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Continuous increase in evaporative demand
shortened the growing season of European
ecosystems in the last decade
Mehdi Rahmati 1,2✉, Alexander Graf 2, Christian Poppe Terán 2, Wulf Amelung3, Wouter Dorigo 4,

Harrie-Jan Hendricks Franssen 2, Carsten Montzka 2, Dani Or 5,6, Matthias Sprenger 7,

Jan Vanderborght 2, Niko E. C. Verhoest 8 & Harry Vereecken 2✉

Despite previous reports on European growing seasons lengthening due to global warming,

evidence shows that this trend has been reversing in the past decade due to increased

transpiration needs. To asses this, we used an innovative method along with space-based

observations to determine the timing of greening and dormancy and then to determine

existing trends of them and causes. Early greening still occurs, albeit at slower rates than

before. However, a recent (2011–2020) shift in the timing of dormancy has caused the

season length to decrease back to 1980s levels. This shortening of season length is attributed

primarily to higher atmospheric water demand in summer that suppresses transpiration even

for soil moisture levels as of previous years. Transpiration suppression implies that vegetation

is unable to meet the high transpiration needs. Our results have implications for future

management of European ecosystems (e.g., net carbon balance and water and energy

exchange with atmosphere) in a warmer world.
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Vegetation phenology is a sensitive indicator of changes in
climatic conditions1–5. The timing of the onset of greening
(OG) in spring6–8 and the onset of dormancy (OD) in the

autumn (See the Supplementary Note on phenological stages of
different vegetation types) are among the most important phe-
nological events marking the growing season length (GSL) in
mid- and high- latitudes9–11. Global warming, particularly in the
Northern Hemisphere, has led to an earlier onset of the vegeta-
tion cycle, as evidenced by both ground measurements9,12–14 and
satellite-based monitoring of land surface greenness15,16.
Although the results for early OG are in good agreement, con-
flicting assessments have been made when evaluating the impact
of global warming on the timing of OD, with some reporting
delayed OD7,17,18 and others reporting earlier OD19,20. Delayed
OD is most likely due to increased photosynthetic enzyme
activity21, decreased chlorophyll degradation rate22, decreased
likelihood of exposure to frost in the autumn23,24, or increased
capacity for growth and photosynthetic consumption, all caused
by increased temperature (T)17. In many cases, earlier dormancy
is due to limited leaf life19 or lower plant productivity later in the
season due to water deficits20. A schematic putative explanation
for climate change and soil moisture (SM) changes during the
growing season (GS) and their effects on OG and OD is provided
in Fig. 1.

Observations in the northern hemisphere25 show that during
1982–2011, earlier OG and increased evapotranspiration (ET) in
spring have contributed to an additional deficit in SM in summer,
which can induce an earlier OD. However, the impact of a
summer SM deficit on OD due to increasing ET requires analyses
of long-term relationships between ET, SM and OD. We recog-
nize that ET alone does not determine SM and OD, but pre-
cipitation (P) is an important factor, simply because reduced P for
constant ET will also result in lower SM and possibly induce
earlier dormancy. To complicate matters further, we need to
consider the possibility that neither P nor SM affect GSL but
increased atmospheric water demand (AWD), or increased vapor
pressure deficit (VPD) as a measure of AWD, can disrupt the soil-
plant-atmosphere water continuum by regulating early stomatal
closure and OD. This may be accompanied by increased ET, but
not always as a simultaneous increase in AWD and partial closure
of the stomata may result in no change in ET. Therefore, it is
important to investigate whether reduced SM leads to earlier OD
or whether increased AWD becomes limiting for certain vegeta-
tion types even with constant SM levels. To address these ques-
tions, we need to consider seasonal variations in VPD and SM as
well as their interactions with OG and OD and some meteor-
ological variables such as P, T, and ET.

Considering the foregoing discussion, several mechanisms
can affect the OD, including 1) low T, 2) water deficiency (caused
by increased ET or decreased P, or a combination of both),

3) maximum leaf age (earlier OG leads to earlier OD), and 4)
other plant stressors (heat stress or breakdown of xylem capil-
laries due to high AWD). Climate change can affect all four of
these causes, and some may act in opposite directions.
For example, higher T in fall may delay OD, while an increase in
P deficit may result in earlier OD.

Therefore, the objectives of our analysis were to study
1) whether existing data support the hypothesis of consistent
previous shifts in OG, OD, and consequently GSL in Europe for
the period 1982 to 2020, 2) can meteorological variables along
with SM data explain possible shifts, and finally 3) elucidate the
different roles of water and energy supply as derivers for GSL
changes.

Results and discussion
The spatial variation of the long-term (1982–2020) mean GSL for
Europe derived from OD and OG data is depicted in Fig. 2 (see
Supplementary Fig. 1 for spatial variations of OG and OD). We also
present trends in OG and OD over time across Europe in Fig. 3.
These results were obtained from application of innovative
LFD-NDVI method (see details in Methods) to long-term
(1982–2015) GIMMS26,27 NDVI data augmented by AVHRR28

(1982–2017) and MODIS29 (2001–2020) NDVI data (see Supple-
mentary Discussion 1 on the use of space-based observation in
deriving phenological data). These were followed by application of
the Mann–Kendall test30,31 (see Methods) to examine the sig-
nificance of the trends in GSL, OG, and OD data from 1982 to 2020.
Our analysis confirms reports of early greening in Europe11,32

showing a significant trend towards earlier greening in 35% of the
pixels (see Supplementary Fig. 2a), with OG shifting from mid-April
during 1982–1990 to early April in the latter period (2011–2020),
resulting in an average of 11 days earlier greening in these pixels. For
63% of the pixels, we detected no significant trend despite a small
shift of up to 3 days earlier OG. Only 2% of pixels show a significant
trend toward delayed OG, with OG shifting by 16 days on average
from early April in 1982–1990 to mid-April in 2011–2020. The
amplitude of the shift (3–11 days per total period, equivalent to
~1–3 days per decade) is within the range of values reported by
other researchers8,25,33 reporting an earlier OG from ~1 to ~5 days
per decade.

Fig. 1 Schematic representation of the effects of climate change on the
occurrence of onset of greening (OG) and dormancy (OD) that determine
growing season length (GSL). It shows the effect of increased temperature
(T) in spring on early OG and the effect of increased T in summer on
increased vapor pressure deficit (VPD) and decreased soil moisture (SM)
and consequently on OD.

Fig. 2 Spatial variation of the long-term (1982–2020) average growing
season length (GSL) in Europe. Overall, the growing season in Europe is
longer at lower latitudes, reaching about 220 days, and shorter at higher
latitudes, reaching about 120 days. DD stands for decimal degree.

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00890-7

2 COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:236 | https://doi.org/10.1038/s43247-023-00890-7 | www.nature.com/commsenv

www.nature.com/commsenv


Results indicate that OD has a more complicated response to
climate warming than OG with 73% of the pixels showing no
significant trend in OD (see Supplementary Fig. 2b) where OD
occurs around October 13 (±1 day). For 17% of the pixels OD
occurred earlier, shifting from mid-October in 1982–1990 to early
October in 2011–2020, while the opposite trend (shifting to later
days) is observed over 10% of pixels only. In contrast to our
results, Liu et al.17 using the same GIMMS NDVI data, observed a
trend toward later OD at ~70% of Northern Hemisphere pixels
between 1982 and 2011 (at a mean rate of 0.18 ± 0.38 d/y). Other
studies, e.g., Julien and Sobrino33, also using the same GIMMS
NDVI data and examining the period 1981–2003, show a later
OD, but on a global scale.

Finally, almost two-thirds of the pixels (65%) showed no sig-
nificant trend in GSL (Fig. 4), as the GSL remains constant at
185 days (±1 day). For 28% of the pixels GSL exhibited a
lengthening trend with nearly 13 days on average from 177 to
190 days. For 7% of the pixels, we observed shortening of the GSL
by 16 days on average from 194 to 178 days. Julien and Sobrino33

have used similar GIMMS NDVI data considering a shorter
period from 1981 to 2003. In their analysis GSL increased by 0.8

d/y worldwide. Similarly, Stöckli and Vidale34 found an increase
of 0.96 d/y for Europe during the 1982–2001 period. Other
researchers15,35,36 also report increasing GSL in the Northern
Hemisphere in earlier decades (before 2010). For our longer
period (1982–2020) and Europe, the average increase is only one
third of the reported values (~0.3 d/y), and a lengthening occurs
in only 28% of the pixels. In agreement with our results, Garonna
et al.37 showed that the GSL increased significantly from 1982 and
2011 only over 18–30% of the European land area. It seems that
including more recent years in analysis diminishes the length-
ening trend in GSL and the percentage of the land surface over
which it occurs, indicating that the trend has changed more
recently. Based on Supplementary Fig. 3a showing the spatial
patterns of the long-term (1982–2020) trend slope of GSL data,
central Europe mainly shows positive trends for GSL with trend
slopes varying between 0 to 1 d/y while the lower latitudes along
with higher latitudes show a decreasing trend in GSL data (see
Supplementary Fig. 3b, c to find out about the spatial patterns of
OG and OD).

As part of a periodic trend analysis, we examined whether the
trend slope of GSL (as well as OG and OD) varied across the

Fig. 3 Temporal variations (1982–2020) of the beginning and end of the growing season in Europe. Panel a shows the average onset of greening and
panel b the average onset of dormancy. The onsets of greening and dormancy are derived from different remote sensing data products.

Fig. 4 Histograms and probability distribution functions (PDFs) of the length of the growing season in different decades. Panel a shows the histograms
(grey bars) and PDFs (dashed lines) for pixels with increasing trend, panel b for pixels with decreasing trend and panel c for pixels without significant trend.
The letter μ corresponds to the mean ± standard deviations and n corresponds to the percentage of pixels in each group.
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1982–1990, 1991–2000, 2001–2010, and 2011–2020 time periods.
Interestingly, Europe shows a positive mean GSL trend slope of
0.43 and 0.35 d/y for the first and second periods, respectively.
These imply nearly one week longer growing seasons at the end of
the second period (Fig. 5). The trend then drops to zero for the
third decade (2001–2010), with a tendency toward negative
values. During the past decade (2011–2020), however, the trend
changes to negative, with a mean trend slope of −0.12 d/y, which
offsets almost one-third of the earlier GSL shift of the first decade.
A similar behavior (positive trends of GSL in the first two periods
and negative trend in the last decades) is observed in croplands,
evergreen needle leaf forests, and grasslands. However, it appears
that for wooden tundra, mixed forests, and open shrublands the
lengthening trend in GSL is continuing except for open shrub-
lands. The mixed tundra is also an exception, where we see a
positive trend in the last period (2011–2020) and negative trends
in the remaining periods. Excluding open shrublands and tun-
dras, the strongest negative trend in the last period is observed in
grasslands with a rate of −0.50 d/y, followed by croplands and
evergreen needleleaf forests with a rate of −0.29 ± 0.01 d/y. A
pessimistic projection of these results could therefore lead to the
conclusion that we face a further decrease in GSL in most vege-
tation types in Europe after 2020, due to severe dry and warm
years that occurred since then.

While Europe has experienced an average OD trend of−0.31 d/y
over the last period (2011–2020), there also has been a reduced
shift in OG with a trend slope of −0.19 d/y (see Supplementary
Figs. 4 and 5). Combined, these reverse the trend of GSL over
the last period and offsets the lengthening of GSL in previous
periods. However, to determine when such a reversal in trend of
GSL (and OG and OD) occurs, we did another trend analysis, this
time setting the data period to a 15-year moving window and

relocating the window over different years from 1982–2020. We
think in this way we were able to see which year is critical and at
what point the reversal occurs. The results (Fig. 6) show that the
reversal in GSL trend occurs after 2003–2004, probably due to the
severe drought we had in Europe in 2003. However, we still see a
positive trend for GSL till 2013–2014, meaning that the growing
season is still lengthening, albeit at a slower rate. However, after
2014, the trend gets negative meaning that the season length is
shortening.

Subsequently, we determined control factors (see Supplemen-
tary Figs. 6–8) for anomalies (Δ) in OG and OD as well as GSL
using the GMDH38 framework (see Methods) together with main
meteorological variables (T, P, and VPD) as well as surface SM
(SSM) and root zone SM (RSM) from GLDAS-NOAH39–41,
ERA5-Land42, and GLEAM43,44 databases. All variables are
averaged for winter [January 1 until 30 days before OG], early
spring [30 days before OG to OG], spring [OG to the peak of
greening, PG], summer [PG up to two weeks before OD], and late
summer [two weeks before OD to OD] times. We performed a
pixel-wise analysis of control factors and aggregated the results
for groups of pixels corresponding to their dominant land use.

Our analysis shows that ΔT and ΔVPD in late summer beside
ΔT in early spring and spring are the most important control
factors for GSL (Supplementary Fig. 6). For almost 28% of the
pixels, late summer ΔT is the first important factor entering the
model. For nearly 13% of the remaining pixels, it is also impor-
tant as a second control factor. Similarly, ΔT in early spring is the
first and second important factor entering the model for nearly 12
and 8% of the pixels, respectively. Overall, for almost 54% of the
pixels, ΔT (either in spring or summer) is the most important
factor for GSL. For 40% of the remaining pixels, ΔT is still the
second most important factor for GSL.

Fig. 5 Histograms and probability distribution functions (PDFs) of changes in length of growing season for different decades under different land
cover types. The changes are quantified by trend parameter obtained from Mann–Kendall analysis. Panel a shows the histograms (grey bars) and PDFs
(dashed lines) for entire Europe, panel b for croplands (Crp), panel c for evergreen needleleaf forests (ENF), panel d for mixed forest (MxF), panel e for
open shrublands (OpS), panel f for wooden tundra (WdT), panel g for grasslands (Grs), and panel i for mixed tundra (MdT). The letter μ and σ correspond
to the mean and standard deviations.
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ΔVPD in late summer is the second important variable for the
model. For almost 16% of pixels, ΔVPD in late summer is the
most important control factor of GSL, while for 10% of pixels it is
the second most important control factor. Regardless of the
period for which an average is taken, ΔVPD is the first and
second important control factor for GSL for nearly 29 and 22% of
pixels, respectively. Finally, ΔP is the third most important
variable controlling GSL, being the first control factor for almost
10% of pixels and the second for 15%. ΔSM (both at the surface
and in the root zone) clearly has the least influence on GSL.
Looking at the control factors for OG and OD, we found that ΔT
and ΔVPD in early spring are the most important control factors
for OG (see Supplementary Fig. 7a) and ΔT in late summer and
summer along with ΔVPD in late summer are the most important
control factors for OD (see Supplementary Fig. 7b). This means
that the availability of SM to plants is the least limiting factor for
plant growth in Europe, even though climate change has probably
altered P patterns in Europe. This shows that, in contrast to other
publications20 citing SM deficit (especially in summer) as the
most important factor driving changes in OD, at least SM
availability has not played such a prominent role in Europe until
2020. This conclusion raises the question: if SM is less of a
constraint, why did we still observe a shortening of GSL during
recent years, even though OG still shifted to earlier dates, albeit at
a slower rate? A possible answer is that AWD was increased due
to warmer conditions (reflected in increased average T and VPD),
and water supply was therefore below plant water demand
(caused by higher AWD), which led to earlier OD. A principal
component analysis (PCA) between OG and other variables
(Supplementary Fig. 9a) showed that OG is negatively correlated
with T, VPD and P in winter and early spring, while other
variables, including SSM and RSM, are not correlated with OG.
This means that the higher the T, VPD, and P are in winter and
early spring, the earlier OG is reached. In a similar analysis
(Supplementary Fig. 9b), OD shows a negative correlation with
VPD and T in summer and late summer and a positive correla-
tion with P in all periods, i.e., the higher the VPD and T are in
summer and late summer, the earlier OD is reached or the higher
the P, the later the OD is reached. As mentioned earlier, there is
no significant correlation between OD and other variables,
especially SSM and RSM.

We also examined the spatial distribution of the main control
factors of OG (Fig. 7) and OD (Fig. 8). To facilitate interpretation,
we did not distinguish the variables by the period for which an

average is taken. As shown in Fig. 7, T, VPD, and P are the main
triggers of early greening across Europe, with VPD more pro-
minent in coastal areas with latitude less than 60 degrees, P
mainly in central Europe, and T in the remaining areas. The
second most dominant control factor was more difficult to
determine. However, T and P and to some extent RSM still play a
role here. In the case of early dormancy, the message is clearer, as
T, VPD, and to some extent P can be identified as major triggers
of early dormancy in Europe. Inspection of the second dominant
controlling factor of OD (Fig. 8) also clearly shows that SSM and
RSM control OD less strongly.

Different reasons can be invoked to explain the observed
behavior for different land use types. In general, Europe-wide
trends in OG are driven to a large extent by the pattern observed
for wooden and mixed tundra (Supplementary Fig. 4). These
high-latitude ecosystems are very sensitive to climate change, so a
small increase in temperature has a greater impact there than in
temperate regions45. This likely explains why early spring T the
most important controlling factor for the OG (Supplementary
Fig. 7a) is and, consequently, one of the two most important
variables in explaining GSL. Similarly, the earlier OD is primarily
due to cropland and grassland, which are generally expected to
have shallower root systems than the other woody land-use
classes. It is therefore not surprising that late summer T and VPD
were the most important and second most important environ-
mental variables for these types of land uses. This is because
grasses and cropland are sensitive to drought (without con-
sideration of possible irrigation) and easily sense or complete
their life cycle toward early harvesting, thus shortening their
apparent GSL. Earlier harvest, especially for croplands, can have
several implications, both positive and negative, depending on the
specific crop, the timing and frequency of harvest, and local
environmental conditions. However, due to the coarser resolution
of the data used in this analysis (0.25 degrees), it was not possible
to examine harvest timing for cropland. This may require a more
detailed examination of the croplands to account for the appro-
priate conditions. However, to determine if our expectation was
generally true for cropland and grassland, we examined the
control factor of GSL (as well as OG and OD) in different land
use types (results not shown). In the case of GSL, almost the same
factors as Europe play a role within the different vegetation types,
except for tundra (both wooden and mixed) and to some extent
for evergreen needle leaf forests. For evergreen needle leaf forests,
the only difference compared to other land use types is that late

Fig. 6 Variation of average trends of length, beginning, and end of European growing seasons during 1982–2020. Panel a shows the length of growing
season, panel b onset of greening, and panel c onset of dormancy. Trends are analyzed by applying a moving time window of 15-years from 1982–2020.
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summer ΔVPD plays a lesser role and dominates 14% of the
pixels of this land cover, compared to 26% in Europe. For mixed
and wooden tundras, the importance of late summer variables for
GSL decreases even more. The other dominant land cover types
in Europe, including croplands, mixed forests, grasslands, and
open shrublands, show almost the same behavior as we observed
for Europe as a whole. Almost the same results were also obtained
for OD and OG (not shown).

To support the results of the GMDH analysis, we performed an
additional trend analysis over late summer ET, RSM, SSM, T, VPD,
and P data. Results show no significant trend for SSM, RSM, P, and
ET, but significant increasing trends for T and VPD in most pixels
in Europe, which is consistent with our previous reports. This is
confirmed by both reanalysis (see Supplementary Table 1) and in
situ data (Supplementary Fig. 10). Supplementary Discussion 2 also
provides some additional information on this topic.

The ecohydrological feedback we highlighted in our research
(onset of wilting/senescence at higher SM when ET is higher) is
already well documented. For example, in one of the first studies
on the relationship between ET and SM, Brown46 experimentally
showed 110 years ago that the transpiration rate affects the SM
threshold at which wilting occurs. If the transpiration rate is high,
plants will wilt at a higher SM, while at a lower transpiration,
plants will gradually be able to absorb more water from the soil,
so that wilting will occur only when the SM is lower. Gao et al.47

also noted that OD occurs earlier despite still having sufficient
SM, but plant’s root systems are adapted to extracting the amount

of water that is normally required and that amount changes
probably due to increased VPD.

Our results implicate that changes in OG and OD and con-
sequently in GSL will directly affect the net carbon balance of the
ecosystem48–50, the exchange of water and energy with the
atmosphere51 and management of ecosystems but the impact of
these changes is not yet accounted for in land surface models. To
cope with these changes agricultural management practices will
need to be adapted in terms of suitable crop selection and
breeding (e.g., optimally designed root systems), crop rotation
and intercropping (e.g., avoiding bare soil) and irrigation man-
agement to optimally exploit the change in GSL.

Methods
Study area and working units. This study is conducted at the scale of the Eur-
opean continent (Supplementary Fig. 11). We classified all pixels within Europe
using the GLDAS Vegetation Class/Mask40 (GVC, see Supplementary Fig. 11). To
classify the pixels, dominant GVC land cover types were selected for further
analysis. Selected land cover types include croplands, evergreen needleleaf forests,
mixed forests, open shrublands, wooden tundra, grasslands, and mixed tundra.
Once the work units were identified, all calculations were performed on a pixel-by-
pixel basis and then the results within each work unit were averaged (wherever
necessary) to obtain class-specific results.

Datasets. Data from different sources are used for this analysis. We used NDVI
(Normalized Difference Vegetation Index) data from the Global Inventory Mon-
itoring and Modelling System (GIMMS)26,27 (covering the period 1981–2015), the
Advanced Very High-Resolution Radiometer (AVHRR)28 (covering the period
1981–2020), and the Moderate Resolution Imaging Spectroradiometer (MODIS)29

Fig. 7 The spatial distribution of the control factors for the onset of greening in Europe. Panel a shows the spatial distribution for the first control factor
and panel b for the second control factor. SSM and RSM refer to surface soil moisture and root zone soil moisture, respectively, T is temperature, P
precipitation, and VPD vapor pressure deficit.

Fig. 8 The spatial distribution of the control factors for the onset of dormancy in Europe. Panel a shows the spatial distribution for the first control factor
and panel b for the second control factor. SSM and RSM refer to surface soil moisture and root zone soil moisture, respectively, T is temperature, P
precipitation, and VPD vapor pressure deficit.
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(covering the period 2001–2020) to determine OG and OD and consequently GSL. In
addition, the NASA Global Land Data Assimilation System (GLDAS) along with the
NOAH Land Surface Model40,41 (v2.052, for 1982–2014, and v2.139, for 2000–2020),
the European Centre forMedium-RangeWeather Forecasts (ECMWF) ERA5- land42

(for 1982–2020), and the Global Land Evaporation Amsterdam Model43,44 (GLEAM
v3.6a, for 1982–2020) were the three other datasets used in this analysis. We also used
in situ measurement data from FLUXNET53 (with a duration of 1995–2020) as a
benchmark for the reanalysis data used.

Data preprocessing. The data used in this analysis from different sources are pro-
vided at different spatial resolutions, with the coarser resolution being 0.25 degrees for
GLDAS and GLEAM databases. Therefore, for consistency, we used the Regular-
GridInterpolator function of the interpolate sub-package of the Python package of
scipy to aggregate them (wherever necessary) with a resolution of 0.25 degrees, using
the same latitude and longitude vectors of the GLDAS and GLEAM databases. Since
this aggregation could smooth the data, we performed a statistical analysis to ensure
the accuracy of the aggregated data. In the absence of ground trust data, we compared
the standard deviation of the original and aggregated data to determine their
smoothness showing that the reduction in standard deviation of the aggregated data
compared to the original data is less than 5% on average, which seems to be fine. In
addition, we compared the original and aggregated maps using a moving squares
method. To do this, we placed a 2.5 × 2.5-degree squared quadrat over both maps and
averaged the data within the square for both maps. We then moved the square across
the maps in 2.5 degree increments and averaged the data for both maps. Finally, we
had two vectors of equal size for averaged data. We then calculated the Nash-Sutcliffe
criterion (E) between these averaged data. The E showed a value above 0.95, indicating
a very strong correlation between the original and aggregated values. Therefore, we
expect that these aggregation steps introduce less uncertainty into our analysis.

In the case of the NDVI data, we used the GIMMS NDVI data as a benchmark
for our analysis because it is commonly used in other studies. However, it should be
noted that the GIMMS NDVI data are available at biweekly temporal resolution
(i.e., two data per month), the MODIS NDVI data are available at monthly
resolution, and the AVHRR NDVI data are available at daily resolution. Therefore,
we brought them all to monthly resolution by averaging the data that fall within
each month, i.e., in the case of the GIMMS data, the two data within each month,
and in the case of the AVHRR data, all daily data of each month. This was
necessary because the temporal resolution of the NDVI data affects the derived OG
and OD values. Additionally, we excluded the last three years of AVHRR data
(2018–2020) from the analysis due to unknown quality of the data for these years.

The Princeton meteorological forcing data used for GLDAS 2.0 ends in 2014, so
GLDAS 2.1 (covering 2001-present) uses other forcing data including observation-
based P and solar radiation, resulting in significantly higher values nearly for all
variables, as the climatology of the forcing variables differs from that of the
Princeton forcing dataset. Therefore, we used the overlapping period 2001–2014 to
construct location- and day of year-specific linear regressions between paired
variables from v2.0 and v2.1, and then applied the developed regressions to match
the GLDAS 2.1 data to the climatology of 2.0. In the case of P, day of year-specific
linear regressions were not possible due to high variability and frequency of zero
values, therefore we only applied site-specific linear regressions.

While the temporal resolution of the GLEAM dataset is daily, the GLDAS data
are provided with a temporal resolution of 3 h. Therefore, we averaged the 3-hourly
data from GLDAS to account for the daily data. Although the ERA5-Land dataset
is originally provided with a spatial resolution of 0.05 degrees and a temporal
resolution of 1 h, for consistency, we downloaded the daily and 0.25-degree
resolution data using the ERA5-Land Daily Statistics CDS API (https://cds.climate.
copernicus.eu/cdsapp#!/software/app-c3s-daily-era5-statistics).

In cases where a variable was available from two or more of the above reanalysis
products, a PCA was performed, and the first component was then used for further
analyses when the target variable was in demand. This was the case for ET and
SSM. In the case of ET, the first component accounted for 95 or more percent of
the variation in all products, while in the case of SSM, 85 or more percent of the
variation in the products used was explained by the first component.

Data validation. Before any further analysis, we validated ET and SSM data from the
datasets used (GLDAS, GLEAM and ERA5-Land) by comparing them with in situ
measurement data from FLUXNET53. For this purpose, we extracted reanalysis data
on ET and SSM for the pixels containing FLUXNET stations for the overlapping
periods 2000–2020, and then performed a station-by-station comparison of the
reanalysis data with the FLUXNET data. In total, 8 and 23 FLUXNET stations
contain the complete data for ET from all datasets for the 2000–2009 and 2010–2020
periods, respectively, while only 4 and 18 stations have the complete data for SSM
from all datasets for the 2000–2009 and 2010–2020 periods, respectively. Supple-
mentary Fig. 12 shows the Pearson correlations between ET and SSM from FLUX-
NET and ET and SM from other datasets. There are strong correlations between ET
from FLUXNET and ET from GLDAS, GLEAM and ERA5-Land with correlation
coefficients ranging from 0.59 to 0.87 for the period 2000–2009 and 0.64 to 0.91 for
the period 2010–2020. In contrast to ET, the correlations between SSM from
FLUXNET and SSM fromGLDAS, GLEAM and ERA5-Land appear to be weak (with
correlation coefficients ranging from 0.24 to 0.60 for the period 2000–2009 and 0.07

to 0.83 for the period 2010–2020), partly due to uncertainty of SSMmeasurements at
FLUXNET stations, as seen in the large changes in SSM values or repeated constant
values for some months. Overall, it seems that the reanalysis data used in this
investigation can reasonably show the ongoing trend in the real world, and we can be
confident that the conclusions we have drawn in this paper are valid.

LFD NDVI method. To determine OG and OD for individual pixels in Europe and
for individual years of the entire study period (1982–2020), we needed an innovative
algorithm that could operate independently for each year and pixel. This was
important because classical methods, e.g., Piao et al.54, typically calculate a critical
long-term NDVI value for the entire period and then determine the timing for
approaching such a critical value in all individual years. However, this was prone to
bias because the NDVI data used came from three different products of GIMMS
[1982–2015], AVHRR [1982–2017], and MODIS [2001–2020], especially with dif-
ferent temporal resolutions (biweekly, daily, and monthly), which can affect the long-
term critical value and consequently the timing for OG and OD. Therefore, we
developed the logistic function derivative of NDVI (LFD-NDVI) curve method to
determine OG and OD. It uses the first and second derivatives of the fitted logistic
function of the cumulative NDVI curve to determine OG and OD (Fig. 9a). As a first
step, we converted all data to a monthly time scale, as mentioned earlier. Then we
calculated the cumulative NDVI data over time and finally fed them into the LFD-
NDVI method to determine OG and OD. However, before feeding the data into the
LFD-NDVI method, we normalized both the NDVI and time data between 0 (min)
and 1 (max) as this was required for further calculation. Normalization of the NDVI
data was done twice, once before accumulation to eliminate possible negative NDVI
values, and another time after accumulation to bring them within the range of 0 to 1.
In the following, the calculation with the LFD-NDVI method is described in detail.

In a first step, a logistic function was fitted to the data (Fig. 9b):

yðtÞ ¼ aþ b
1þ expð� t�c

d Þ ð1Þ

where y(t) is the rescaled cumulative NDVI on day t of the year, t is the rescaled
time (day of the year), and the model coefficients are a, b, c, and d. Using this fitted
function, we obtained the smoothed curve of the rescaled cumulative NDVI data
for all days of the year (t= 1:365 or 366, being scaled to 0 and 1). Third, we
determined the curvature of the data, k(t), for each t using the first y′(t) and second
y′′(t) derivatives of the fitted logistic function:

kðtÞ ¼ jy00ðtÞj
ð1þ y0ðtÞÞ1:5 ð2Þ

Plotting k(t) versus t typically show two maxima separated by a minimum. The
times at which the maxima occur allow the logistic curve to be divided into three
parts with nearly linear behavior (Fig. 9c). The first part occurs during the winter
and early spring before the first curvature maximum in the data; we refer to this
part as winter dormant period. The second part occurs between the first and
second curvature maxima in the data; we refer to this part as active growth period.
Finally, the third part occurs during the late summer and falls after the second
curvature maximum in the data; we refer to this part as fall dormant period.

For the second part, a first-order polynomial function was fitted by simply using
two points of maximum curvature and their respective rescaled cumulative NDVI
values, plus an additional point in between. However, we used the sequential linear
approximation method described by Dathe et al.55 to identify the linear part of the
rescaled cumulative NDVI curve before the first and after the second curvature
maxims. The method consists in calculating linear regressions over a consecutive
number of points before the first and after the second curvature maximum. The
dependence of R2 on the number of data points was used to determine the number of
points to be included in the regression. In this analysis, an R2 value of 0.95 was used as
the critical value to determine the linear parts of winter- and fall-dormant. When such
an R2 value was not obtained from a larger number of data, we simply used the first
and last three points to draw the line in the winter- and fall-dormant periods. Next, we
determined the equation of the bisector of the obtuse angle between the regression
equations of the winter-dormant and active growth parts (Eq. (3)) and the fall-
dormant and active growth parts (Eq. (4)) by computing the angle between two lines.

yðtÞ ¼ awat þ cwa ð3Þ

yðtÞ ¼ afat þ cfa ð4Þ
where awa and cwa correspond to the slope and intercept of the line bisecting the lines
of winter dormancy and active growth parts, and afa and cfa correspond to the slope
and intercept of the line bisecting the lines of fall dormancy and active growth parts.
After determining the equations for the bisecting lines, the intersection between them
and the fitted logistic function determines OG and/or OD (Fig. 9d). Mathematically,
OG and OD are calculated by solving following equations for t:

awat þ cwa ¼ aþ b
1þ expð� t�c

d Þ ð5Þ

afat þ cfa ¼ aþ b
1þ expð� t�c

d Þ ð6Þ
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In this analysis, the root_scalar function of the Optimize sub-package of the
Python package of scipy (as an alternative to the “fzero” function in MATLAB) was
used to find a null of the above expression by changing the t values.

Using the above-mentioned method, we determined OG and OD from three
different NDVI products of the GIMMS (for the period 1982–2015), the AVHRR
(for the period 1982–2017), and the MODIS (for the period 2001–2020). Applying
a scaling approach, we corrected OG and OD data from MODIS and AVHRR to
the GIMMS OG and OD data. The higher quality of GIMMS data is already well
documented in literature justifying it use as benchmark25,56,57. In this scaling
approach, we considered different land use levels to adjust the OG and OD results
of the AVHRR and MODIS to GIMMS. In a first step, pixels of common land use
types were identified, and two linear equations were defined:

OGGIMMS
y ¼ αy ´OG

i
y ð7Þ

ODGIMMS
y ¼ βy ´OD

i
y ð8Þ

where i stands for MODIS or AVHRR and y stands for an individual year falling
into the common periods of each pair. These equations were fitted to the GIMMS-
MODIS and GIMMS-AVHRR pairs. The common period is 2001–2015 in the case
of GIMMS-MODIS pair and 1982–2015 in the case of GIMMS-AVHRR pair.
Then, the average of the yearly estimated scale parameters ay and βy were applied
on OG and OD data obtained from MODIS and AVHRR. After scaling OG and
OD data from MODIS and AVHRR, the averaged values for OG and OD values
from all three products were used for further analysis. The following Table provides
obtained scaling factors for both OG and OD values obtained from MOIDS and
AVHRR products (Table 1).

We conducted no comparison between OG and OD dates obtained from our
analysis and in-situ measurements because:

1. The scale mismatch between the pixel size of the space-based NDVI and in
situ phenological databases such as Pan-European Phenology58 or
PhenoCam Dataset59 prevents us from making such a comparison, since
our analysis is performed at 0.25 degrees (~25 km), whereas Pan-European
Phenology provides phenological data at 10 m resolution for various tree
and plant species, and PhenoCam Dataset provides a time series of
vegetation phenological observations (digital camera images) for 393 sites in
different ecosystems around the world by main focus in North America.

2. A comparison of phenological data derived from the PhenoCam dataset and
satellite remote sensing data (e.g., MODIS data at 500 m resolution, which
can be considered high resolution compared to our data at ~25 km) has
already been performed (e.g., Richardson et al.60), which showed high
overall agreement between phenological data from in situ measurements
and MODIS NDVI with an R value of 0.81, although the agreement was
poor for evergreen needleleaf forests due to their minor seasonal dynamics.
Therefore, we caution that our results and discussions may be uncertain
wherever evergreen needleleaf forests are involved.

3. In respect to the LFD-NDVI method, we note that all methods used to
derive OG and OD from NDVI curve assume that bud break for a given
pixel occurs at a specific NDVI threshold that is greater than the observed
NDVI minimum value in winter and early spring. For example, OG is
commonly defined as the day of the year when NDVI reaches the NDVI
minimum plus 20% of the NDVI range61–64 or the critical NDVI value
determined from long-term average annual curve of NDVI16. The same also
applies for OD. In our work, however, we determined this critical NDVI
value by cumulatively plotting NDVI. This allowed us to show that the curve
consisted of three parts that could be approximated linearly and that
correspond to different growing periods. The critical NDVI values were then
determined by calculating the intersection of the bisectors of the first two (in
the case of OG) or last two (in the case of OD) lines and the cumulative

Fig. 9 An illustrative example of the application of the LFD-NDVI method to determine the onset of greening and dormancy. Panel a shows the
variation of NDVI over different days of the year, panel b shows the rescaled cumulative NDVI curve over different days of the year, panel c shows the
variation of the curvature of the NDVI curve during different days of the year, and panel d graphically shows the calculation steps of the LFD-NDVI method
for determining the onsets of greening and dormancy. DoY refers to the day of the year, although we have used the names of the months for illustrative
purposes. In addition, for calculation purposes, DoY needs to be scaled to 0 and 1.

Table 1 Scaling factors for the onset of greening and the onset of dormancy obtained from MODIS and AVHRR products and
comparison with those obtained from GIMMS data.

Land use types ay (mean ± STD) βy (mean ± STD)

MODIS AVHRR MODIS AVHRR

Cropland 0.953 ± 0.024 0.551 ± 0.019 0.96 ± 0.012 0.826 ± 0.011
Evergreen Needleleaf Forest 1.021 ± 0.016 0.597 ± 0.018 0.959 ± 0.010 0.841 ± 0.011
Mixed Forest 0.976 ± 0.018 0.581 ± 0.019 0.958 ± 0.010 0.835 ± 0.011
Open Shrublands 0.955 ± 0.038 0.575 ± 0.012 1.003 ± 0.014 0.853 ± 0.017
Wooded Tundra 0.962 ± 0.137 0.605 ± 0.016 1.000 ± 0.022 0.866 ± 0.020
Grassland 1.028 ± 0.045 0.533 ± 0.027 0.979 ± 0.033 0.808 ± 0.021
Mixed Tundra 0.970 ± 0.051 0.615 ± 0.019 0.991 ± 0.015 0.871 ± 0.013
Others 0.833 ± 0.036 0.523 ± 0.040 0.963 ± 0.015 0.828 ± 0.024
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curve rather than an arbitrary criterion of minimum NDVI plus 20% of the
NDVI range or long-term average critical NDVI. Any remaining
uncertainties in our OD and OG estimates are therefore systematic and
should not affect our trend analysis.

Trend analysis of Mann–Kendall test. In this analysis, we examined the overall
trend of OG and OD as well as GSL using the Mann–Kendall test30,31. To do this,
we applied the Python implementation of the nonparametric Mann–Kendall trend
analysis called pyMannkendal65 employing the original and Theil–Sen methods
with a significance level of 0.05. Both original and Theil–Sen methods show how
OG, OD, and/or GSL change with time, but Theil–Sen is more robust against
individual outliers66. As suggested by Cortés et al.66, prior to trend analysis, we
dealt with temporal autocorrelation of data with AR(1)correction to prevent the
occurrence of false positive rates67. As suggested by von Storch67 and outlined by
Cortés et al.66, the following equation is used to calculate the temporal auto-
correlations at lag −1:

r̂ ¼ n∑n�1
1 xt � �x

� �
xtþ1 � �x
� �

n� 1ð Þ∑n
1 xt � �x
� �2 ð9Þ

where r̂ is autocorrelation, xt is data at time t, �x is the mean value of all data, and n
is number of the data. Then, when autocorrelation is computed, the original time
series (xt) were replaced with adjusted one (yt) using following equation:

yt ¼ xt � r̂xt�1 ð10Þ

Group method of data handling. We applied the group method of data handling
(GMDH)38 pixel-wisely to develop a gray box network predicting OG and OD, and
GSL, using several meteorological variables along with soil moisture as inputs. For
this purpose, we examined the factors that affect energy and water supply for
transpiration as one of the main functions of green vegetation under changing
climatic conditions. Therefore, we chose the meteorological variables T, P, and
VPD because we believe that T and P directly reflect the effects of changing climate
on transpiration and VPD combines the effects of all major weather parameters
that affect transpiration (e.g., radiation, air temperature, humidity, and wind
speed)68,69. In other words, these are the main meteorological variables that affect
both energy and water supplies and can better express changing climatic condi-
tions. In addition, we also used SSM and RSM because they are direct state vari-
ables for water availability to vegetation. We excluded ET and transpiration from
this analysis because they, as main function of the green vegetation, are logically
strongly correlated with the phenological states of vegetation and mask the
importance of other variables. We also excluded climate indices (NAO: North
Atlantic Oscillation, El Nino, etc.) from this analysis because the pretest showed
that in this context, they play a lesser role than the other included variables. All
included variables were averaged for several time periods, namely winter [January
1–30 days before OG], early spring [30 days before OG to OG], spring [OG to PG],
summer [PG to the 14 days before OD], and late summer [14 days before OD to
OD]. Then, their long-term anomalies were calculated for each period and then
subjected to modeling.

The following quadratic regression is used to obtain the preliminary estimates
(zij) for the first layer of the GMDH network70:

zij ¼ c0 þ c1xi þ c2xj þ c3x
2
i þ c4x

2
j þ c5xixj ð11Þ

where xi and xj represent the pairwise selection of input variables and c0 to c5
represent the polynomial predictors. The following equation determines the total
number (n) of possible polynomials70:

n ¼ N ´ ðN � 1Þ
2

ð12Þ

where N is the number of input variables. To develop the GMDH network, we first
developed all possible polynomials with pairwise selected variables (xi and xj). Then
we had to filter out the least effective new variables using a statistical selection
criterion38. We used the following criteria to select the best new variables to build
the next layer of the network71:

e ¼ p ´RMSElowest þ ð1� pÞ ´RMSEhighest ð13Þ
where p is the selection pressure and means a number between 0 and 1 (with
p= 0.75 in our analysis), with higher numbers indicating higher pressure in
selecting new variables. The preliminary estimates with root mean square error
(RMSE) smaller than e were selected for the next layer. The polynomials were then
further improved by repeating steps 1 and 2 and using the selected variables (zij)
from the previous step. This continues until the smallest value of the selection
criterion from the current iteration shows no improvement over the smallest value
from the previous iteration70.

To develop GMDH models for predicting anomalies in GSL (the same applies
for OG and OD), we forced the models to have only one layer with two most
important variables going into the model. The concept underlying this strategy is to
select only two variables for each pixel for predicting OG and OD or GSL. To train
and evaluate the developed networks, the data were randomly split into two

subsets, with 70 percent of the data used to train the networks and the rest used to
test as independent data.

The GMDH method provides a built-in algorithm70,71 that retains only the
essential input variables. Therefore, here we repeated 100 times the random division
of the data into training and test subsets and calculated the Pearson correlation (R)
between the target and output variables for each replication. Then, the replications
with R value less than 0.7 in the evaluation subset were filtered out and the selected
sets of variables for predicting the onset of the OG and OD and GSL in the remaining
replications were determined. The used GMDH algorithm is coded in Python.

To visualize the results obtained from GMDH analysis, the first and second
important control factors of anomalies of GSL (as well as OG and OD) are plotted
against each other, and the colors show their frequency among the pixels in Europe
(see Supplementary Figs. 6 and 7). In this way, we were able to check which
variable was the most important factor and with which other variable it usually
paired to explain the anomalies in GSL (and/or OG and OD).

Principal component analysis and biplotting. To investigate the direction of the
effects of the control factors on GSL as well as OG and OD, we performed PCA on
the data and illustrated the result as biplots. Biplots show both the observations and
the original variables in principal component space72. In a biplot, positively cor-
related variables are closely aligned, while negatively correlated variables are
aligned in the opposite direction. In both cases, the stronger the correlation
between variables, the larger the size of the arrows. Variables aligned at 90 degrees
to each other have no correlations73.

Data availability
Processed data can be accessed from https://doi.org/10.5281/zenodo.7962415. The
GLDAS Vegetation Class/ Mask map is available at https://ldas.gsfc.nasa.gov/gldas/
vegetation-class-mask. The original NDVI (Normalized Difference Vegetation Index)
data from the Global Inventory Monitoring and Modelling System (GIMMS) and the
Moderate Resolution Imaging Spectroradiometer (MODIS) can be accessed through
direct communications with data provider (Dr. Stefan Kern from University of Hamburg,
Germany). The NDVI data from Advanced Very High-Resolution Radiometer (AVHRR)
is available in https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-
difference-vegetation-index-noaa-avhrr. The reanalysis data for NASA Global Land Data
Assimilation System (GLDAS) is accessible from https://ldas.gsfc.nasa.gov/gldas/gldas-
get-data. The reanalysis data of European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA5-Land is accessible form https://cds.climate.copernicus.eu/. The Global
Land Evaporation Amsterdam Model (GLEAM) dataset can also be obtained from
https://www.gleam.eu/. The in-situ measurement data from FLUXNET can be accessed
from https://fluxnet.org/.

Code availability
All codes are available in https://github.com/mehdirmti/vegtation-greening-dormancy.
git.
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