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Irrigation benefits outweigh costs in more US
croplands by mid-century
Trevor Partridge 1,2✉, Jonathan Winter 1,3, Anthony Kendall 4, Bruno Basso 4,5, Lisi Pei4,6 &

David Hyndman 7

Irrigation can increase crop yields and could be a key climate adaptation strategy. However,

future water availability is uncertain. Here we explore the economic costs and benefits of

existing and expanded irrigation of maize and soybean throughout the United States. We

examine both middle and end of the 21st-century conditions under future climates that span

the range of projections. By mid-century we find an expansion in the area where the benefits

of irrigation outweigh groundwater pumping and equipment ownership costs. Increased crop

water demands limit the region where maize could be sustainably irrigated, but sustainably

irrigated soybean is likely feasible throughout regions of the midwestern and southeastern

United States. Shifting incentives for installing and maintaining irrigation equipment could

place additional challenges on resource availability. It will be important for decision makers to

understand and account for local water demand and availability when developing policies

guiding irrigation installation and use.
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In the coming decades, annual temperatures in the United
States are projected to rise by an additional 1.4 °C regardless of
the future emission trajectory1, and global food demand is

expected to increase from 35% to 56%2–4. Agriculture is one of
the most vulnerable sectors to climate change and observed
warming has already led to reduced agricultural yields5,6. To
ensure food security while minimizing adverse environmental
impacts, it is necessary to understand the potential effects of
climate change on agricultural productivity and critically examine
adaptation strategies, especially as some adaptations may be
maladaptive for compound extreme events7. Expanding irrigated
agriculture is often suggested as a promising management
adaptation8,9 that could help meet growing food demand10–12

while making agriculture more resilient to drought. However,
irrigated agriculture is already the single largest consumer of
global freshwater resources. Historical irrigation has reduced
environmental flows below critical levels in many regions13,14,
lead to the depletion of groundwater resources15, and is itself a
source of greenhouse gas emissions16. Continued unsustainable
water use practices coupled with uncertain future water avail-
ability may limit the feasibility of irrigation as a climate adapta-
tion strategy17–22.

In the U.S., less than 20 percent of harvested cropland is
equipped for irrigation, yet irrigated crops often account for more
than half of total crop sales23. In recent decades, efficiency
improvements have reduced total irrigated water use while irri-
gated area has increased, yet irrigated agriculture still accounts for
roughly 80 percent of the country’s water use24. Early integrated
assessments examining future changes to regional water
availability25 and irrigation water demand26 suggested that the
total amount of irrigated water applied will likely decline as a
result of either insufficient water resources or reduced demand.
However, there is still considerable uncertainty around future
water availability, irrigation requirements, and the response of
marginal yields (i.e., the difference between irrigated and rainfed
yield) to climate change scenarios with concurrent temperature
and precipitation change27,28. For example, early studies found
that historic productivity in the midwestern U.S. could be
maintained with little to no additional irrigation, at least through
mid-century29,30. More recent work has suggested that the region
might require substantial increases in irrigation to meet future
crop water demands31,32, unless a historic anomalous cooling
pattern persists33,34. Uncertainty in future irrigation requirements
arises from both uncertainties surrounding future precipitation
changes as well methodological differences between crop models
and studies. Many projections that directly simulate the effect of
changing precipitation on yield are coarse resolution or have
simple representations of crop growth and irrigation practices
(e.g., fixed scheduling). Updated climate projections from the
sixth Climate Model Intercomparison Project (CMIP6), as well as
recent advancements in physical crop models, such as growth
stage deficit irrigation35, will help reduce uncertainty in esti-
mating future water resources and irrigated water demand21.

While there are many environmental, institutional, technolo-
gical, and equity challenges surrounding expanding irrigated
agriculture, it’s likely that irrigation will be a crucial component
of meeting future food demand. Optimizing the value of con-
tinued and expanded irrigation in a changing climate demands a
thorough understanding of the expected benefits (i.e., marginal
yield gains) and costs (including capital, environmental, and
social costs) across a range of plausible climate futures. Recent
global analyses have improved our understanding of con-
temporary marginal yield gains from irrigation28, quantified the
present gross economic value of water used for irrigating a wide
range of crops36, and delineated areas where water resources
could meet or exceed future crop water demand21. However, to

the best of our knowledge, no study has yet projected the future
value of water used for irrigation at a high resolution for the
United States. Combining these projections with estimates of
water availability is critical as it will help to identify areas where
irrigation could be both profitable and sustainable.

Here we approximate the feasibility of expanded irrigation for
maize (Zea mays) and soybean (Glycine max) at a 5-arcminute
resolution over all cultivated areas in the U.S. through projecting
two metrics: (I) the irrigation benefit to cost ratio (IrB/C) and (II)
the irrigated water deficit. Crop model simulations are conducted
using a gridded version of the Decision Support System for
Agrotechnology Transfer model (pDSSAT)37,38 for historical
(1981–2010), mid-century (2036–2065) and end-of-century
(2071–2100) conditions under moderate and high emissions
trajectories from five statistically downscaled CMIP6 Global
Climate Models (GCMs). The 5-model ensemble was selected as a
representative sample of the range of future climates expected in
the midwestern U.S.39, with four GCMs representing one quad-
rant of future change in precipitation and temperature (i.e., hot &
dry, hot & wet, cool & dry, cool & wet) and one representing the
inter-model median (Supplementary Fig. 1 and Supplementary
Table 1). Moderate and high emissions trajectories are exempli-
fied by the paired Shared Socioeconomic Pathway (SSP) scenarios
SSP245 and SSP585. SSPs are an important input for GCMs as
they project global emissions as a function of plausible future
socioeconomic scenarios and update the previously used Repre-
sentative Concentration Pathways (RCPs) used in CMIP540.
Below we report results primarily from the five-member ensemble
mean under a SSP245 emissions trajectory with SSP585 results
included in the supplemental text.

Results
Projected changes in growing season climate. Average growing
season temperatures in the midwestern U.S. could increase from
1.1 °C to 4.6 °C (1.9 °C to 8.8 °C) by the middle (end) of the 21st
century, relative to historical averages from 1981–2010, depending
on emissions trajectory and GCM (Fig. 1 and Supplementary
Table 1). Precipitation changes in this region over the same period
are less certain. Projected changes in growing season precipitation
during the middle (end) of the century range from a 10.2%
(12.3%) increase under climate projections from the NESM3
GCM41 forced with SSP245 emissions (cool & wet scenario) to a
7.9% (16.9%) decrease under the HadGEM3 GCM42 forced with
SSP585 emissions (warm and dry scenario). The 5-GCM ensemble
average under a SSP245 trajectory projects a moderate decrease in
mid-century total growing season precipitation over much of the
north-central U.S. with little change to a slight increase through-
out parts of the Midwest and Mid-Atlantic regions (Fig. 1). A
SSP585 emissions future is considerably drier than the lower
emission trajectory, especially by the end of the 21st century
(Supplementary Fig. 2). Average mid-century precipitation chan-
ges for each GCM are shown in Supplementary Figs. 3, 4.

Projected impacts on rainfed and irrigated crop yield. Historic
crop cultivar parameters within pDSSAT were calibrated using
crop progress data from the U.S. Department of Agriculture
(USDA) National Agricultural Statistical Service (NASS)23 (cali-
bration process described in methods). Simulated historical maize
and soybean yields reasonably approximate U.S. county average
reported yields (r2= 0.59 and 0.57 respectively; Supplementary
Fig. 5). Simulated yields can be modified through adjusting
parameters controlling the planting density of crops as well as
physiological parameters such as the number of grain kernels per
plant and grain filling rates. We allow these parameters to evolve
during the historical period to match yield trends but hold them

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00889-0

2 COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:274 | https://doi.org/10.1038/s43247-023-00889-0 | www.nature.com/commsenv

www.nature.com/commsenv


fixed at contemporary values for future simulations. Farmers can
relatively easily adapt to yearly fluctuations in growing season
conditions through altering certain management decisions. We
account for these adaptations through modifying future planting
dates and maize cultivar selection based on future climate metrics.
We do not modify soybean cultivars given the relatively broad
temperature range of soybean maturity groups43. Future planting
dates for maize and soybean were estimated by training a random
forest model on observed planting dates and five early-season
climate metrics (see methods). The trained model reasonably
recreates observed planting dates (r2= 0.88 for the out-of-bag
samples; Supplementary Fig. 6) and predicts little to no change in
30-year average planting date by mid-century and approximately
a 1-week earlier planting date by the end of the century
throughout most of the Midwest (Supplementary Fig. 7). For
irrigated simulations, crops are automatically irrigated with
10 mm of water from an unlimited reservoir on days when plant
available water falls below 40%. The average growing season
applied water is shown in Supplementary Fig. 8 and closely
approximates state level applied water data from the 2013 USDA

Irrigation and Water Management Survey (maize r2= 0.88,
soybean r2= 0.81; Supplementary Figs. 9 and 10).

Under a SSP245 emissions trajectory, model results show
significant increases in mid-century irrigated and rainfed yields
throughout most of the Corn Belt and eastern U.S., with small but
significant decreases in parts of the southern High Plains (Fig. 2).
We present both rainfed and irrigated yield for all simulated grid
cells regardless of historic management. Historically rainfed and
irrigated maize and soybean areas are shown in Supplementary
Fig. 11 and analogous SSP585 yield maps are shown in
Supplementary Fig. 12. Historic average simulated yields are
shown in Supplementary Fig. 13. By the end of the century, we
find significant decreases in rainfed and irrigated yields through-
out the southern High Plains for maize, and to a lesser extent
soybean, yet average yields in the Midwest remain higher than
present. The SSP245 end-of-century yield maps largely resemble
mid-century yield maps under a SSP585 future. A SSP585
emissions future could lead to substantial reductions in irrigated
and rainfed maize throughout the majority U.S. by the end of the
century. Future irrigated soybean yields remain higher than

Fig. 1 Projected changes in growing season temperature and precipitation. Time series of June through September average temperature anomalies (a)
and total precipitation (b) from the 5-member CMIP6 ensemble under moderate and high emissions future (SSP245 and SSP585 respectively) for the
midwestern U.S., outlined in blue in maps. The solid line represents the inter-model mean and the shaded area is the smoothed ensemble range.
c–f Ensemble mean change under a SSP245 trajectory in growing season average (not necessarily June through September) temperature (c, e) and total
precipitation (d, f) by mid-century (2036–2065) and end of the century (2071–2100) over modeled grid cells. Stippling identifies areas where all GCMs
agree on future change based on Kruskal–Wallis test. All changes are relative to historical (1981–2010) climatology.
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present everywhere outside of the southern High Plains,
Mississippi, and small regions in Georgia and South Carolina.
It’s important to note that GCMs have varying sensitivity that is
reflected in both temperature and precipitation responses to
changing greenhouse gas and other external forcings. Our future
climate scenarios span a range of potential growing season
conditions as illustrated by the timeseries in Fig. 1. The yield
maps shown in Fig. 1 and Supplementary Fig. 12 represent the
average expected response, for our given set of assumptions,
under a particular emissions trajectory, not an assigned shift in
temperature or precipitation (e.g., a 3 °C warmer world).

Recent work has found that farmers are not selecting for longer
season maize cultivars44 even though growing seasons have been
increasing by roughly 1 day decade-1 since 189545. Instead, farmers
appear to select cultivars based on factors such as market forces,
labor constraints, and field access44. We test the consequence of our
assumption that farmers will shift to longer season maize cultivars
through simulating the growth of historically grown maize cultivars
under future climate conditions. In these supplemental simulations,
we do allow for adaptive planting dates to account for interannual
variability in early season conditions. Without cultivar adaptation,
midcentury maize yields are still significantly higher than historical,
though not as high as longer season cultivars, throughout the eastern
and southeastern U.S. under a SSP245 (Supplementary Fig. 14) and,
to a lesser extent, SSP585 (Supplementary Fig. 15) future.
Throughout most of the Corn Belt, historically grown maize cultivar
yields remain relatively static under a SSP245 midcentury climate
and decrease slightly under SSP585. Planting historically grown
maize cultivars during the end of the century could lead to average
rainfed yield losses of 0.52–2.8 T Ha-1 throughout the Corn Belt
depending on future emissions (Supplementary Figs. 14 and 15).

The marginal yield gain from irrigating historically ranges from
less than 1 T Ha-1 in the eastern U.S. to greater than 10 T Ha-1 in
the more arid western U.S. (Supplementary Fig. 16). The larger
future increases in irrigated soybean yield relative to rainfed yield
(Fig. 2) lead to a substantial increase in soybean marginal yield
relative to the historical period. Future maize marginal yield also
increases by mid-century throughout much of the western U.S.,
but the regions that show the greatest change in average marginal

yield tend to be outside currently irrigated areas, including the
north central U.S. and Michigan. In fact, currently, irrigated maize
regions in Kansas and Oklahoma exhibit a minor decrease in
average marginal yield by mid-century (Supplementary Fig. 17).

Irrigation economic returns. The economic return of irrigating
depends on the value added from increasing marginal yields and
the operational costs associated with irrigation infrastructure and
use. As projected changes in future crop market and energy prices
become unreliable after a few years, we hold crop and energy
prices constant for future periods and report the economic benefit
of irrigating as the irrigation benefit to cost ratio (IrB/C) for each
grid cell and growing season. This assumes that crop and energy
prices will fluctuate at roughly concurrent rates and that the
modern ratio is a reasonable analog for the future. Briefly, the
benefits of irrigating are calculated by multiplying the marginal
yield gain by the 2000–2020 average international market price
for maize and soybean ($160 and $365 Ton-1, respectively)46.
Costs are approximated as a function of pumping costs and
ownership costs. Pumping costs are approximated using regional
energy prices47 (Supplementary Fig. 18) and total depth to water
after accounting for drawdown within the well and from the
surrounding cone of depression from within season pumping48.
Future groundwater availability will depend on withdrawal rates
and climate. Due to the challenges associated with projecting
future withdrawal rates, we hold future depth to groundwater at
contemporary levels49 for the start of each growing season. The
variability in future pumping costs is a function of climate driven
crop water requirements and the within growing season draw-
down associated with pumping groundwater to meet those
requirements. Ownership costs are estimated from available
extension documents (Supplementary Table 2). We assume a
central pivot system covering a ¼ mile field which is the most
common irrigated field size in the U.S50. A detailed description of
the IrB/C calculation is included in the methods section and we
discuss the implications of our assumptions in ‘Discussion’.
Values of IrB/C can range from −1 to positive infinity, with 0
indicating a neutral benefit to cost. Despite our simplifying
assumptions and the regional variability of pump, motor, and

Fig. 2 Projected yield changes for Maize and Soybean. Change in ensemble average simulated yield under rainfed (a, e, c, g) and fully irrigated (b, f, d, h)
conditions for maize and soybean under SSP245 mid-century (2036–2065) and end-of-century (2071–2100) climate. Changes are relative to
corresponding average yield (i.e., rainfed or irrigated) from historical (1981–2010) simulations which are shown in Figs. S15 and S16. Stippling shows grid
cells where full 5-GCM ensemble yield distribution is significantly different from historical yield distribution using Kolmogorov–Smirnov test.
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application efficiencies, our estimates of irrigation costs reason-
ably approximate reported irrigation pumping costs from the
2013 Farm and Ranch Irrigation Survey51, (RMSE= $68 Ha-1;
Supplementary Fig. 19).

Figure 3 shows the historic and future ensemble average IrB/C
under a SSP245 emissions trajectory. For completion, we show
IrB/C values for all simulated grid cells. There are many areas
throughout the U.S. that irrigate primarily with surface water and
estimated pumping costs over these areas may be artificially high.
As expected, historically irrigated areas throughout the High
Plains have exhibited the highest average annual IrB/C with a

return ratio of approximately 0.76 (Table 1). By mid-century,
there is a significant increase in average IrB/C throughout the
north central U.S. and upper Midwest, especially for soybeans.
Average IrB/C over currently irrigated soybean areas in the High
Plains increases to 0.59 by mid-century and exceeds maize IrB/C
values by the end of the century (Table 1). Over currently rainfed
areas in the midwestern U.S., average annual soybean IrB/C values
become positive by mid-century under a SSP585 future and the
end of the century under a SSP245 future. SSP585 end of the
century Maize IrB/C values are negative over most of the U.S.
(Table 1 and Supplementary Fig. 20). The difference in average

Fig. 3 Average 30-year irrigation benefit to cost ratio. 30-year average irrigation benefit to cost ratio for maize (a, c, e) and soybean (b, d, f) during the
historical (1980–2010), mid-century (2036–2065) and end-of-century (2071–2100) time periods. Future time periods show a 5-GCM ensemble average
under a SSP245 emissions trajectory. Stippling indicates grid cells with irrigation value distributions statistically different from historical distribution.
Historical crop-specific irrigated areas are outlined in black.
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IrB/C values between longer season and historically grown maize
cultivars is most apparent throughout western Minnesota and the
Dakotas (Supplementary Fig. 21).

The results above describe only 30-year average irrigation
returns. However, farmers often install irrigation equipment as a
means of risk mitigation to protect against droughts and within-
season climate variability. IrB/C during the driest year exceeds ~1.5
for nearly all currently irrigated cropland (Supplementary Fig. 22)
in the U.S., and we find a significant increase in the frequency in
which IrB/C is positive (Supplementary Figs. 23, 24) during future
simulations. The positive return frequency for maize (soybean) in
the Corn Belt increases from 14% (14%) to 31% (41%) by mid-
century under SSP245 (Table 1) and is relatively consistent across
individual members of the 5-member ensemble (Fig. 4)

Although there is variability in growing season precipitation
projections between GCMs (Supplementary Figs. 3 and 4), the
spatial patterns of average IrB/C and the frequency in which farmers
could expect positive returns from investing in irrigation are
relatively consistent across all five GCMs. Figure 4 compares 30-
year average maize IrB/C values and the positive return frequency
across the five GCM projections for the mid-century under a
SSP245 emissions trajectory. The corresponding mid-century
SSP245 soybean GCM correlation matrix is shown in Supplemen-
tary Fig. 25. For both maize and soy, the region with the most
variability across GCMs appears to be the north central U.S., where
average IrB/C values and positive return frequencies tend to be the
lowest under the climate projected from NESM3 GCM and highest
under the HadGEM3 GCM. These GCMs correspond with our
cool and wet and hot and dry scenarios respectively. During mid-
century there is relatively little difference in the spatial patterns of
average IrB/C values and positive return frequencies for a SSP585
emissions trajectory (Supplementary Fig. 26).

Irrigation groundwater deficit. The amount of water available
for irrigation is the remaining sum of surface and subsurface
flows after accounting for safe environmental flows and other
uses. Future estimates of water availability are inherently uncer-
tain as they are heavily dependent on future withdrawals and
diversions and explicitly simulating the effects of enhanced or
reduced groundwater pumping and surface water diversions is
outside the scope of this study. Instead, we approximate the
available water for irrigation as the remaining groundwater
recharge after accounting for environmental flows and municipal
use.

Available Water ¼ Recharge�Other Uses
� � ð1Þ

Recharge rates are simulated directly in rainfed pDSSAT
simulations (irrigated simulations don’t have a closed water
budget) and other uses consist of consumptive uses from
industrial and residential sources at the county level24. We hold
other uses constant in future periods following similar
studies21,52. Recharge from pDSSAT reasonably approximates
existing recharge estimates53 over the majority of cropped areas
in the central U.S. (Supplementary Fig. 27).

Figure 5 shows the average irrigation groundwater deficit (i.e.,
available water – irrigation water applied) under fully irrigated
conditions. While many currently irrigated areas, outlined in
black, exhibit near-zero water deficits (or surpluses), there are,
unsurprisingly, multiple areas with substantial average annual
water deficits. As expected, irrigation in the southern High Plains
and California’s Central Valley both operate under substantial
water deficits during an average growing season. Stippling in Fig. 5
highlights areas with a positive annual IrB/C values at least once
every 3 years. During the historical period, there is little overlap
between areas that have a water surplus and areas where irrigationT
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returns are routinely positive, with notable exceptions being
soybeans grown throughout the Mississippi Valley and parts of the
Upper Midwest. In the future, there is an expansion in the area
that could expect positive IrB/C values, but there are also slight
decreases in the groundwater deficit throughout most of the
country. By mid-century, we find an overlap between areas with
positive IrB/C values and an irrigation water surplus in northern
Michigan and Wisconsin for both maize and soybeans and in
multiple regions throughout the Corn Belt, Mississippi Valley, and
Mid-Atlantic states for soybeans (Fig. 5). Note that our analysis
does not explicitly account for the effect of unsustainable
groundwater pumping on future groundwater water availability.
However, we do find that marginal profits from increased yield
could support groundwater pumping from depths that likely
exceed most aquifer’s saturated thickness through the end of the
century under SSP245 (Supplementary Fig. 28).

There is considerable interannual variability in the ground-
water deficits. During a wet year, we find a water surplus for
almost all presently irrigated soybean regions and most irrigated
maize regions outside of the High Plains (Supplementary Fig. 29).
Despite the interannual variability in simulated groundwater
storage, we find that closing 30-year average annual local water
deficits would require up to a 100% reduction in irrigated water
applied throughout regions of the southern High Plains
(Supplementary Fig. 30).

Discussion
The decision to install irrigation equipment or irrigate during a
particular year is multi-faceted. Growers must weigh a number of
often competing variables including yearly energy costs, crop
market values, seasonal weather forecasts, and previous yield

Fig. 4 Inter-model comparison of irrigation benefit to cost ratios and positive return frequencies. SSP245 mid-century (2036–2065) maize IrB/C positive
return frequencies (a–e) and irrigation benefit to cost ratios (f, l, r, x, dd) for each GCM in the ensemble. GCM names are provided in column and row
headers. Left side of diagonal (k, p, q, u, v, w, z, aa, bb, cc) compares IrB/C between GCMs (rows subtracted from columns) and right side of diagonal
(g, h, i, j, m, n, o, s, t, y) compares GCM specific IrB/C positive return frequency (rows subtracted from columns).
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performance. These decisions are further complicated given the
uncertainty of future growing season conditions under climate
change and estimates of future irrigation requirements vary
considerably between studies. In the Midwest, we find that maize
and soybean yields will likely remain near present levels on
average with little to no investment in irrigation equipment, at
least through mid-century. This underscores recent work33 as
well as early integrated assessments29,30. Growing season length is
only part of farmers’ cultivar selection process44, but our mod-
eling results suggest that switching to longer season maize culti-
vars could increase yields by roughly 2 T Ha-1 throughout the

Midwest by mid-century relative to historically planted cultivars
(Fig. 2 and Supplementary Figs. 14, 15). Soybeans are less sen-
sitive to high temperatures than maize54 and we find evidence
that mid-century rainfed soybean yields could be roughly 1 T Ha-
1 higher than present throughout most of the country without
shifting cultivars (Fig. 2). Historically irrigated areas throughout
the High Plains have realized the greatest return on irrigation
investment, but the long-term sustainability of irrigating within
the High Plains Aquifer has been a concern for farmers, scientists,
and resource managers. Although drilling deeper wells is likely
not a successful long-term adaptation strategy55, we find evidence

Fig. 5 Average 30-year irrigation groundwater deficit. 30-year average annual irrigation water deficit under fully irrigated conditions under historical
(a, b), mid-century (c, d), and end-of-century (e, f) climates for maize (a, c, e) and soybean (b, d, j). Currently irrigated areas for maize and soybean are
outlined in black. Irrigation deficit is calculated as the difference between annual groundwater recharge after accounting for other use the total volume of
irrigated water applied. Stippling shows grid cells with positive irrigation returns at least once every 3 years.
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that increased pumping costs alone will be insufficient to deter
future groundwater use (Supplementary Fig. 28), potentially
exacerbating aquifer depletion. The continued positive IrB/C
values throughout the High Plains (Fig. 3) combined with
insufficient water resources (Fig. 5) suggest that climate change
may incentivize farmers in the High Plains to continue unsus-
tainable irrigation practices, at least throughout the middle of the
21st century. However, unexpected shifts in stakeholder’s
response to changing conditions can have profound effects on
irrigation water use. A stakeholder-driven water conservation
initiative in the state of Kansas reduced water use by 31% over a 5
year period56 and lead to a reduction in overall groundwater
withdrawals57. Considering these recent successes, future work
could critically examine the long-term effects of groundwater
conservation initiatives coupled with deficit irrigation under
future climates on agricultural productivity and water resource
sustainability.

Since the early 2000’s, farmers have been installing irrigation
on previously rainfed croplands throughout the Midwest and
Southeast58, and recent studies have found that these regions
could be suitable for sustainably expanded irrigation with some
investment in water holding infrastructure21. Our results suggest
that groundwater could support irrigated soybean throughout
most of the eastern U.S. and irrigated maize in some regions of
the Southeast, but we find little to no net economic benefit of
irrigating maize or soybean throughout most of the eastern U.S.
during an average year (Fig. 3). The frequency of drought is
expected to increase in the future59 and irrigation is often
installed as a risk mitigation measure against drought60,61 which
may not be used continuously from one year to the next. We find
evidence that expanded irrigation could play an important role in
mitigating the impacts of drought throughout most of the U.S.
(Supplementary Fig. 22), with substantial increases in the number
of years that farmers could expect positive returns from irrigating,
especially throughout the Corn Belt and eastern U.S. (Table 1 and
Supplementary Figs. 23, 24). It is important to note that there are
often institutional incentives for installing irrigation equipment
which we did not consider in our cost benefit analysis. The
installation of irrigation as a mitigation measure against drought
is influenced by policy incentives as well as farmers’ individual
risk tolerance. As insurance premiums increase with warmer
growing season temperatures62,63, farmers may be further
incentivized to install irrigation equipment. This could lead to
further groundwater depletion and other water resource chal-
lenges in areas without sufficient groundwater recharge rates.
Assuming a theoretical desirability threshold of positive IrB/C
values at least once every 3 years we find that groundwater could
support the expanded and routinely profitable irrigation of soy-
bean throughout many regions of the Corn Belt, southern Mis-
sissippi Valley, Mid-Atlantic, as well as northern Michigan and
Wisconsin. The higher water demand and greater temperature
sensitivity of maize limits areas where groundwater could support
expanded sustainable and profitable irrigation to northern
Michigan and Wisconsin (Fig. 5). While a high emissions future
is increasingly unlikely, end-of-century SSP585 maize production
could be severely limited across many historically productive
regions (Supplementary Fig. 12). The increased productivity and
lower irrigation water requirements of soybean could have cas-
cading implications for crop rotations, markets, and consumers.
Future work could explore the economic, social, and environ-
mental tradeoffs associated with expanding soybean production
over areas that have historically produced maize.

Economic pressure for irrigation expansion in Montana, North
Dakota, and South Dakota may create future water resource
challenges. These areas all experience high IrB/C ratios for both
maize and soy by mid-century (Fig. 3) but do not have additional

groundwater resources available to support widespread sustain-
able expansion (Fig. 5). These three states are underlain by a
combination of thick sandstone aquifers and glacial sediments
that could provide abundant water resources for short- to
medium-term production64. However, like the High Plains
Aquifer to the south, expanded irrigation in much of the region
would not be sustainable. Policy makers can respond to these
projections by putting in place measures that account for local
resource sustainability in allowing large-scale groundwater
withdrawals.

Irrigation water use decisions are highly variable across time
and space and may not necessarily be explained by differences in
crop choice, weather, infrastructure, or soil65. Here, we have
made several simplifying assumptions to approximate irrigation
costs and benefits at the continental U.S. (CONUS) scale. For
example, irrigation pump and application efficiencies will vary
considerably with the type and age of irrigation system and
ownership costs depend on the size and type of system being
installed as well as local socioeconomic variables such as labor
rates, interest rates, insurance premiums, and external incentives.
The average irrigation ownership cost for a central pivot system
($337 hectare-1) was acquired from four available extension
documents with estimates that range from $189 to $405 hectare-1
(Supplementary Table 2). Ownership costs account from ~20% to
nearly 100% of total operational costs depending on the depth to
groundwater, and consequently pumping costs. As such IrB/C
values are sensitive to the approximated ownership costs, but the
overall patterns shown in Fig. 3 are relatively consistent for
ownership costs of $189 and $405 (Supplementary Fig. 31).

There are several important limitations to our modeling fra-
mework and analysis that should be noted. Here we discuss five
primary limitations of this work and provide suggestions for
addressing these limitations in future work. First, we do not
account for changes in depth to groundwater due to shifting
withdrawal rates. Simulated recharge rates within pDSSAT do
account for changes to precipitation and evapotranspiration, but
those changes are small relative to the potential impact of
increasing (or decreasing) withdrawals. As such, our results reflect
the isolated climatological impact on maize and soybean irrigation
profitability and sustainability under present groundwater avail-
ability. A theoretical 20% increase in the depth to groundwater has
minimal impact on the spatial pattern of IrB/C values (Supple-
mentary Fig. 32). Developing future CONUS scale groundwater
availability scenarios with evolving land use and withdrawal rates
would be a substantial contribution to evaluating future water
availability. Further, our results could influence existing land use
projections such as those from the Land Use Harmonization
project66. A comparison of land use projections with water
availability and agricultural productivity could inform land use
optimization for agriculture, renewable energy development,
residential use, and other development. Second, we utilized a
simplified irrigation scheme within pDSSAT and our IrB/C ana-
lysis. Crops in pDSSAT are irrigated with 10mm of water anytime
plant available water falls below 40% throughout the growing
season. Many regions have successfully promoted deficit irrigation
(a practice of applying less water than is required to meet the full
crop evapotranspiration demand) as it has demonstrated to have
minimal impact on yields while conserving water use67. Simulat-
ing future crop productivity under various deficit irrigation stra-
tegies could help identify regions, crops, and management
strategies that optimize tradeoffs between productivity and water
use. Third, future adaptations to crop selection and other man-
agement decisions are difficult to predict. As already mentioned,
climate is only one component of a complex decision making
process that farmers undertake when selecting cultivars and
planning for the future44. We have approximated maize cultivar
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shifts as a function of climate and evaluated the consequences of
those shifts against maintaining historic maize cultivars, but there
will likely be unforeseen shifts in cropping practices that will
invalidate our assumptions. Fourth, our modeling exercise does
not account for the influence of irrigation on local and regional
climate, which has been shown to be important throughout
regions of the U.S.68,69. While irrigation induced changes to local
and regional climate are likely secondary to climate change effects,
future work exploring the land-atmosphere feedbacks between
future changes in irrigated agriculture (and other agricultural
management practices) could help constrain regional climate
projections. Fifth and finally, our results may be dependent on
inherent biases and limitations within pDSSAT. As the focus of
this work is to explore the potential feasibility of current and
expanded irrigation across a range of future climate projections,
we opted to use a single crop model driven with an ensemble of
climate projections. While we can’t directly evaluate pDSSAT
against other crop models, recent crop model intercomparison
projects have reported that pDSSAT tends to have the highest skill
at simulating maize growth in the U.S.70.

Conclusion
Irrigation is an essential component of U.S. agriculture. Climate
change will alter both crop water demands and the amount of water
available for irrigation. Using a 5-member ensemble of future cli-
mate scenarios across multiple emissions trajectories we find sig-
nificant changes in marginal yield gains from irrigating and
corresponding irrigation benefit-to-cost (IrB/C) values. By mid-
century, there are significant increases in marginal yields through-
out the north central U.S. and upper Midwest for maize, and most
of the central U.S. for soybean. Higher marginal yield values lead to
an increase in the average IrB/C values throughout the Dakotas,
Northern Michigan, Wisconsin, and eastern Texas. This could
potentially incentivize farmers in the region to install irrigation and
place additional pressures on groundwater resources. In the Corn
Belt, we find little to no increase in maize and soybean marginal
yields. Average annual rainfed maize and soybean yields could
continue to increase throughout the majority of the Corn Belt, at
least throughout the mid 21st century. Warmer temperatures and
shifting precipitation patterns will likely result in more frequent
drought conditions throughout the Corn Belt and having the ability
to irrigate during a dry year will be increasingly advantageous.
However, our results suggest that the costs of irrigating will out-
weigh the benefits over the long term unless there are external
incentives to reduce ownership and operational costs.

The feasibility of future sustainable irrigation hinges on the
availability of water suitable for agricultural use. As agriculture is
the single largest consumer of water in the country and future
water resources are uncertain, it is critical to weigh the tradeoffs
from allocating additional water resources to agricultural use.
Expanded soybean irrigation may be feasible and profitable
throughout multiple regions of the eastern U.S. and could be an
important component to help adapt agricultural systems to cli-
mate change. Some regions in the northern Midwest could expect
increased yields and routinely positive returns from irrigating
maize, potentially incentivizing agricultural intensification in this
area. It will be important for decision makers throughout the U.S.
to understand and account for local water demand and availability
when developing policies guiding irrigation installation and use.

Data and methods
Experimental design. This main objective of this study was to
explore the economic feasibility of both current and expanded
irrigation for maize and soybean across the contiguous United
States (CONUS) for a range of projected climate futures. To

address this question, we developed a research framework con-
sisting of four main components: (I) crop model calibration and
evaluation, (II) GCM selection and downscaling, (III) running
historic and future crop simulations, and (IV) post-processing
crop model output to derive feasibility indices. Each component
is briefly described in the following paragraphs with additional
detail in the following subsections.

We ran pDSSAT for three 30-year periods: a historical period
from 1981–2010, a mid-century period from 2036–2065, and an
end-of-century period from 2071–2100. To explore the uncer-
tainty in future climate projections we used a five-member
ensemble of statistically downscaled GCMs from the sixth phase
of the Climate Model Intercomparison Project (CMIP6) under
both medium and high future emissions trajectories or Shared
Socioeconomic Pathways - SSP245 and SSP585 respectively.
SSP585 (SSP245) represents a high emissions (middle of the road)
future and is comparable to the RCP8.5 (RCP4.5) emission
trajectory from CMIP571. Details of the GCM selection process
and downscaling approach are described below.

Historic simulations were calibrated using county level data on
crop management and progress data such as planting date,
maturity date, and harvest date, and evaluated against county level
yield data. Future crop simulations attempt to account for potential
adaptations to planting date and cultivar selection through
modifying management and crop physiological parameters.

We assess the feasibility of current and future irrigation
through two main indices, the irrigation benefit to cost ratio
(IrB/C) and the irrigation water deficit. Each index is calculated for
maize and soybean over all currently cultivated land in the
CONUS. Briefly, irrigation benefits are approximated as the
marginal yield gained from irrigating, and irrigation costs
are calculated based on an estimate of pumping and ownership
costs. Irrigation water deficit is the difference between approxi-
mated water available for irrigation (after accounting for other
uses) and simulated irrigation requirements.

Crop model input and calibration data. We simulated daily
maize and soybean growth on a 5-arcminute grid over all his-
torically cultivated areas in the CONUS for historical and future
periods. Both maize and soybean were simulated using version
4.6 of the Decision Support for Agrotechnology Transfer38,72

modeling ecosystem using the CERES-Maize73 and CROPGRO-
Soybean74,75 models respectively. DSSAT is a point-based bio-
physical modeling framework that links multiple cropping system
models to simulate crop growth as a function of weather, soil,
management, and nutrient availability. We parallelize DSSAT to
operate on the aforementioned 5 arcminute grid using the par-
allelized System for Integrating Impacts Models and Sectors
(pSIMS)37, and herein refer to the gridded model as pDSSAT. At
a minimum, pDSSAT requires the following input data: (I) daily
values of maximum and minimum temperature, precipitation,
and solar radiation, (II) detailed soil profile data such as soil
horizon depths, percentage sand, silt, and clay, bulk density,
organic carbon content, pH, and root abundance; (III) manage-
ment data such as planting date, planting density, planting depth,
row spacing, fertilizer practices, irrigation rates, and detailed crop
growth parameters. We utilize daily meteorological data from the
Livneh dataset, which assimilated data from roughly 20,000
weather stations into the Variable Infiltration Capacity Hydro-
logic model to provide daily gridded hydrometeorological data at
a 1/16° horizontal resolution for the CONUS, Mexico and
southern Canada76,77. The datasets used here to calibrate, eval-
uate, and force pDSSAT are listed in Table 2 and a detailed
description of the calibration approach is included below. For
each 30-year time period, pDSSAT was run in sequence with a
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fallow period between harvest and planting to prevent the re-
initialization of soil conditions at the beginning of each growing
season, which introduces significant biases78.

We used the CERES-Maize module within pDSSAT to simulate
maize growth. CERES-Maize estimates plant growth through
accumulated thermal energy, approximated as Growing Degree
Days (GDDs) above an 8 °C threshold. Cultivar differences are
accounted for through six crop parameters: p1 approximates the
accumulated GDDs from plant emergence to the end of the
juvenile period; p2 is the development delay for each daylight
hour above 12.5 h; p5 is the GDDs required for plants to progress
from silking to maturity; g2 is the maximum kernel number per
plant; g3 is the kernel growth rate during optimum conditions;
PHIT is the thermal time between successive leaf tips. Here, we
approximated historical values of p1 and p5 using weekly crop
progress data from the USDA NASS, and the remaining maize
parameters follow Lopez et al.20 Specifically, we calculated the
total accumulated GDDs during the interval from plant
emergence to tassel initiation and silking to physiological
maturity based on when 50% of plants in each state have
surpassed the respective threshold (i.e., sowing, emergence,
silking, maturity). Since observations of tassel initiation do not
exist in the NASS dataset, we approximated p1 using the
relationship between tassel emergence, estimated here as 14 days
prior to silking, and tassel initiation:79

GDDTI ¼ 0:46 � GDDTE � 25:9 ð2Þ
Where GDDTI is the accumulated GDDs between plant
emergence and tassel initiation and GDDTE is the accumulated
GDDs between plant emergence and tassel emergence.

We simulated soybean growth using the CROPGRO-Soybean
module within pDSSAT74,80. Soybean development is a function
of both temperature and photoperiod. Within CROPGRO,
soybean response to photothermal time varies with plant growth
stage and cultivar. pDSSAT contains 13 soybean Maturity Groups
(MGs) with 8 varietals in each group. Cultivars are organized from
cooler/longer day varietals, typically planted in higher latitudes, to
warmer/shorter day varietals, typically planted in lower latitudes.
Growers in the U.S. typically plant soybean varietals ranging from
MG 00 in the northern plains to MG 09 in southern Florida43.

To approximate historical soybean varietals, we calculated
accumulated photothermal time between average historical plant
emergence and plant maturity dates from NASS and linearly
mapped the range of values to soybean cultivar indices.

After estimating maize and soybean phenological parameters,
we calibrated simulated yield to observed county yield from NASS
by modifying the planting density as well as the maximum kernel
number (g3) for maize and the cultivar ID for soybean. State level
planting densities were acquired from USDA NASS23. We linearly
increased the kernel number from 730 in 1980 to 790 in 201020

and soybean cultivar ID numbers were approximated annually
based on temperature and photoperiod as described above.
Finally, we iteratively adjusting the Soil Level Productivity Factor
(SLPF) in pDSSAT. We ran irrigated and rainfed simulations with
SLPF values varying from 0.05 to 1.0 from 1991–2000 and
assigned county-level SLPF values that minimized the RMSE
between county-level observed and simulated yields. To aggregate
simulated yields from the 5-arcminute resolution to the county
level we used a crop-specific irrigated area map developed by
ref. 20 Maps of crop specific irrigated and rainfed area are shown
in Supplementary Fig. 11. The irrigation map was calculated by
combining crop distribution data from the USDA NASS Cropland
Data Layer81 with county level irrigated area statistics from the
Moderate Resolution Imaging Spectroradiometer Irrigated Agri-
culture Dataset for the United States (MIrAD)82. After estimating
county level SLPF values, we evaluated simulated yields against
reported county-level yields from 2001–2010.

Future advancement in plant breeding could lead to increased
yield potential for maize and soybean while also increasing their
resilience to environmental stress. As projecting these advance-
ments adds additional uncertainty to our analysis, we hold crop
physiological parameters static for future periods and allow for
relatively simple adaptations in planting date and cultivar
selection. Shifting planting dates is one of the easiest adaptations
that growers can make. We approximated future planting dates
for maize and soybean using a random forest algorithm trained
on historical planting dates and 6 predictor variables: (1)
February – April accumulated Growing Degree Days (GDDs);
(2) February – April average daily Standardized Precipitation-
Evapotranspiration Index (SPEI); (3) February – April average

Table 2 Data sources for forcing and calibrating pDSSAT simulations, and calculating the IrB/C and irrigation water deficit
values.

Data Type Data Source

pDSSAT input and forcing Daily meteorological forcing data Livneh et al.76

Future climate projections CNRM-CM6: Voldoire (2019)
CanESM5: Swart et. al., (2019)
HadGEM3-GC31-LL: Good (2019)
MPI-ESM1-2-LR: Wieners et. al., (2019)
NESM3: Cao, Jian (2019)

Gridded soil textures Shangguan et al., (2014)
Global atmospheric CO2 Meinshausen et al. (2020)
Fertilization rates Lopez et al.20

U.S. cultivated area Boryan et al.81

pDSSAT calibration and evaluation Irrigated Area Pervez & Brown82

County crop yield USDA NASS Quickstats
County crop progress dates USDA NASS Quickstats
State planting density USDA NASS Quickstats
Irrigation application rates and pumping costs 2013 USDA Farm and Ranch Irrigation Survey
Groundwater recharge rates Reitz et. al.53

IrB/C and water deficit calculation Depth to groundwater and transmissivity Zell & Sanford49

Energy costs U.S. Energy Information Association
Irrigation ownership and maintenance costs See Table S2
Irrigation application and pump efficiency McCarthy et al.48; New (1988)
Industrial and municipal water use Dieter et al.24
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temperature; (4) February – April total precipitation; (5) average
state latitude, (6) average state longitude. The trained random
forest reasonably recreates statewide historical maize planting
dates (out of the box r2 of 0.88), but struggles to capture historic
soybean planting dates (out of the box r2= 0.21).

We simulated future maize growth using both historic and
shifted cultivars. Future shifts in maize cultivars were approxi-
mated by scaling historic estimates of p1 and p5 by the change in
accumulated GDDs during their respective periods under
historical and future climate for each time period, GCM, and
SSP scenario, yielding a climate specific cultivar map. Other
maize parameters (g2, g3, and PHINT) are kept static in future
simulations. We held soybean varietals constant for all future
simulations given the relatively large temperature bands of
soybean maturity groups43.

GCM selection and downscaling. pDSSAT was forced with cli-
mate projections from 5 GCMs from the CMIP6 archive and
statistically downscaled to 1/16° horizontal resolution. We
selected 5 GCMs that cover the projected range in future tem-
perature and precipitation for the Midwest based through com-
paring projected changes in average annual temperature (ΔT) and
precipitation (ΔP) for the Midwest from 2071–2100 under
SSP585 (Supplementary Fig. 2)83. We next identified the 10th,
50th, and 90th percentile values of ΔT and ΔP. These values
represent the median as well as the four corners of the range of
possible futures (e.g., hot and dry, cool and wet, etc.). Second, we
calculated the proximity of each model simulation to the 10th,
and/or 90th, and 50th percentiles of ΔT and ΔP using the model’s
z-scores to weight changes in temperature and precipitation
evenly.

DzTi ;z
P
i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jzTi � zTi j
� �2 þ jzPi � zPi j

� �2� �r
ð3Þ

Where DzTi ;z
P
i
is the distance of a model (j)’s ΔT and ΔP to either

the corner or middle (i)’s 10th, 50th, and/or 90th percentile. We
then selected the 5 models with the lowest value of D for each
corner and the inter-model median. Finally, of the 5 selected
models at each intersection, we selected the single model that best
recreates historical climate (Supplementary Fig. 1) based on a
combined skill score (Shist) which averages independent skill
scores of temperature (ST) and precipitation (SP). ST measures the
overlapping area between probability density functions of simu-
lated and observed monthly temperature values.

ST ¼ ∑
n

i
minðZGCM;ZObsÞ ð4Þ

Where n is the number of bins in the pdf, ZGCM is the frequency
of simulated values in a given bin, and ZObs is the frequency of
observed values in a given bin. If a model simulates observed
temperature perfectly, ST will be equal to 1. SP consists of six
functions that each consider a different aspect of precipitation84.

SP1 ¼ 1� jAGCM � AObsj
2 � AObs

� �0:5

ð5Þ

SP2 ¼ 1� jAþ
GCM � Aþ

Obsj
2 � Aþ

Obs

� �0:5

ð6Þ

SP3 ¼ 1� jA�
GCM � A�

Obsj
2 � Aþ

Obs

� �0:5

ð7Þ

SP4 ¼ 1�
jPGCM � PObsj

2 � PObs

 !0:5

ð8Þ

SP5 ¼ 1� jσGCM � σObsj
2 � σObs

� �0:5

ð9Þ

SP6 ¼ 1� ðnRMSEGCMÞ0:5 ð10Þ

AGCM and AObs are the areas below the cumulative distribution
functions of simulated and observed precipitation and A+ and A
− are the areas right and left of the 50th percentile. Functions SP1
through SP3 represent the ability of the model to simulate the
entire precipitation distribution, high precipitation events, and
low precipitation events, respectively. P is the mean total
precipitation over the Midwestern U.S. and σ is the standard
deviation of the precipitation pdf. Thus, a model’s ability to
recreate historical average precipitation and precipitation varia-
bility is accounted for through SP4 and SP5 respectively. SP6 was
added here to measure a model’s ability to recreate the monthly
seasonal cycle of precipitation, where nRMSE is the normalized
root mean square error between simulated and observed monthly
seasonal precipitation cycles. The six scores are simply multiplied
to create a single score for precipitation ðSPÞ, where 1 would
represent perfect agreement between simulated and observed
precipitation. The overall model skill (Shist) is calculated as the
average between ST and SP.

Shist ¼
ST þ SP

2
ð11Þ

The final 5 GCMs, which represent a range of possible futures,
from relatively cool and dry to hot and wet, are shown in
Supplementary Table 1. Although the models were selected based
on the SSP585 scenario from 2071–2100, for simplicity we use the
same models for all future time periods.

Future climate projections were statistically downscaled using a
delta change approach. Monthly GCM outputs were used to
create seasonal cycles for historical (1981–2010) and future
(2036–2065 & 2071–2100) periods for both SSP245 and SSP585
for each of the final 5 GCMs. Monthly differences between a
GCM’s historical and future simulations were interpolated to the
Livneh grid and applied to daily observations (additive for
temperature and multiplicative for precipitation and solar
radiation). While relatively simple to implement, the delta change
approach reduces future bias in GCM simulations, while retaining
historical climate variability and is commonly used in climate
impact studies.

Irrigation value. We calculated the irrigation benefit to cost ratio
(IrB/C) for each grid cell (i,j) and growing season (y) relative to the
associated operational costs:

IrB=C ¼ 4Yc;i;j;y �MPc

Pc;i;j;y þ O
y

� 1 ð12Þ

Where 4Yc;i;j;y is the grid cell specific marginal yield gain for a
given crop (c), MPc is the market price for that crop, here MPc is
defined as the 2000–2020 average international market price for
maize and soybean from the FAO’s Food Price Monitoring and
Analysis Tool ($160 and $365, respectively)85 and held constant
for future time periods. Pc;i;j;y are the pumping costs of irrigating
crop c in grid cell i,j during growing season y and Oy are annual
ownership costs. While ownership costs will vary considerably
based on specific application, we assume a central pivot system
covering a quarter-mile field with a 20-year life cycle and calcu-
late an average ownership cost from multiple extension docu-
ments (Supplementary Table 2). Pumping costs are calculated
through combing regional energy costs from the US Energy
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Information Administration (Supplementary Fig. 18)47 with the
total energy required for pumping ðEDÞ48. Specifically:

ED ¼ ρgVLT ´ εP ð13Þ
Where ρ is the density of water, g is gravitational acceleration, V
is the volume of water being pumped over the growing season, εP
is the pumping efficiency which we assume to be 0.7786, and LT is
the total lift required for pumping, calculated as:

LT ¼ LWT þ LCD þ LWD þ LPR ð14Þ
Where LWT is the depth to water table49 interpolated to the
pDSSAT grid, LCD is the additional lift required due to the cone
of depression that forms around the well during pumping, LWD is
the additional lift due to drawdown within the well, and LPR is the
effective lift due to pipe pressurization. We calculate the com-
bined lift required from the cone of depression ðLCDÞ and pipe
drawdown ðLWDÞ using the following equation:

LCDþWD ¼ 1:5 ´
Q
4πT

�0:5772� ln
r2S
4Tt

� �	 

ð15Þ

Where Q is the pumping rate, T is the spatial varying
transmissivity49 and S is the specific yield approximated here as
0.2. We assume a uniform well radius ðrÞ of 9 inches and a static
irrigation period (t) of 90 days. Accounting for 50% well drag, we
multiply LCDþWD by 1.5. An example of pumping depth com-
ponents is shown in Supplementary Fig. 33.

Water deficit. We calculate the water deficit as the difference
between total water applied within a simulation and the amount
of water that could sustainably be available for irrigation.
Groundwater available for irrigating is calculated using simulated
surficial runoff and subsurface drainage from pDSSAT. Specifi-
cally:

Available Water ¼ Recharge� Other Uses
� � ð16Þ

Where recharge is simulated directedly within pDDSAT as sub-
surface drainage, providing a consistent scenario-specific
approximation of recharge throughout CONUS. Other uses
consist of consumptive uses from industrial and residential
sources at the county level24, which are held constant in future
periods.

Data availability
The DSSAT model output data and campaign files used to generate the results of this
paper are publicly available at https://doi.org/10.5281/zenodo.7747561. DSSAT input
data used here are listed in Table 2. The Livneh meteorological dataset can be
downloaded from the NOAA Physical Science Laboratory (https://psl.noaa.gov/data/
gridded/data.livneh.html). CMIP6 data are archived at the Lawrence Livermore National
Laboratory (https://esgf-node.llnl.gov/projects/cmip6/). The Global Soil Dataset for use
in Earth System Models can be found at https://doi.org/10.1002/2013MS000293. Model
parameterization data such as crop progress dates, crop yields, planting densities, and
cultivated area can be acquired from the U.S. Department of Agriculture National
Agricultural Statistic Service (https://www.nass.usda.gov/Quick_Stats/). Regional energy
prices used in the calculation of groundwater pumping costs are listed by the U.S. Energy
Information Association (https://www.eia.gov/electricity/state/).

Code availability
The DSSAT crop model can be downloaded from the DSSAT webpage (https://dssat.net/).
The parallel System for Integrating Models and Sectors (pSIMS) is open source and is
available on the RDCEP github (https://github.com/RDCEP/psims). Scripts used for
downscaling CMIP6 data, creating model campaign files, and analyzing model output is
available from the corresponding author upon request.
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