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Refertilized continental root controls the formation
of the Mianning–Dechang carbonatite-associated
rare-earth-element ore system
Zeng-Qian Hou1✉, Bo Xu2✉, Haijiang Zhang 3✉, Yuan-Chuan Zheng2, Rui Wang 2, Yan Liu1, Zhuang Miao2,

Lei Gao3, Zhidan Zhao2, William L. Griffin 4 & Suzanne Y. O’Reilly 4

Rare earth element ore deposits associated with carbonatite derived from Earth’s mantle

supply half of the world’s rare earth element. However, the formation of carbonatite and

initial enrichment and transport of rare earth element in the mantle, is unclear. Here, we

image the lithospheric architecture of a Cenozoic rare earth element ore belt in southwestern

China by integrating seismic tomography with geochemical data. The subduction of the

Indian continent caused vertical upwelling and lateral flow of the asthenosphere, which

triggered the melting of the overlying subcontinental lithospheric mantle to generate car-

bonatites. Such a mantle source that previously metasomatized by fluids from recycled

marine sediments is a precursor process critical for forming a giant rare earth element

system. For the studied ore belt, three key factors are prerequisites to generating ore-forming

carbonatites: thick lithosphere with a continental root; prior fertilization of the subcontinental

lithospheric mantle; and trans-lithospheric weakness for magma ascent.
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Rare-earth elements (REEs) are essential for many high-
technology applications, new energy industries, and defense
systems. Thus, understanding the processes by which they

are concentrated and trapped in the crust is currently a focus of
investigations. REE deposits come in a wide variety1,2, and
carbonatite-associated REE deposits (CARD) are among the most
significant types, which supply half of the world’s
REE+ Y(yttrium)1,3,4 and thus are prime targets for focused
exploration5,6.

About 527 carbonatite occurrences are exposed on all of
Earth’s continents7–9, and 75% of them are emplaced within
600 km of craton edges10. These carbonatites may have been
directly erupted from their mantle sources or frequently emplaced
after protracted modification within the lithosphere9. They
mainly occur as circular to ovoid complexes in continental rifts
(e.g., East Africa) and orogenic belts (e.g., southwestern China)
but are also associated with large igneous provinces (e.g., Deccan)
and/or alkaline provinces (e.g., Greenland and the Kola
Peninsula)10,11. A commonly held view suggests that carbonatites
originate from an enriched or metasomatized mantle source10,
but the relative roles of the lithosphere and asthenosphere in
carbonatite formation have been controversial8,12–16. A crucial
assessment of these controversies requires a close examination of
the underlying mantle structure and its plausible evolution.

Explorations show that only a few carbonatites host giant and
large-sized CARDs2,4–6,17. These CARDs mainly form in con-
tinental rift settings (e.g., Bayun Obo in north China)18 and syn-
to post-collisional settings (e.g., Maoniuping in southwest
China)17,19,20. The associated magmas are regarded to have been
derived from the subcontinental lithospheric mantle (SCLM)21,22,
enriched by plume activity or previous subduction2,8,22–24. Recent
studies indicate that the total resources of such CARDs are
controlled by the volume of the parent magmas and the avail-
ability of enriched mantle sources2 and that primary REE-poor
orogenic carbonatites can be enriched by early processes of
metasomatism22. However, how the mantle architecture influ-
ences lithosphere focusing and how REEs are fertilized in the
metasomatized SCLM and later transported out of the mantle for
the formation of CARDs remain unclear. We demonstrate that
the key to understanding these issues is deciphering the litho-
spheric architecture and deep processes beneath REE-rich young
orogens at cratonic edges.

The eastern Tibetan orogen, formed by the Cenozoic Indo-
Asian collision19, hosts a REE ore system—the Cenozoic
Mianning–Dechang (MD) REE belt20 (Fig. 1a). This orogen is an
ideal place to investigate the factors controlling CARD formation
because of its young mineralization age (27–12Ma) without later
reworking25, a clearly defined post-collisional setting for their
occurrence22, and the current lithospheric structure without
noticeable modification after the CARD formation. The MD REE
belt was developed along the western margin of the Yangtze
craton, where the exposed remnants of 1000–740Ma arc volcanic
rocks and granitoids recorded the Neoproterozoic accretion
related to subduction26, and Cenozoic reworking by the Indo-
Asian collision produced numerous Cenozoic strike-slip fault
systems (e.g., Red-River fault [RRF], Xiaojiang fault [XJF], and
Xianshuihe fault) in the orogen19 (Fig. 1a). This collision also
caused extensive Eocene potassic–ultrapotassic magmatism along
the RRF (Fig. 1a)21,27 and formed a NS-trending 200-km-long
REE-rich complex belt (i.e., MD REE belt) along the XJF at the
cratonic edge20,21. This belt is composed of numerous
carbonatite–syenite complexes (30–12Ma), which host several
CARDs, such as the giant Maoniuping (22Ma), large-sized
Dalucao (12Ma), and medium Lizhuang (27Ma)20,25, constitut-
ing a Cenozoic giant REE ore system along the cratonic margin
(Fig. 1a).

Here, we reveal the lithospheric architecture and deep pro-
cesses of the MD REE belt by integrating a P-wave tomography
model with geochemical data over an area covering the Tibetan
orogen to the Yangtze craton. Our results provide a framework to
probe the genesis of CARDs and their controlling factors, and the
resulting genetic model provides a useful reference for the
exploration of such CARDs.

Results and discussion
Lithospheric architecture imaged through seismic tomography.
Seismic images with different resolutions have revealed the crust-
and uppermost-mantle velocity structures in Tibet28,29. In this
study, the teleseismic double-difference seismic tomography
method was used to image the lithospheric architecture that
controls the CARD formation using seismic arrival times from
earthquakes within and surrounding the China continent recor-
ded by local, regional, and teleseismic stations (see “Methods”
and Supplementary Figs. 1–8).

Our P-wave images clearly show both the Indian and Yangtze
blocks as high-Vp anomalies at depths of 160 and 80 km,
respectively, with boundaries around longitudes 98–99°E (Fig. 1b),
consistent with previous result29. The two high-velocity bodies
are contiguous around latitudes 28–30°N (Fig. 1b), indicating that
the two blocks collided at this location, thus controlling
lithospheric deformation in the orogen. We interpret the high-
Vp boundary of the Indian block as the northeastern front of the
Indian lithospheric mantle (Fig. 1b)30. There are two large regions
of low-velocity anomalies to the north and south of this
convergent zone, again consistent with previous results31. These
two low-velocity regions may be connected by a low-velocity
channel between the Indian and Yangtze blocks at depths of
80–110 km around longitude 99°E, as evidenced by a high-
resolution lithosphere Vs model for continental China (Supple-
mentary Fig. 8b)32. Both regions are also spatially correlated with
Cenozoic mantle-derived magmatic provinces at the surface
(Fig. 1a), high-temperature mantle domains (1200 °C)33, and
mantle He in modern hydrothermal reservoirs (Fig. 1b)34.

The three roughly E‒W or NE‒SW profiles show that the
subducted Indian lithosphere (high Vp) reached the mantle
transition zone, or even deeper, at a high angle with slight
flattening in the north (Fig. 2a) and steepening in the south
(Fig. 2b). Along the RRF and the adjacent region at 97–101°E, a
remarkable feature of the P-wave image is the occurrence of a
large mushroom-shaped low-velocity body. Its stem is rooted at
depths >400 km, and the head extends laterally beneath the rigid
Yangtze mantle lithosphere (Fig. 2b, c), locally stretching upward
to the crust–mantle boundary (Fig. 2a). The overlying lithosphere
shows obvious velocity heterogeneities. In the south, a large high-
velocity body indicates that the orogenic lithosphere is relatively
intact and thick (Figs. 1b and 2c). To the north, the cratonic
lithosphere becomes thin (~100 km) and disjointed, as shown by
two distinct and separated, relatively weak high-velocity domains
beneath the Yangtze craton (Fig. 2b). We interpret this large low-
velocity body as a large-scale asthenospheric upwelling focused
along the block boundaries, thermally eroding and reworking the
overlying lithosphere at the cratonic margin.

Along the western margin of the Yangtze craton at approxi-
mately 102°E, there are widely distributed shallow low-velocity
anomalies (Fig. 2a, b), coinciding with the MD REE belt around
the XJF system35. They occur along a N‒S-striking Cenozoic
strike-slip fault system superposed on a Permian rift21 and
become weak southward at 26°N, where the MD REE belt
disappears (Fig. 2a). These shallow low-velocity anomalies extend
down to an ~100-km depth and connect with a large underlying
low-velocity body through a tilted low-velocity band, which
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separates the Yangtze lithosphere into two segments with distinct
thicknesses (Fig. 2a, b). This structure is also imaged by receiver
function results36, which can be interpreted as representing the
eastward lateral flow of the asthenosphere and its subsequent
upwelling along the trans-lithospheric faults. The lateral flow of
the asthenosphere is also supported by the dominant E‒W fast
polarizations of teleseismic SKS waves from shear wave splitting
analysis in this area37,38.

New and previously-published geochemical data further
constrain the lithospheric architecture imaged by seismic
tomography (Supplementary Data 1–3). The explosive ultra-
potassic magmas with eruption ages peaking at 35 ± 2Ma are
extensively developed along the RRF (Fig. 1a), and their
geochemical signatures suggest a derivation from partial melting
of metasomatized SCLM (Supplementary Figs. 9 and 10)27,39 at
an ~80-km depth (Fig. 3a). This process is consistent with our
seismic images (Fig. 2a, b) and high estimated temperatures of the
upper mantle (Fig. 3a), confirming that the cratonic SCLM was
disrupted, thinned, and partially melted by the asthenospheric
upwelling along the RRF. Coeval potassic granitoids in Dali,
showing geochemical affinity with adakites, are considered to
have originated from the collision-thickened (45- to 50-km) mafic
lower crust in the orogen40 (Fig. 3a). Our seismic images also
reveal that the orogenic lower crust was heated by high heat flows
from the upwelling asthenosphere, resulting in the upward
percolation of small-volume mantle melts (Fig. 2a). Minor
Quaternary basalts (13–0.3 Ma) locally developed after the main
magmatic event (~35Ma) along the RRF (Fig. 1a). These basalts
contain mantle xenoliths and show geochemical affinity with
oceanic island basalts (OIBs)19,39, suggesting decompression
melting of the asthenosphere during upwelling since the mid-
Miocene. All these observations point to a consistent interpreta-
tion—that the steep subduction of the Indian continental
lithosphere led to continuous asthenospheric upwelling, thermal

erosion, partial melting, and interaction with the overlying
cratonic lithosphere since ~35Ma.

The partial melting of the SCLM focused at 35Ma is not
limited to the RRF but also extends eastward across the RRF, at
times ranging from 35 to 12Ma (Fig. 2a–c). The eastward lateral
flow is supported by the eastward prolongation of the
ultrapotassic magmatism (35–30Ma) and its association with
the MD carbonatites (30–12Ma; Fig. 1a). The westward flow is
recorded by Quaternary calc-alkaline lavas (14–0.2 Ma) in
Tengchong. Their arc-like signature and the enriched Sr–Nd
isotope compositions suggest a derivation from the mantle wedge,
previously metasomatized by Neo-Tethyan oceanic subduction
(Supplementary Figs. 9–11) but heated by the westward astheno-
spheric upwelling since 14Ma (Fig. 3a).

Three lines of evidence further confirm the asthenospheric
upwelling in the Cenozoic. First, electron backscattered diffrac-
tion studies of mantle xenoliths hosted by OIB-like basalts at
Maguan (Fig. 1a) show strong deformation fabrics, recording a
vertical flow of mantle material41, and their equilibration
temperatures are estimated at >1200 °C, much higher than that
predicted by a cratonic geotherm42. Secondly, lower crustal
xenoliths from Tengchong and Dali (Fig. 1a) underwent high-
temperature granulite- and amphibolite-facies metamorphism at
very high equilibration temperatures (1050 °C–900 °C)43. Third,
P-T-t paths for the metamorphic belts along the RRF reflect a
complex process evolving from heating and ductile flow at
40–35Ma to brittle shear at 30–23 Ma44. Therefore, we conclude
that the subduction of the Indian lithosphere during collision
induced the upwelling of the Asian asthenosphere, thus changing
the cratonic–orogenic lithospheric thermal regime, triggering its
partial melting and controlling crustal deformation in the orogen.

Carbonatite formed by melting of the metasomatized SCLM.
Previous modeling, overwhelmingly based on geochemical and Sr,
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Fig. 1 Topographic-geological map and P-wave velocity image of the Yangtze craton and the Tibetan orogen. a shows a tectonic framework of the
Tibetan orogen and craton (modified from ref. 19 and ref. 39), in which the Cenozoic CARDs (red hammers), including the giant Maoniuping (22Ma), the
large Dalucao (12Ma), the medium Lizhuang (27Ma), and the small Muluozhai (26Ma)20,25, are shown. Black dotted lines are the boundaries of the
Indian block and Yangtze craton. Black lines are the Cenozoic strike-slip faults (KLF: Kara–Kunlun fault; XSHF: Xianshuihe fault; RRF: Red-River fault; XJF:
Xiaojiang faults) and thrust fault (LMT: Longenshan fault) with ages labeled. The Cenozoic magmatic rocks are shown as follows: Tengchong basalts (red,
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syenite complexes in the MD REE belt (yellow, 30–10Ma), and Miocene ocean-island basalt (OIB) (mauve triangle, 13–1.7Ma). Pink star: mantle xenolith
locality; yellow stars: crustal xenolith localities. The positions of three seismic profiles across the MD REE belt are shown. b shows a P-wave velocity slice at
depth of 160 km in the study area. The domains of mantle-derived He gas in modern springs (purple dotted line) are also shown.
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Nd, Pb, O, and C isotope data of carbonatites worldwide, sug-
gested distinct mantle sources for their genesis, such as the
asthenosphere related to plume activity8,12, heterogeneous litho-
spheric mantle15, and mixing source between the lithosphere and
asthenosphere14,16. Three lines of evidence suggest that the MD
carbonatites originated from the cratonic SCLM with variable
degrees of metasomatism22, except for the carbonatite at Dalucao
showing crustal contribution21,23,24. First, these carbonatites have
more radiogenic Sr–Nd isotope compositions with initial
(87Sr/86Sr)i of 0.7056–0.7080 and εNd(t) of −6.0 to −1.619,21,22,
overlapping with those of the Eocene ultrapotassic rocks that
originated from the metasomatized cratonic SCLM22,45 (Fig. 3b).
Second, the associated syenites yielded similar Sr–Nd isotope
compositions, with initial 87Sr/86Sr= 0.7043–0.7049 and εNd(t)
from −2.4 to −6.539, suggesting a genetic link. Thirdly, the
magmatic zircons from these syenites yielded δ18O of +3.8 to

+5.4‰ and εHf of −3.7 to +1.2, also indicating a SCLM source
with minor marine sediments (Supplementary Fig. 11).

Figure 2a, b clearly shows that the MD carbonatite belt spatially
coincides with an underlying shallow low-velocity mantle zone,
which could be attributed to the presence of low-viscosity
carbonate melts or volatiles (CO2, H2O, Cl, and F) released during
magmatic degassing. Our seismic images show that the SCLM at
the cratonic edge is cut by a west-dipping XJF system (Fig. 2a, b),
along which upwelling and lateral flow of the asthenosphere
could trigger partial melting of the SCLM, thus endowing the
carbonatitic melts.

Experiments have shown that the partial melting of mantle
peridotite with CO2 only produces SiO2-undersaturated basaltic
magmas at <80-km depths46. However, with increasing pressure
(80–150 km) and temperature (>1200 °C), its melting could yield
carbonatitic melts with silicate components46–49. Recent studies
further suggested that incipient melts of peridotites containing
both H2O and CO2 at 80–230 km are carbonatite50,51, and these
melts progress toward carbonated silicate compositions with
increasing temperatures50. When the mantle contains 0.15 wt%
of CO2, carbonatites could be generated by very low degrees
(<0.5%) of melting49. This means that the formation of the MD
carbonatites requires a thick lithosphere, appropriate mantle
temperatures, and a carbonated mantle source. These require-
ments are fully satisfied at the Yangtze cratonic margin: (1) a
relatively thick underlying lithosphere (>90 km), thermally
eroded by heat from asthenospheric lateral flow (Fig. 2a, b);
(2) relatively high mantle temperatures (≥1000 °C) at 80- to 120-
km depths (Fig. 3a), enabling partial melting of the carbonated
SCLM; and (3) carbonate metasomatism in the mantle source,
evidenced by light δ26Mg and heavy δ66Zn values of the
associated Cenozoic alkaline rocks along the cratonic
margin52,53. Note that the cratonic lithosphere was strongly
thinned south of 26°N (Fig. 2c), implying the loss of a
lithosphere root, where the MD carbonatites were not developed
(Fig. 1a). This reinforces the concept that the carbonatitic melts
resulted from the partial melting of a previously metasomatized
SCLM54,55.

REE-fertilization of the SCLM by CO2-rich fluids from recycled
marine sediments. The extreme enrichment in REEs of the MD
carbonatites, through further strengthening by intra-crustal
magmatic processes because of their incompatibility2,3,21, must
have undergone a refertilization process to have affected the
partial-melt source. Modeling of the Sr–Nd (Fig. 3b), Hf–O
(Supplementary Fig. 11), and Li–O56 isotopic compositions of the
MD carbonatites and associated syenites indicates that their
SCLM sources were strongly pre-metasomatized by recycled
marine sediments or fluids from a subducted slab22,57. The sys-
tematic increases in the ratios of La/Yb (Fig. 3c) coupled with Ce/
Sr and La/Ba (Supplementary Fig. 12) for the Eocene mafic
ultrapotassic magmas from the margin to the interior of the
Yangtze craton probably reflect a lateral increase in the intensity
of fluid metasomatism27,58, consistent with the trajectory of
continuous subduction of the oceanic lithosphere beneath the
Yangtze craton since the Neoproterozoic27.

Metasomatism by H2O-rich fluids from subducted oceanic
slabs or recycled marine sediments can hydrate, oxidize, and
fertilize the SCLM with ore-forming elements (e.g., Cu and Au)59,
generating potassic–ultrapotassic magmas during later melting45.
However, it would be difficult for this process to carbonate the
mantle enough to generate carbonatite melts60 and to explain the
high Ba/Th ratios observed in the MD mafic rocks and
carbonatites, because such fluids yield either a low 87Sr/86Sr
close to those of midocean ridge basalts and/or have relatively low
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Ba/Th (Fig. 3d). Direct melting of carbonate sediments recycled
into the cratonic mantle theoretically could produce primary
carbonatitic melts, but these melts would yield more radiogenic Sr
isotope compositions (87Sr/86Sr > 0.706)61 and lower Ba/Th ratios

(<100) than those in the MD mafic rocks and carbonatites
(Fig. 3d).

Here, we propose that CO2-rich fluids from recycled marine
sediments plus REE-rich sediments are most likely responsible for
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the geochemical and isotopic characteristics of the MD mafic
rocks and carbonatites inherited from the metasomatized SCLM
(Fig. 3b, d). CO2-rich fluids generally have high large-ion
lithophile element (LILE) contents and LILE/high field strength
element (HFSE) ratios62. Experiments indicate that CO2-rich
fluids could transport and add light REEs (LREEs) to the SCLM at
pressures >25 kbar47 because of the high partitioning coefficients
of LREEs in CO2-rich fluids/melts48. The SCLM metasomatized
by such LREE- and CO2-rich fluids would become a carbonated
peridotite enriched in LILEs and REEs. The partial melting of this
material would concentrate the alkaline-earth elements (e.g., Ca,
Sr, and Ba) and LREEs into carbonate-rich melts48, leaving
HFSEs, heavy REEs, and residual Y in refractory rutile because
of their high Dmin/melt

63. This scenario is also consistent with
the thermodynamic modeling of the dehydration of subducted
oceanic lithosphere, which releases 60–90% of CO2 with
increasing depth64.

Previous studies have demonstrated that REEs are concen-
trated in metalliferous, Fe-oxyhydroxide-bearing sedimentary
muds on the modern seafloor, such as in the southern Pacific
(>1000-ppm total REE+ Y) and northern Pacific (>400-ppm
total REE+ Y)65. Recent observations demonstrate that the
now-exposed Mesoproterozoic (~1.6 Ga) shallow marine dolo-
mites and phosphorites along the western margin of the
Yangtze craton contain sections of exhalative-sedimentary
Fe–Cu–REE mineralization66. These rocks provide an analog
for Neoproterozoic recycled marine sediments, and they
contain abundant LREE-rich bastnäsite and have total REE
contents up to 4440 ppm66. We suggest that such REE-rich
marine sediments could be the source of the metasomatizing
LREE-rich and CO2-rich fluids during Neoproterozoic subduc-
tion. These fluids strongly reacted with the overlying SCLM,
generating a carbonated peridotite source for the geochemically
distinctive partial-melt component of the carbonatitic magmas.
This scenario is also consistent with recent Mg- and Zn-isotope
studies on Cenozoic alkali basalts in the Tibetan collision
orogen52. A simulation calculation shows that binary mixing of
the depleted mantle with fluids derived from Mesoproterozoic
marine sediments could also explain the high Ba/Th (>100) and
87Sr/86Sr values of the MD mafic rocks and carbonatites
(Fig. 3d). We therefore suggest that preexisting REE refertiliza-
tion of the SCLM produced by the Proterozoic subduction is
critical for post-collisional carbonatites and associated REE
deposits in the MD belt.

Formation of carbonatite-associated rare-earth element
deposits. Our results reinforce three key factors previously
recognized for the formation of fertile carbonatites and CARDs in
collisional settings: (1) a thick lithosphere with associated high
pressure (>25 kbar)47, (2) a carbonated lithosphere mantle source
enriched in REEs22, and (3) favorable pathways for magmas
ascending through the overlying crust, where additional fractio-
nation promotes the formation of a mobile alkaline “brine-melt”
and alkali REE carbonates3,67. We argue that the optimal con-
figuration of all three factors at the activated craton edges is
critical to the formation of giant CARDs (Fig. 4). The cratonic
lithosphere in orogenic belts (e.g., collisional) is typically rela-
tively thick, partly because it preserves a continental root (Fig. 2a,
b), and the SCLM above a fossil subduction zone had previously
subjected to subduction-related metasomatism with various
degrees (Fig. 4). Continental subduction during collision dis-
turbed the overlying mantle, which caused the asthenospheric
upwelling along the convergent block boundaries and subsequent
lateral flow beneath the rigid SCLM, as observed in Fig. 2. The
head of the upwelling asthenosphere, similar to a mantle plume,

can thermally erode and interact with the overlying SCLM and
generate ultrapotassic magmas (Fig. 4). Asthenospheric lateral
flow over time triggers partial melting of the REE-rich thick
carbonated cratonic SCLM, generating carbonate-rich melts
ascended along trans-lithospheric faults and/or planes of weak-
ness (e.g., XJF) into the shallow crust near the cratonic edge
(Fig. 4). Similar melting may also happen in the REE-refertilized
SCLM below some rifts at the cratonic edge, along which the
resulting carbonatite melts ascend upward and form CARDs in
the crust (Fig. 4).

We argue that mantle metasomatism with REE refertilization
prior to melting is an important prerequisite for giant CARD
formation. It is likely that whether this process happened
depends on the thermal states of the subduction systems and
the thickness and behavior of the recycled sediments. Kinematic
modeling and instability calculations indicate that the sub-
ducted oceanic crust dehydrates before it reaches subarc
depths68, while sediments detach from the downgoing slab to
form buoyant diapirs at subarc depths69. Melting of the rising
diapirs at >1000 °C would release trace elements (Th, Pb, and
LREE) into arc lavas, which thus show the sediment melt
signature69 or into the overlying SCLM, which generate
ultrapotassic magmas during later melting (see Fig. 4). A
greater fraction of carbonate sediments may be transported to
deeper mantle depths with ongoing subduction70, where they
release REE- and CO2-rich fluids62 or generate near-solidus
small-degree partial melts69, then metasomatized the overlying
depleted SCLM (see Fig. 4). The continuous subduction
processes lead to the homogeneity of the cratonic SCLM and
refertilization with ore-forming elements varying from Cu–Au
to REE from the margin to the interior of a craton (Fig. 4).

Our genetic model for giant REE ore systems provides a
reasonable explanation for other CARDs18,71,72. A typical
example is the Proterozoic Mountain Pass REE deposit in the
United States72, which is located at the reactivated edge
(accretionary orogen) of an Archean craton73. The associated
carbonatites originated from a metasomatized mantle source at
1.8–1.6 Ga74. This is also the case for the giant Bayun Obo
deposit on the northern margin of the North China Craton18.
Although the asthenospheric upwelling and lithospheric thin-
ning strongly modified this craton since the Mesozoic75, its
ancient SCLM was metasomatized by subducted sediments at
1.9–2.0 Ga76, and subsequent melting generated the REE-rich
carbonatites and associated CARD during mid-Proterozoic
rifting2. Some medium–small CARDs, although also located
along the cratonic margins2,17, have limited potentials and
prospects. This is likely related to other factors, such as the lack
of REE refertilization and strong metasomatism in the SCLM,
the limited volume of carbonatic melts2, unfavorable intra-
crustal magmatic processes for REE mobility and enrichment3,
and even geopolitics, environmental concerns, economics and
so on. We argue that cratonic margins with REE refertilization
most likely satisfy the optimally-configured conditions for
generating CARDs and therefore suggest that the reactivated
cratonic edges should be favorable targets for exploration of
such CARDs.

Methods
To image the mantle structure of the eastern Indo-Asian collision
zone, we conducted seismic tomography for continental China
and its surrounding regions using teleseismic double-difference
tomography method77. We mainly assembled two sets of data
from the ISC-EHB Bulletin and China Digital Seismic Network
(CDSN) catalog (Supplementary Figs. 1 and 2). The ISC-EHB
Bulletin contains a refined version of the methodology described
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in ISC Bulletin by the EHB algorithm78 to minimize errors in
earthquake locations. We collected P-wave arrival times of
globally distributed stations in the period of 1964–2017. For the
CDSN catalog, we assembled approximately 780,000 events
recorded by 1434 stations during the period from 2008/10 to
2018/06. Most events are shallow and of small magnitude. In this
study, we carefully selected a limited number of events based on
the following criteria. We first divided the study region into
0.5° × 0.5° × 50 km cells and only selected the first 10 events with
maximum observations in each cell, and each event had more
than 20 observations. As a result, 3105 events were selected from
the CDSN catalog. From the two datasets, we constructed 1.69
million absolute arrival times, from which ~7.2 million event-pair
differential arrival times were constructed by selecting event pairs
having more than 50 common observations for the ISC-EHB
Bulletin and more than 20 common observations for the CDSN.
The distances between event pairs were between 50 and 500 km.

Compared with available global velocity models, our model
better resolves more details in the mantle structure in the study
area (Supplementary Fig. 5).

For the inversion, we followed the teleseismic double-
difference seismic tomography method (teletomoDD) of ref. 78,
which is a global version of the double-difference seismic tomo-
graphy method (tomoDD)79,80. It can use both regional and
teleseismic stations to invert for the velocity structure of the study
region. The model is parameterized by nested grids with coarse
and global grids outside the study region and finer and regional
grids for the study region. For the regional initial model, we
choose the AK135 model81. The regional model is from 74°E to
136°E in longitude and from 18°N to 54°N in latitude and extends
to 2500 km in depth. The regional grid interval is 2° along
longitude and latitude and ~40~300 km in depth. For the global
model, we choose the TX2019slab model82 as the initial model,
with a grid interval of 5° in the horizontal direction and
~55~225 km in depth.

In the inversion, we applied a hierarchy strategy to invert for
the velocity structure79 by first giving absolute arrival times a
larger weight and then giving event-pair differential times a larger
weight. After seven iterations, the absolute data RMS residual
decreases from 1.85 s to 0.73 s, and the weighted data residual
decreases from 3.31 s to 0.56 (Supplementary Fig. 3). Compared
to the data residuals with respect to the initial model, final travel
time residuals are more concentrated near 0 s (Supplementary
Fig. 3). We plotted different depth slices of the final Vp model for
continental China and surrounding regions (Supplementary
Fig. 4).

The checkerboard resolution test was used to check the model
resolution. In our checkerboard test, we added ±5% anomalies at
the adjacent grid nodes in the regional model. Here, we only show
recovered checkerboard patterns for the eastern Indo-Asian col-
lision zone. Supplementary Figs. 5 and 6 show the checkerboard
recovery at different depths and along different latitudes. Overall,
for the eastern Indo-Asian collision zone, the model has a good
resolution in most parts.

Along the three profiles in Fig. 1a, we also plotted four widely
used global velocity models, including the GAP_P4 model83

(Supplementary Fig. 7a), the LLNL_G3Dv3 model84 (Supple-
mentary Fig. 7b), the MIT-P08 model85 (Supplementary
Fig. 7c), and the TX2019slab model82 (Supplementary Fig. 7d).
In comparison, our model (Fig. 2) shows more detailed mantle
features, while the other four global models show some fuzzy
and inconsistent features. This is because we used both dense
regional seismic stations and teleseismic stations. For example,
in the GAP_P4 model (Supplementary Fig. 7a), although the
subducted Indian slab can be imaged, the Yangtze block is not
well resolved. For the LLNL_G3Dv3 model (Supplementary
Fig. 7b), both the Indian and Yangtze blocks are not well
imaged. For the MIT-P08 model (Supplementary Fig. 7c), the
amplitude of velocity anomalies is subdued and although the
subducted Indian slab can be identified the Yangtze block is
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Fig. 4 A schematic cartoon illustrating the genesis of CARDs at cratonic edges. At cratonic margins, vertical upwelling and lateral flow of hot
asthenosphere driven by subduction or mantle convection thermally eroded and partially melted overlying the cratonic SCLM. The SCLM at cratonic
margins previously underwent metasomatism by REE- and CO2-rich fluids from recycled marine sediments and thus refertilzed in REEs, which were
entrained later by carbonate-rich melts ascending along lithospheric discontinuities (e.g., strike-slip faults; rifts), forming giant CARDs in the orogens and
rifts. Melting of the cratonic SCLM with lacking source metasomatism by REE- and CO2-rich fluids could generate carbonatic, ultrapotassic and mafic
melts, but they have limited potential for CARD formation. The adiabatic temperatures of 1000 °C and 1200 °C of the upper mantle are shown (see
Fig. 3a).
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very fuzzy. Lastly, the TX2019slab model also shows low-
resolution features for the Indian and Yangtze blocks (Sup-
plementary Fig. 7d). Compared to our Vp model (Fig. 2), these
four models do not show clear upwelling asthenosphere from
the MTZ (Supplementary Fig. 7).

Because the Vp model mostly focuses on the mantle structure
of the eastern Indo-Asian collision zone, to obtain higher-
resolution images for depths of 60–110 km, we also plotted Vp
and Vs depth slices at 80 km of the USTClitho2.0 model
inverted from joint inversion of body and surface wave data
(Supplementary Fig. 8)32. It can also be seen that the India
block and Yangtze block are in close contact at approximately
101°E, and there is a clear channel shown as low-velocity
anomalies between the two blocks. This is consistent with the
features observed in the depth slice of 160 km in the Vp model
obtained in this study.

Data availability
Supplementary figures and geochemical datasets used in this study can be found in
Supplementary Information and Supplementary Data 1–3, respectively. The tomography
model for the study region is provided in Supplementary Data 4. All these materials are
available online at https://doi.org/10.6084/m9.figshare.23626662.
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