1 � q01u

0
1

� �
dp

ð8Þ

Substituting �u2 ¼ �u1 þ Δ�u, and �q2 ¼ �q1 þ Δ�q in Eq. (8)
We identify the dynamic, thermodynamic, and eddy terms as

follows.

ΔIVTx ¼ IVTx2 � IVTx1

¼ � 1
g

R pt
ps

ð�q1 þ Δ�qÞð�u1 þ Δ�uÞ þ q0
2u

0
2 � �q1�u1 þ q0

1u1
h i

dp

¼ � 1
g

Z pt

ps

�q1Δ�udp

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Zonal component
of dynamic term

� 1
g

Z pt

ps

�u1Δ�qdp|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Zonal component

of thermodynamic term

� 1
g

Z pt

ps

q0
2u

0
2 � q0

1u1

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{Zonal component
of eddy term

dp

ð9Þ
Similarly, IVTy is decomposed into dynamic, thermodynamic,

and eddy terms as

ΔIVTy ¼ IVTy2 � IVTy1

¼ � 1
g

R pt
ps

ð�q1 þ Δ�qÞð�v1 þ Δ�vÞ þ q
0
2v

0
2 � �q1�v1 þ q

0
1v1

h i
dp

¼ � 1
g

Z pt

ps

�q1Δ�vdp

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Meridional component
of dynamic term

� 1
g

Z pt

ps

�v1Δ�qdp|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Meridional component
of thermodynamic term

� 1
g

Z pt

ps

q0
2v

0
2 � q0

1v1

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{Meridional component
of eddy term

dp

ð10Þ
Noting that for both zonal and meridional components,

thermodynamic term > dynamic term≫ eddy term, we can
neglect the eddy terms. Now isolating thermodynamic and
dynamic terms, we can write,

The thermodynamic component of IVT changes is formulated
as,

TIVT ¼ TIVTx̂iþ TIVTŷj

¼ � 1
g

R pt
ps
�u1Δ�qdp̂i� 1

g

R pt
ps
�v1Δ�qdp̂j

ð11Þ

The dynamic component of IVT changes is formulated as,

DIVT ¼ DIVTx̂iþ DIVTŷj

¼ � 1
g

R pt
ps
�q1Δ�udp̂i� 1

g

R pt
ps
�q1Δ�vdp̂j

ð12Þ

Finally, to express the TIVT and DIVT with respect to the PD
mean IVT, we calculate the vector projection of each component
onto IVT. This approach simplifies our analysis by illustrating the
impact of each component on the mean IVT in the PD. Negative
values indicate opposing effects on the PD IVT, whereas positive
values signify strengthening of the mean IVT in the PD due to the
specific vector being examined.

The vector projection of thermodynamic component (TIVT)
onto IVT is calculated as,

TIVT � IVT
IVTj j ð13Þ

Likewise, the vector projection of dynamic component (DIVT)
onto IVT is calculated as,

DIVT � IVT
IVTj j ð14Þ

Data availability
The data from the CESM UHR simulations are available on the IBS Center for Climate
Physics climate data server (https://climatedata.ibs.re.kr/) and upon request (https://
ibsclimate.org/research/ultra-high-resolution-climate-simulation-project/). Sample high
resolution datasets and data used for making all the main figures and most of the
supplementary figures can be found at https://doi.org/10.5281/zenodo.8166542. The
ERA5 reanalysis dataset is freely available from Copernicus Climate Change Service
(C3S) (https://cds.climate.copernicus.eu/cdsapp#!/dataset/). The codes used for
downloading the ERA5 data is also proivided within the respository. Outputs from
various Atmospheric River Detectors (ARDTs) are downloaded from https://www.
earthsystemgrid.org/search.html?Project=ARTMIP. The CMIP5 and CMIP6 data are
available at https://esgf-node.llnl.gov/search/cmip5/and https://esgf-node.llnl.gov/search/
cmip6/

Code availability
The CESM source code and the standard setup files for the ultra-high-resolution model
simulation can be obtained from http://www.cesm.ucar.edu/models/cesm1.2/. For more
details regarding the simulations and the PE layout for a Cray XC50 computer refer to
https://ibsclimate.org/research/ultra-high-resolution-climate-simulation-project/. All the
data analysis was done using python. The latest version of Python source codes for
SCAFET is available at https://github.com/nbarjun/SCAFET. The codes used for AR
detection and for producing the figures in this manuscript are available at https://doi.org/
10.5281/zenodo.8166542.
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