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Seasonal forecasting of subsurface marine
heatwaves
Ronan McAdam 1✉, Simona Masina 1 & Silvio Gualdi2

Marine heatwaves damage marine ecosystems and services, with effects identified mostly

below the ocean surface. To create a truly user-relevant detection system, it is necessary to

provide subsurface forecasts. Here, we demonstrate the feasibility of seasonal forecasting of

subsurface marine heatwaves by using upper ocean heat content. We validate surface and

subsurface events forecast by an operational dynamical seasonal forecasting system against

satellite observations and an ocean reanalysis, respectively. We show that indicators of

summer events (number of days, strongest intensity, and number of events) are predicted

with greater skill than surface equivalents across much of the global ocean. We identify

regions which do not display significant surface skill but could still benefit from accurate

subsurface early warning tools (e.g., the mid-latitudes). The dynamical system used here

outperforms a persistence model and is not widely influenced by warming trends, demon-

strating the ability of the system to capture relevant subseasonal variability.

https://doi.org/10.1038/s43247-023-00892-5 OPEN

1 Ocean modeling and Data Assimilation Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici—CMCC, Bologna, Italy. 2 Climate
Simulations and Predictions Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici—CMCC, Bologna, Italy. ✉email: ronan.mcadam@cmcc.it

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:225 | https://doi.org/10.1038/s43247-023-00892-5 | www.nature.com/commsenv 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-00892-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-00892-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-00892-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-023-00892-5&domain=pdf
http://orcid.org/0000-0003-0883-9014
http://orcid.org/0000-0003-0883-9014
http://orcid.org/0000-0003-0883-9014
http://orcid.org/0000-0003-0883-9014
http://orcid.org/0000-0003-0883-9014
http://orcid.org/0000-0001-6273-7065
http://orcid.org/0000-0001-6273-7065
http://orcid.org/0000-0001-6273-7065
http://orcid.org/0000-0001-6273-7065
http://orcid.org/0000-0001-6273-7065
mailto:ronan.mcadam@cmcc.it
www.nature.com/commsenv
www.nature.com/commsenv


Due to the widespread availability of sea surface tempera-
ture (SST) fields from satellites, marine heatwaves are
typically tracked and forecast at the surface1–4. However,

many ecological impacts associated with MHWs occur below the
surface, including coral bleaching, species displacement and losses
for fisheries and aquaculture5–11. In the Mediterranean Sea, for
example, 81% of the 582 mortality events caused by temperature
anomalies occurred within the upper 40 m (using mass mortality
data from 1979 to 2017 available at https://digital.csic.es/handle/
10261/171445); only 20% of the total, on the other hand, are
defined as surface-only events (listed as occurring at 0 m)12. Daily
vertical migration across tens of metres in the near-surface is a
common behaviour for a range of marine species, from plankton
and zooplankton13,14 to larger predatory species15,16. As a result,
the creation of marine ecosystem protection and monitoring
programs is now treated as a four-dimensional problem, in which
the subsurface is key17. Thus, a single-layer indicator for extreme
events, such as MHWs defined by SST, may not accurately
determine the extreme conditions to which marine wildlife is
exposed.

Meanwhile, new MHW forecasting tools are being developed
to work with and for marine stakeholders18–21. Just as there are
many examples of the energy, agriculture and tourism industries
benefiting from seasonal forecasts of atmospheric conditions22,
the potential for marine seasonal forecasting to aid marine sta-
keholders is also being realised. Seasonal forecasts of ocean
variables, in particular temperature, have aided various activities,
from marine wildlife conservation to industrial activities such as
fishing and aquaculture farming, in making resource manage-
ment decisions and boosting resilience to climate
variability3,18,20,23–26. Many studies and applications, however,
typically focus on surface variables (e.g., SST), mainly due to the
greater availability and quality of surface forecasts and validation
datasets compared to the subsurface. This is despite the fact that
their target applications (e.g., disease outbreaks10, coral reef
bleaching19, fishery stock changes27) are phenomena which occur
below the surface. Caged fish have been observed to avoid the
surface during warmer surface conditions, implying full-cage
MHWs are of more concern to aquaculture farms28. An increase
in subsurface marine seasonal forecasting validation is the first
step in the development of new and relevant forecasting tools
which could eventually bring benefits for marine stakeholders.
Given the evidence that MHWs manifest differently at depth than
at the surface, MHW occurrence cannot be forecast by SST alone.
Subsurface MHW indicators are necessary.

Here, we study subsurface MHWs in an operational, fully-
coupled and high-resolution seasonal forecast system: the Sea-
sonal Prediction System from the Euro-Mediterranean Centre on
Climate Change (CMCC-SPS3.5)29. We compare re-forecasts
(forecasts of past conditions) against European Space Agency
Climate Change Initiative (ESA CCI) satellite observations30,31

and the Global ocean Reanalysis Ensemble Product (GREP)32,
which provide long-term global records of surface and subsurface
events respectively. Primarily, we compare subsurface MHW
prediction skill to that of the surface, to find that subsurface
MHW characteristics are predicted with greater accuracy across
most of the global ocean. Then, we further explore the capabilities
of the seasonal forecast system by comparing it to a computa-
tionally cheaper persistence model. Finally, we study the impact
of warming trends on forecast skill.

Results
Comparison of forecast skill for surface and subsurface events.
In this study, subsurface MHWs are defined with ocean heat
content in the upper 40 m. The main motivation for using OHC

here is that species habitat varies greatly, meaning effective
forecasting for a range of applications will require several target
depth ranges33–35. In aquaculture farms, for example, cages in
both coastal and open ocean settings extend to 5 m, 20 m and
deeper36. Species in the wild, meanwhile, migrate vertically
throughout the day; the range 0–40 m covers depths frequently
passed through by many key components of the marine ecosys-
tem, from plankton to foundation species to apex predators13–16.
In practice, each potential user of MHW forecasts may be
interested in different depth levels, as there is no one specific
depth range relevant to all species or applications. The depth of
40 m is also deeper than the summer mixed layer in most of the
ocean, meaning we can capture more than atmospheric-driven
signals alone37, and thus expect to see different characteristics
from surface-defined events38–40. To confirm this, a 4D recon-
struction of the ocean (reanalyses), known as the Global ocean
Reanalysis Ensemble Product (GREP), is used to identify sub-
surface MHW events. There are clear differences between the
average surface and subsurface MHW characteristics (number of
events, duration and intensity); on average there are fewer,
longer-lasting and less intense MHWs in the subsurface than at
the surface (Fig. S1).

We use the GREP reanalysis product as a benchmark against
which we quantify the skill of the forecasts. In the Methods
section, we justify the use of reanalyses as a validation dataset for
seasonal forecast data, by displaying good agreement with MHW
characteristics at the surface derived from satellite-derived SST
(Fig. S2). Across the global ocean, forecast skill of three MHW
indicators (number of MHW days, strongest intensity and
number of MHW events) is encouragingly high for the subsurface
events (Fig. 1a–c). Significant positive correlation between the
forecasts and validation dataset, for all indicators, is found in
between 60 % and 70% of the ocean between 60oS and 60oN
(Table 1). The tropics (between 30oS and 30oN) are the most
skilfully predicted, with an average skill score around 0.6 for the
number of days and strongest intensity. Overall, global patterns of
skill resemble those of OHC anomaly forecast skill, although the
skill of predicting extremes (i.e., MHWs) is not as widely
significant as the skill of predicting anomalies (Fig. S3a). While
the patterns and magnitude of skill is similar between the number
of days and the strongest intensity, the number of events is
predicted with less skill, and the extent of significant skill is
smaller (Table 1).

Subsurface MHW skill also resembles global patterns of surface
MHW skill2 but is generally higher than or statistically indifferent
to surface event skill for all indicators (Fig. 1d–f; Fig. S4; Table 1).

Table 1 Summary of subsurface MHW indicator skill scores.

Correlation skill
score

Global Tropics Mid-latitudes

Number of days 0.51 0.62 0.36
Strongest Intensity 0.48 0.59 0.32
Number of events 0.39 0.48 0.27

Area of significant skill (%)
Number of days 70.5 81.7 55.0
Strongest Intensity 69.4 81.3 52.9
Number of events 62.9 74.6 49.5

Improvement over surface skill
Number of days 0.11 0.09 0.14
Strongest Intensity 0.19 0.18 0.21
Number of events 0.12 0.10 0.17

The regions are defined as follows: global (60S-60N); tropics (30S-30N); midlatitudes (60S-
30S, 30N-60N). Top three rows: area average of correlation skill scores. Middle three rows:
area of significant skill scores, as a percentage of total regional area. Bottom three rows: average
of improvement in correlation scores over surface skill, where subsurface skill is significant.
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Scores between surface and subsurface are similar in regions
where surface skill is already high, so the improvements in
subsurface skill are clearest away from the tropics. In the tropics,
the average difference in skill score (where surface skill is
significant) is 0.09 for the number of MHW days, while in the
midlatitudes the value is 0.14 (Table 1). While these average
values appear small, they represent averages of regions in which
skill gain can reach 0.4 and higher (Fig. 1). Strongest intensity is
the indicator which displays the greatest increase in skill in the
subsurface, globally.

In the tropics, much of the significant skill difference
corresponds to a decrease with respect to the surface skill (in
the number of days and events). These are regions in which
surface MHWs are well predicted, so the decrease in skill does not
lead to insignificant subsurface skill (Fig. 1). The most important
changes occur in the mid-latitudes, such as in the North Atlantic
and the Mediterranean Sea, where subsurface skill is high and
surface skill is poor. Thus, as we will discuss later, the use of
subsurface indicators opens up new regions to potential benefits
of forecast systems.

Explaining why subsurface MHWs are more predictable would
involve regional-scale studies on drivers38 and, specifically,
changes in the ocean heat budget (during MHWs) throughout
the target layer33,41. However, given that there is a widespread
improvement across the ocean, we highlight here a general
difference between SST and OHC. The inherent persistence of
OHC implies it is generally more (theoretically) predictable than
surface temperature on seasonal timescales42,43. Generally, OHC
has lower variability and greater inertia (also known as memory)
than SST (Fig. 2a, S5a)44; in other words, subsurface conditions
tend to persist over longer timescales than surface conditions. The
characteristic timescale for OHC 0–40 m ("Methods") falls within
the subseasonal time scale (<45 days) only in the most powerful
ocean currents and parts of the tropics, while elsewhere the

timescale is seasonal to annual (Fig. 2a, S5a). The upper 40 m is
not necessarily shielded from atmospheric variability but has a
slower response to it than SST would. Consequently, extremes of
OHC are likely to occur less frequently and last longer than
extremes of SST, as we show in this study (Fig. S1). A previous
study showed there is correlation between forecast skill and event
length (at the surface)2, because longer-lasting events are likely to
be picked up by initial conditions. There is indeed evidence to
suggest a preconditioned ocean makes it easier to predict
MHWs45. Here, we show that subsurface events are longer-
lasting and predicted with greater skill. It is unclear why the
different indicators experience different changes in skill, as all
would benefit from the inherent subsurface persistence; the
implication is that the strongest intensity of events (which
experiences the greater increase in skill from surface to subsur-
face) is modulated more by inter-annual processes and is less
susceptible to shorter-term variability than the other indicators.

To demonstrate how forecasts of subsurface MHWs can
complement those of surface MHWs, we now study two regions
which have experienced some of the most long-lasting or intense
MHWs (with noted ecological impacts) on record1: the North
Eastern Pacific and the Eastern Mediterranean Sea. These two
regions also display significant improvement in subsurface over
surface MHWs forecast skill (Fig. 1). In the North-Eastern Pacific,
both the surface and subsurface experienced peaks of MHW days
between 2013 and 2015, during the multi-year warm anomaly
known as the “Blob”5,6 (FigS. 3a, b, 4). Using SST alone, however,
would have underestimated the amount of MHW days in those
summers by roughly 50% (Fig. 3a, b, 4). Differences in MHW
activity are also reflected in the spatial structure; in this region,
the area which experiences MHW activity in the summer is
typically lower for the subsurface (Fig. 4, Fig, S6a, b).

In the Eastern Mediterranean Sea, however, the surface and
subsurface MHW records do not resemble each other (Fig. 3c, d).

Fig. 1 Improved skill of subsurface MHW Indicators. Correlation skill score of subsurface MHW indicators for (a) number of MHW days, (b) strongest
Intensity, (c) number of events. Difference between subsurface and surface MHW indicator skill (d) number of MHW days, (e) strongest Intensity, and
(f) number of events. Positive values in (d–f) represent improvement in subsurface event detection over surface event detection. All scores correspond to
the hemisphere-specific summer season and the 1993–2016 period. Regions in which skill scores in both models are insignificant are masked out (white).
Black stippling indicates statistically significant differences in correlation (d–f).
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In 2003 there was a peak in the number of surface MHW days
relating to the infamous summer-long event46,47. We find it left
no signal on the subsurface indicator in the Eastern Mediterra-
nean Sea; the subsurface signal of this event is restricted to the
North-Western part of the Mediterranean Sea (Fig. 5). Instead,
subsurface MHWs activity has been greater in recent years, as
evidenced by the record of number of days and the area afflicted
by MHWs (Fig. 3c, d, Fig. S6c, d). The notable difference between
surface and subsurface extremes in the Eastern Mediterranean Sea
is yet to be explored but implies that the influence of the recent
warming trend dominates over the natural variability more in the
subsurface than at the surface. Thus, not only can the
characteristics of events, such as duration, differ between surface
and subsurface events, but the occurrence can too. Surface MHW
records, therefore, may fail to capture events which impact the
subsurface alone.

In the two example regions, forecast skill in CMCC-SPS3.5 is
higher for subsurface events than for surface events; the
interannual variability of MHW occurrence (denoted by the
higher correlation values) is better captured, as is the precision in
the value of the number of days (denoted by the reduced error)
(Fig. 3). The area affected by MHWs is also captured with greater
accuracy in the subsurface (Fig. S6).

Seasonal forecasting systems typically provide an ensemble of
forecasts as a means of quantifying the uncertainty of the
forecasts, which arises due to error in the initial conditions or in
the forecast system ("Methods"). A large ensemble spread
(uncertainty) may indicate model failings or the unpredictable
nature of particular phenomena; here, we note wide ensemble
ranges in particular years (e.g., 2016 in the subsurface Eastern
Mediterranean; Fig. 3d). However, the spread of the interquartile
range is typically much lower than the range, implying there are
often few extreme outliers which contribute to this large range.
Reassuringly, the validation dataset values more often than not
fall within the interquartile range.

Although subsurface forecast skill is similarly high in both
regions, the Eastern Mediterranean Sea surface skill is consider-
ably lower than in the North-Eastern Pacific. This is at least
partially due to difference in the time scales of dominant drivers
of variability in each region. In the North-Eastern Pacific, several
inter-annual climate modes, such as ENSO, are known to
provide predictability48, and play a role in MHW development49.
In the Mediterranean region, summer SST prediction skill on
seasonal timescales is low compared to the skill in winter50.
Surface conditions in the winter are modulated by the North
Atlantic Oscillation, providing a source of predictability51,52,

Fig. 2 Characteristic timescales and trends of OHC 0–40m. (a) Memory timescale (calculated from autocorrelation of OHC; "Methods"). The white
contour corresponds to 45 days. Trends of summer average anomalies over 1993–2016 are shown for GREP (b) and CMCC-SPS3.5 forecasts (c). Black
stippling highlights statistically significant trends (using a Mann Kendall test and a p value threshold of 0.05; "Methods").
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while in the summer variability is typically driven by short-lived,
small-scale convective phenomena53. It should be pointed out
also that the quality and quantity of observations assimilated into
the initial conditions in both regions may differ, impacting the
forecast skill54. However, the skill of SST and OHC anomalies
has been found to be similar in both regions (Fig. S3a), where
also the reanalysis used here as initial conditions agrees well with

other reanalyses and an observation-based product43. While
there are fundamental differences in drivers of surface variability
between the two regions, the subsurface MHW indicator is more
accurately predicted in both. In particular, the Eastern
Mediterranean Sea is an example of a region of low surface
predictability which displays a significant gain in forecast skill
with depth.

Fig. 3 Record of surface and subsurface MHWs in two regions of high MHW activity. The number of MHW days in the summer season for (a) surface
North Eastern Pacific, (b) subsurface North-Eastern Pacific, (c) surface Eastern Mediterranean Sea and (d) subsurface Eastern Mediterranean Sea. Box
plots represent the median, interquartile range, and range of the 40-member forecast ensemble. Bar charts represent either the surface MHWs in the
observations (green) or the subsurface MHWs in the reanalysis (blue). The number of days is calculated as the average number of MHW days in all grid
cells within the region, including cells with no MHWs (zero values). Root-mean square error (RMSE) and correlations between forecast ensemble medians
and observation/reanalysis values are shown inset. See Figs. 4 and 5 for the definition of the areas used.

Fig. 4 Observations and forecasts of MHW activity in the North Eastern Pacific in the summer of 2014. Number of MHW days between mid-May and
September for (a) surface events (ESA CCI satellite-derived SST), (b) subsurface events (GREP reanalysis), (c) forecast surface events and (d) forecast
subsurface events (both from CMCC-SPS3.5). The area within the black box is used to calculate the time series in Fig. 1 and Extended Data Fig. S1.
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Identifying sources of forecast skill. We further explore the
sources of MHW forecast skill on seasonal timescales while
providing suggestions for future validation efforts. We have so far
used a “dynamical” system—one which numerically solves
equations of ocean state and motion, and therefore requires
considerable computational resources. First, by comparing the
dynamical system to a simple forecast model which assumes
anomalous conditions persist in time, we justify the dynamical
approach. Although the precise timing of MHW onset and decay
is not explicitly covered in this work, improvement over persis-
tence shows that the system is able to capture the subseasonal
variability which determines MHW characteristics. Then, we
quantify the extent to which warming trends in ocean heat pro-
vide forecast skill on seasonal timescales.

As it is common to test dynamical forecasts systems against
computationally cheaper alternatives, we compare them to
forecasts based on a persistence model (“Method”). Anomalies
at the start of the forecast period are assumed to propagate
forward (persist) in time and decay at a rate dependent on the
characteristic timescales of OHC 0–40 m decay (see “Methods”,
Fig. 2a). Previous work on the upper 300 m assumed subsurface
heat anomalies persist (with no decay) over seasonal time
scales43; given that the heat content used in this work is shallower
and that subsurface MHWs typically begin and end within
seasonal timescales, the use of a decaying persistence model is
more appropriate here. Overall, we find that the persistence
model skill of MHW indicators is significant in only half of the
ocean for the number of MHW days and the strongest intensity
and in even less for the number of events (35%; non-masked
regions in Fig. 6). In years in which there are several events (i.e.,
greater variability), persistence of anomalies will more likely
underestimate the number of events. The number of MHW days,
on the other hand, may be reasonably well predicted because
subsurface events are long lasting, explaining why persistence skill
is globally more skilful for that indicator (Fig. 6).

In much of the ocean, therefore, the persistence model is not a
reasonable means of MHW prediction. In other words, prediction
of subsurface MHWs requires forecasts systems to capture
variability on subseasonal timescales, despite their longer-lasting
nature than surface MHWs (Fig. S1). Globally, the improvement
of our dynamical over the decaying persistence model is large

(correlation skill score increases of roughly 0.5, Fig. 6). An
increase in skill over persistence is more common in the tropics
than in the midlatitudes, as shown also in previous work on
deeper OHC anomalies43, but also greatly dependent on the
region. The (significant) increase in skill of the dynamical system
occurs in 62%, 80% and 84% of the regions in which there is
significant difference between the systems, for the number of
MHW days, strongest intensity and number of events respectively
(Fig. 6., red regions).

In the equatorial Pacific, skill difference displays abrupt
changes across the equator. Recall that each hemisphere covers
a different time period, and that the El-Nino Southern Oscillation
(ENSO) phenomenon (and therefore the ocean dynamics) are in
a different phase in each period. In boreal summer (May-August),
ENSO is typically in a decay phase and thus upper ocean heat is
not well predicted by persistence. As a result, the dynamical
system outperforms the MHW persistence, reaching global
maxima in skill difference between the two (Fig. 6a, b). On the
other side of the equator, in the austral summer (November-
February), ENSO is in a mature and more stable phase. The upper
ocean heat content anomalies are relatively stable during this
period, explaining why persistence models show weak (but
significant) improvements over the dynamical system.

Where anomalies decay slowly, such as in the North-Eastern
Pacific and many parts of the tropics (Fig. 2a), and where long-
lasting MHWs have been known to occur, it is reasonable to
expect a persistence model to perform well on seasonal
timescales. Nonetheless, in these regions, we highlight significant
increase in skill in the dynamical system, thereby justifying its
use. Elsewhere, we find that the dynamical system, in regions of
relatively low skill (e.g., the North-Eastern Atlantic) does not
outperform persistence. The Eastern Mediterranean Sea, for
example, shows nearly no statistically significant difference in
skill. Similarly poor increase in skill over persistence is found for
other oceanic variables in other studies, suggesting this is not a
problem related specifically to the representation of MHWs but
instead indicates more general issues with seasonal forecasting of
the ocean (discussed in the next section)55.

A key influence on the occurrence and characteristics of MHWs
is trends in temperature and heat in the ocean56. Such trends are
introduced to forecast systems mainly through the initial

Fig. 5 Observations and forecasts of MHW activity in the Mediterranean Sea in the summer of 2003. Number of MHW days between mid-May and
September for (a) surface events (ESA CCI satellite-derived SST), (b) subsurface events (GREP reanalysis), (c) forecast surface events and (d) forecast
subsurface events (both from CMCC-SPS3.5). The area within the black contour is used to calculate the time series in Fig. 1 and Extended Data Fig. S1.
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conditions and also act as a source of forecast skill. Trends (and
interannual variability) in SST and subsurface heat of the
reanalysis used to initialise CMCC-SPS3.5, as well as the GREP
reanalysis used as a validation dataset in this study, have been
compared to other reanalyses and in-situ data, and are assumed to
be accurate32. It is important to note the heterogeneity in
summertime trends in OHC 0–40m over the period used here
(1993–2016) (Fig. 2b, c). Negative values are found in the
transition between subtropical and subpolar gyres in the North
Atlantic and the southern Pacific and Atlantic tropics. Positive
trends are only significant in the gyre centres, the Eastern
Mediterranean Sea and across the Indian Ocean (Fig. 2b, c). The
influence of trends on forecast skill (over 1993–2016) is therefore
expected to be confined to these specific regions. To confirm this,
we removed the linear trend in OHC from both validation and
forecast data (“Methods”), then recalculated MHWs with the
detrended time series. The skill which arises from the inclusion of
trends is shown in Fig. 7. The largest significant improvements in
skill are found where the trends themselves are largest and
significant: the Indian Ocean, North Eastern Pacific, Eastern
Mediterranean and gyre centres (Fig. 2b, c, 7). A curious exception
is the Equatorial Pacific in the Southern Hemisphere, where trends

are weak in both the validation and forecast data but also where
there is a significant increase in skill when including trends. The
austral summer period corresponds to the mature phase of ENSO,
which is apparently sensitive to slight trends.

The influence of a trend on MHW forecast skill is clear at a few
specific regions globally and is similar in the surface and subsurface
(Fig. S6, S7). We find that the significant differences in trend
correspond to increased skill in the detrended data. Finally, we
note that by applying the same detrending analysis to subsurface
anomalies, instead of MHW indicators, we find that the inclusion
of a trend makes little difference to forecast skill even in regions of
significant trends (Fig. S3b, c). The global patterns of skill
difference for anomalies are similar to the global patterns of skill
difference for MHW indicators, but the values are not significant.
Here, therefore, we confirm where extreme event forecast skill
appears to be particularly sensitive to warming trends.

Considerations for future forecasting efforts. In this study, we
demonstrate that seasonal indicators of subsurface MHWs are
predicted with greater accuracy than the more commonly-used
surface-focused indicators. Economic and ecological impacts of
MHWs, which could be mitigated with early warning, mostly

Fig. 6 Improvement of dynamical system subsurface MHW prediction over a persistence model. Difference between dynamical system skill scores (as
seen in Fig. 4a–c) and persistence model skill scores in (a) Number of MHW days, (b) strongest intensity and (c) number of events. Positive values
represent higher skill in the dynamical system. All scores correspond to the hemisphere-specific summer season and the 1993–2016 period. Regions in
which skill scores in both models are insignificant are masked out (white). Black stippling indicates statistically significant differences in correlation.
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occur below the surface, so we believe this work highlights the
great potential for subsurface seasonal forecasting. During the
process of creating forecast tools for marine stakeholders, regions
in which surface skill is inadequate may be ruled out; however,
using subsurface indicators leads to an increase in the number of
regions, and therefore the number of potential stakeholders,
which could benefit from tools based on seasonal forecasts.

On the time scales studied here, subsurface skill resembles
surface skill which has previously been shown to be strongly
driven by the largest modes of climate variability (e.g., ENSO)2.
Here, we show that the greater predictability of subsurface
extremes is found to be partly due to an increase in persistence of
anomalies with depth, with warming trends playing a role in few
specific regions. Nonetheless, the dynamical system used here
outperforms a cheaper persistence model in large parts of the
ocean. Where the dynamical system underperforms indicates
where there is a need for fundamental improvements of
forecasting systems, such as an increase in resolution and the
increase of subsurface data to be assimilated into initial
conditions. Such improvements might increase the validity of
the current state-of-the-art of seasonal forecasts to be used for
early-warning systems of extremes. A choice can be made by

providers and users of forecasts on whether to use detrended time
series or not; doing so may increase skill in some regions but will
not provide the “true” conditions in a warming ocean. Here, we
highlight that the trade-off between the two choices is similar for
surface and subsurface MHW indicators.

This study quantifies the skill of three user-relevant seasonal-
aggregate indicators: the number of MHW days, the strongest
intensity experienced and the number of MHW events. The first
two are relevant for understanding whether MHW conditions
push species beyond their thermal resilience, while the latter
determines whether species have a suitable recovery time between
events. Resilience and recovery time are of course species-
dependent and, in practice, the combination of these indicators
determines species response; for example, “degree heating days”
(a product of intensity and duration) is used to indicate the extent
of coral reef bleaching38. Here we show forecasts of MHW
characteristics made 4 months in advance. There are many
potential early warning systems that could be based on these
indicators10 in a co-development process with stakeholders
(specifically linking physical conditions to impacts). For example,
seasonal forecasts of MHW activity could provide fisheries with
early warnings of reduced stocks, providing them time to cut

Fig. 7 Contribution of linear trends to subsurface MHW forecast skill. Difference between skill scores of original forecast output (Fig. 4a–c) and
detrended forecast output for (a) Number of MHW days, (b) strongest intensity (c) number of events. Positive values represent higher skill in the MHW
reforecasts when the linear trend is included. All scores correspond to the hemisphere-specific summer season and the 1993–2016 period. Regions in
which skill scores in both models are insignificant are masked out (white). Black stippling indicates statistically significant differences in correlation.
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costs by reducing or redirecting fishing efforts on a season-by-
season basis57. Early warning of MHWs could provide a proxy for
disease outbreaks for aquaculture farms, which can help them
decide whether to harvest early before a mass die-off58. Crucially,
any such system should include subsurface indicators, in order to
better represent the conditions experienced by much of the
marine ecosystem (which is not constrained to the sea surface).

There are still several scientific and practical steps to take
before making broadly useful operational MHW forecasts. First,
the impact of MHWs on species depends also on their thermal
resilience, which may change in response to extreme heat events
and gradual climate change8 – in other words, with a moving
climatology1. MHWs can be defined with respect to a moving
climatology if the data used covers a period of several decades,
longer than the historical re-forecast output of most seasonal
forecasting systems. CMCC-SPS3.5, for example, is constrained to
a 24 -year baseline period, shorter than recommended although
shorter periods have been used where necessary i.e., for
observations with short temporal coverage1. Indeed, another
major caveat to this study is that it uses only one forecast system.
We wish to promote making subsurface ocean forecast data
available, in order to foster the development of stakeholder-
relevant applications. For surface extremes, the seasonal forecast
data required to produce these indicators is already made freely
available for a range of systems (e.g., through the Copernicus
Climate Change Service). Unfortunately, ocean heat content and
subsurface temperatures are not yet provided by seasonal
forecasting centres, at least not openly. By showing that
subsurface MHWs are predicted with greater skill than surface
MHWs and that a dynamical system outperforms a simple
persistence model, this study further motivates the use for
subsurface indicators of MHW for seasonal forecasting.

Methods
We focus on summer marine heatwaves (MHWs) defined with hemisphere-specific
definitions; those which take place over a 3.5-month period from mid-May to end
of August in the Northern Hemisphere or from mid-November to the end of
February in the Southern Hemisphere. All figures pertaining to forecast skill and
trends (e.g., Fig. 1) therefore display information on different seasons in each
hemisphere. Forecast start times are May 1st and November 1st of each year from
1993 to 2016. We remove the first two weeks of the forecast period, in line with
previous studies on land-based and marine heatwaves59, to focus on the forecast
skill on seasonal timescales. For time scales shorter than 2 weeks, there exist
dynamical forecasting systems designed specifically for the task, which benefit from
a higher spatial resolution and daily initialisation.

The seasonal forecast system used is the CMCC Seasonal Prediction System
version 3.5 (CMCC-SPS3.5)29. CMCC-SPS3.5 is a fully-coupled ocean-atmo-
sphere-land-river-sea ice model which provides operational forecasts to the
Copernicus Climate Change Service (C3S). The ocean component is a configura-
tion of NEMO with an eddy-permitting horizontal resolution of 0.25o, and 50
vertical levels, but the version made available on C3S is an interpolation from the
native NEMO grid to a regular 1o horizontal grid. Ocean-atmosphere coupling
occurs every 90 min (three model time steps). Initial conditions are drawn from a
version of the C-GLORS ocean reanalysis60. 40 ensemble members are produced
for the hindcast output, representing error within the initial conditions.

To validate surface MHWs in CMCC-SPS3.5, we employ version 2.1 of the
European Space Agency Climate Change Initiative (ESA CCI) satellite-derived
L4 sea surface temperature (SST) record. It is constructed of data from several
radiometers orbiting (not simultaneously) since 1981 and is provided at global
0.05o resolution30,31. To validate the subsurface MHWs, the Global ocean Rea-
nalyses Product (GREP) is used32. GREP is a four-member ensemble of 4D
NEMO-based reanalyses with an eddy-permitting horizontal resolution of 0.25o,
which differ in their data assimilation methods and in the data assimilated.
Although higher resolution reanalysis exist61, the quality of GREP is comparable to
that of observation-only products and it also has the advantage of providing the
ensemble mean which, due to the cancellation of systematic errors, is more
accurate than the individual members32. Moreover, GREP and CMCC-SP3.5 share
the same horizontal resolution and therefore aim to simulate the same spatial
variability, meaning GREP is a fairer benchmark. GREP has already been used in
validation of seasonal forecasts of OHC 0–300 m; ensemble members are known to
disagree most in near-coastal regions and around sharp fronts, thereby indicating
where GREP’s use as a validation tool is less reliable43. The suitability of GREP for
studying MHWs is discussed below. Both validation datasets are freely available on

the Copernicus Marine Service, and in this study are interpolated to a regular 1o

grid to be consistent with the re-forecasts provided by the C3S.
We computed the daily ocean heat content (OHC) of the upper 40 m using the

following calculation:

cpρ
Z z2¼40m

z1¼0m
T zð Þdz ð1Þ

in which cp is the specific heat capacity of seawater (3996 J/(kg. C)), ρ is seawater
density (1026 kg/m3), and T is the temperature at depth z. In the validation rea-
nalysis and the forecasts system, there are 37 and 17 vertical levels in the upper
40 m, respectively. The respective depths of the uppermost level are 1.02 m and
0.49 m.

To our knowledge, the CMCC is the only seasonal forecasting centre which
outputs shallow, near-surface OHC (e.g., 0–40 m). Here, the data availability covers
1993–2016. In many MHW studies, a period of at least 30 years is favoured. As
marine variables in seasonal forecasting systems become more widely used and
appreciated, we hope in the future to provide a more rigorous validation using a
longer time period and re-forecasts from other seasonal forecasting centres.

MHWs are defined here based on the widely used statistical definition62. In this
framework, MHWs occur when temperature or ocean heat content exceeds the
90th percentile for 5 or more days, allowing for gaps of less than 2 days. Here,
climatologies and the 90th percentiles are calculated in two steps. First, an 11-day
moving window is used to calculate the daily averages. Then, a polynomial fit is
required to avoid discontinuities at the edge of the forecast period63. For the
forecast data, the MHW detection algorithm is applied individually to all forecast
ensemble members over the 6-month forecast period each year. The algorithm is
applied to daily time series of SST and OHC 0–40 m. A list of MHW start, peak
and end dates, intensities and durations is provided for each year and, in the case of
forecast data, each ensemble member.

The intensity of events defined by SST and OHC will have different units and
different background variability. Here, we normalise the intensity by the width
between the (daily) average value and 90th percentile:

In ¼ T � T90

T90 � Tc
ð2Þ

in which T is the daily SST or OHC time series, and Tc and T90 are the corre-
sponding daily climatology and 90th-percentile respectively. Since T90 – Tc is
dependent on position and time, a fixed anomaly (e.g., 2oC) can lead to a different
MHW intensity in different places and times. By using a normalised intensity, we
not only remove the units but we also benefit from a fairer means of comparing
the exceptionality between surface and subsurface events. This method is a var-
iation on the MHW “category” metric64. In this study, “intensity” refers to the
normalised intensity. MHW indicators for each grid cell are then built from
duration and intensity and serve as the validation metrics. The event with the
maximum intensity in the summer period provides the “Strongest Intensity”, while
the total number of MHW days in the summer period is added together to provide
the “Number of MHW days”. In the forecast data, MHWs characteristics are
calculated for all ensemble members. Then, the ensemble median is calculated and
used for the correlation scoring (e.g., Fig. 1).

To justify the use of GREP as a validation tool for MHW forecasts, we compare
MHW characteristics at the surface in the satellite observations and GREP. At the
surface, GREP generally underestimates the number and intensity of summer
MHWs while overestimating the duration when compared to the satellite data
(Fig. S1). These results agree with other works on inter-comparisons between
model resolutions45,65. The average values between 60oS and 60oN for satellite
observations, GREP SST and GREP OHC are, respectively, as follows: 17.5, 15.7
and 13.2 number of events; 10.9, 13.3, 17.2 days duration; 0.28, 0.25, 0.19 intensity.
Regardless of which SST is used as a reference point, subsurface event character-
istics are noticeably different to those at the surface (Fig. S1).

GREP’s ability to capture interannual variability of MHW activity must also be
compared, because the correlation score used in this study (e.g., in Fig. 1) quantifies
the ability of the forecasts to capture the year-to-year variability of MHW char-
acteristics. The correlation between GREP and satellite data is significantly high for
all three MHW characteristics used in this study, in nearly all points in the global
ocean (Fig. S2). In particular, the variability in the number of MHW days in
summer is almost perfectly captured across the ocean. Therefore, we find that
GREP can be considered a reliable validation dataset for interannual variability of
MHW characteristics.

Here, we follow the approach of using seasonal forecasting indicators of MHW
propensity i.e., how predisposed a season is to MHW activity59. Validation of the
ability to predict MHW occurrence (i.e., whether a MHW happens or not) has
previously been performed for surface MHWs2. Here, we test indicators which can
provide further details on MHWs than their occurrence (number of MHW days,
strongest intensity and number of events). We believe these indicators provide
further detail and therefore may be of more benefit to potential stakeholders, as
well as to those who wish to understand the dynamical capability of forecasting
systems (see Discussion section). Skill is quantified here with the Pearson corre-
lation coefficient of the validation datasets and the forecast system (see Statistics
section for further detail).

The persistence model is built from anomalies in the validation datasets and the
characteristic timescales of OHC 0–40 m. First, the average OHC 0–40 m anomaly
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of the 5-day period prior to forecast start time (t= –5 to t= –1) is calculated (on a
cell-by-cell basis). 5-days is chosen as it corresponds to the minimum duration of a
MHW. Then, this anomaly is propagated forward throughout the forecast period,
and an exponential decay is applied with a decay factor equal to the characteristic
timescale. The timescale is estimated to first-order as follows:

τ ¼ �1
ln a

ð3Þ

where a is the autocorrelation of daily OHC 0–40 m timeseries, and τ is often
referred to as ocean memory1,44. As in other seasonal forecast validation efforts, the
characteristic timescale is assumed to be the typical decay time for anomalies55.
Crucially, the decay factor is location-dependent; for example, anomalies will decay
more slowly in the North East Pacific than in the tropics as the memory in the
former is much longer (Fig. 2a, Fig. S6a). MHWs in the persistence model are then
calculated using the previously-calculated climatology and 90th-percentile from the
corresponding validation dataset. In practice, due to the timescales of OHC
memory typically extending beyond seasonal timescales (Fig. 2a), results are similar
when no decay is used (Fig. S8).

Lastly, a detrended time series is created for SST and OHC 0–40 m, in both the
validation and forecast datasets. The 1993–2016 trend is calculated on a cell-by-cell
level for each day of the forecast period and removed from the data. The trends
removed are those corresponding to the dataset (i.e., there are different trends for
forecast and validation data). Trends for the summer average anomalies are shown
in Fig. 5 and Supplementary Fig. S6, to give an indication of the trends removed
from the daily time series. MHWs are then recalculated with the detrended data
(Fig. 7, Fig. S7). Given the short length of time period used here, the trends do not
accurately represent long-term changes (e.g., anthropogenic climate change);
instead, this analysis serves the purposes of identifying sources of forecast skill.

Statistics. Statistical significance of correlations is calculated using the two-sided
test included in the stats.pearsonr function from the Python module scipy.
Appropriate tests for statistical significance of differences between correlation skill
scores (e.g., Fig. 1) are taken from Siegert et al (2017)66. We use tests for over-
lapping correlations when comparing the dynamical systems and the persistence
model (because they are both compared to the same validation dataset), and tests
for independent correlations when comparing surface and subsurface skill or when
comparing MHW indicators defined by fixed and detrended climatologies (because
they have different and independent validation datasets). The p value threshold for
significance is 0.05 throughout the paper. In all cases, the samples size equals 24,
the number of available re-forecast years.

Data availability
CMCC-SPS3.5 SST reforecast data is freely available via the Copernicus Climate Change
Service Data Store (https://doi.org/10.24381/cds.181d637e). Reforecasts of surface and
subsurface marine heatwave indicators used to produce this analysis are freely available
at https://doi.org/10.5281/zenodo.7973986. ESA CCI SST (https://doi.org/10.48670/moi-
00169) and GREP (https://doi.org/10.48670/moi-00024) are freely available through the
Copernicus Marine Service.

Code availability
Codes used to analyse data and produce figures in this study are available at https://
github.com/RJMcAdam.
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