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Time-variations of the climate feedback parameter
λ are associated with the Pacific Decadal
Oscillation
Benoît Meyssignac 1✉, Jonathan Chenal1,2,3✉, Norman Loeb 4, Robin Guillaume-Castel 1 &

Aurélien Ribes 5

Climate models suggest that the climate feedback parameter λ, which denotes the magnitude

of the Earth radiative response to a change in global surface temperature, varies with time.

This is because λ depends on the pattern of sea-surface temperature. However, the time-

variability of λ and its relation to the sea-surface temperature pattern has not been evaluated

in multi-decadal observations. Here, using up-to-date observations, we evaluate the global

energy budget over successive 25-year windows and derive a time-series of λ over

1970–2005. We find λ varied within the range [−3.2, −1.0]W ⋅m−2 ⋅ K−1 since 1970. These

variations are linked to the sea-surface temperature pattern changes associated with the

Pacific Decadal Oscillation. Climate model simulations forced with observations of historical

sea-surface temperature show a 1970–2005 mean λ that is consistent with observations.

However, they fail in reproducing observed λ time-variations since 1970 which are associated

to the Pacific Decadal Oscillation, meaning that climate models underestimate the pattern

effect at decadal time scales.
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The climate feedback parameter λ determines the magnitude
of the Earth radiative response to a given change in global
mean surface temperature (GMST). The less negative λ, the

smaller the radiative response of the Earth to a given change in
GMST. It means that, under an external forcing that raises
GMST, such as increased atmospheric CO2 concentrations, the
climate system will warm more when λ is less negative. So λ plays
a central role in the magnitude of the Earth climate response to
increasing atmospheric CO2 concentrations. But λ is poorly
constrained.

In addition the magnitude of the climate response depends on
the inverse of λ, so estimates of the magnitude of the climate
response are very sensitive to uncertainties in estimates of λ. This
is illustrated with a simple metric of the magnitude of the climate
response: the equilibrium climate sensitivity (ECS). The ECS is
the equilibrium surface temperature response to a doubling of
atmospheric CO2 concentrations. It is inversely related to the
climate feedback parameter λ by the global energy budget of the
climate system at equilibrium:

ECS ¼ �ΔF2 ´

λeq
ð1Þ

where ΔF2× is the forcing anomaly due to doubling atmospheric
CO2 concentrations. Because of the inverse relation (1), the
uncertainty in the climate feedback parameter is increased when
propagated in ECS error budgets and it becomes the dominant
source of ECS uncertainty1,2 and thus of projections of the
amplitude of future climate change.

The main reason why the climate feedback parameter remains
uncertain is because it cannot be measured directly. It is instead
estimated from a variety of methods ranging from process
understanding of individual feedbacks to observational constraints
derived from paleo-reconstructions or from the recent record of
the global energy budget. Among these methods, the global energy
budget approach is arguably the most simple and direct method to
estimate the climate feedback parameter. It is a simple method
compared to the process understanding approach because it uses
only estimates of the radiative forcing ΔF, the surface temperature
changes ΔT, and the planetary heat uptake ΔN through the simple
global energy balance framework ΔN=ΔF+ λΔT. It is a direct
method compared to paleo-reconstruction methods as it uses
instrumental observations of the current climate system instead of
proxy indicators of a past and potentially different climate system.
For these reasons there is a priori confidence in the global energy
budget approach and it has been widely used in the literature to
estimate the historical climate feedback parameter and derive an
observational constraint on the uncertainty range of the ECS2–5.

We count in total three types of methods that derive estimates
of λ and of the ECS, from observations of the global energy
budget: methods based on the difference of the energy budget
between two time periods, methods based on a regression of the
energy budget and methods which analyse the changes of the
energy budget in response to internal variability. A major issue
with all these observational methods is that they provide with
estimates of the climate feedback parameter during the historical
period, ~λ, which are potentially different from the climate feed-
back parameter at equilibrium λeq (which is the climate feedback
parameter that is involved in the ECS definition, see Eq. (1)).

Indeed, there is theoretical and modelling evidence that the
global climate feedback changes with time under increasing CO2

concentrations. General circulation models (GCMs) show that λ
tends to get less negative over time as equilibrium is approached.
As a consequence, historical simulations of GCMs show climate
feedback parameters that are generally more negative than the
equilibrium climate feedback parameter. This is for two reasons.

First because in GCM simulations, λ depends on the climate state
which means λ depends on the magnitude of the climatological
mean in T and F6–11. Second because λ varies with the pattern of
SST6,12–14. However, over the historical period and under a
doubling of the CO2 atmospheric concentration the climate state
changes only by a few degrees such that the climate state
dependance of λ is small and the pattern effect explains mostly
the decrease in λ when the equilibrium is reached. The decrease in
λ close to equilibrium means that estimates of the climate feed-
back parameter derived from the historical observations of ΔT,
ΔF and ΔN, are systematically smaller than the equilibrium cli-
mate feedback parameter and need to be corrected for the pattern
effect to provide a constraint on the ECS.

To correct ~λ estimates for the pattern effect, the classical
approach in the literature is to use GCM simulations to quantify
the relationship between the historical ~λ and the equilibrium
λeq2,11,15. This is a first step forward but this is not satisfactory yet
as the extent to which GCMs can capture the time evolution of λ
over decades, associated to changes in the SST pattern, has not
been evaluated. Here we use a recent regression method2 to derive
the first observational estimate of the time variations of ~λ since
1970 and we compare this estimate with climate model simula-
tions of ~λ.

Over a given time period, the climate feedback parameter ~λ is
related to the global mean temperature change ΔT, the radiative
forcing change ΔF, and the change in planetary heat uptake ΔN,
by the global energy budget:

~λ ¼ ΔN � ΔF
ΔT

ð2Þ

We use a differential form of the energy budget2 and we regress
ΔN− ΔF over ΔT for all time-windows longer than 25 years
which start after 1957. It yields estimates of the time variations of
~λ over 1970–2005 (see Methods). We use this approach rather
than the method3,11,16 based on the difference between two his-
torical states (a reference state around 1860 and a present state)
because regressions are a better estimator of ~λ and they make a
full use of the available data2,17. In addition, compared to the
difference method, the regression method relies on recent
instrumental data only, and there is no dependence on a late 19th

century reference state that is still largely unknown2.
For ΔT, we use the HadCRUT4 ensemble data set of surface

temperatures averaged globally and annually (see Fig. 1 and
Methods). For ΔF we use the IPCC AR6 forcing data18 and the
associated uncertainty (see Methods). The planetary heat uptake
ΔN has long been the limiting dataset to estimate ~λ over past
decades. Here we derive an estimate of N by combining the
estimates of the continent, ice and atmosphere heat uptake from a
recent inventory19 with an estimate of the ocean heat uptake (see
Fig. 1). The ocean heat uptake largely dominates the planetary
heat uptake (more than 90%19) and it is the largest source of
uncertainty20. We derive the estimate of the ocean heat uptake
primarily from ocean in-situ temperature analysis. We account
for the uncertainty due to the interpolation of sparse in-situ data
before the 1980s and due to instrumental corrections by using
seven different products. All in-situ temperature analysis are
based on the same in-situ data and thus can show some sys-
tematic uncertainty. To account for the systematic uncertainty we
use an independent estimate of the ocean heat uptake computed
from the thermal expansion of the ocean which were derived
from a recent reconstruction of the 20th century sea level
budget21 (see Methods).
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Results
Figure 2 shows the estimates of ~λ over any time-window longer
than 25 years that is included in the period 1957–2017. In the
following, we focus on the estimates of ~λ over successive 25-year
windows included within 1957–2017 (see the dashed grey line at
y= 25 yr on Fig. 2). It yields a time series for ~λ over 1970–2005
(Figs. 2a and 3a). This time series confirms that ~λ has changed
with time (Fig. 3a).

Across the second half of the 20th century ~λ has varied with
values within the range [−3.2, −1.0]W ⋅m−2 ⋅K−1 (see Figs. 2a
and 3a). In particular, ~λ shows a rapid increase of
+2.1W ⋅m−2 ⋅K−1 between 1976 and 1990 followed by a con-
tinuous decrease between 1990 and 2005 of −1.9W ⋅m−2 ⋅K−1

which accelerates between 1998 and 2005. These variations are
likely caused by the pattern effect as the climate state has little
changed since 1970. In particular, the sharp time variations of ~λ in
the 1970s and in the late 1990s could be explained by the pattern
effect induced by large volcanic eruptions. Indeed, stratospheric
sulfate aerosol forcing from large volcanic eruptions tends to
produce a large radiative response in the few years following the
eruption with relatively limited global temperature change com-
pared to other forcings17. For 25-yr windows that include the large
volcanic eruptions of Pinatubo (1991), Mt Agung (1963) and El
Chichon (1982), this could result in a significant change of ~λ.
However, after correcting for volcanic eruptions (see dashed lines
on Fig. 1 and Methods) and rerunning the regressions we find that
the rapid increase of +2.1W ⋅m−2 ⋅K−1 in the 1970s has been

reduced in amplitude by only 40% while the continuous decrease
since 1980 which accelerates after year 2000 has remained
unchanged (see Figs. 2b and 3b). We find that the residual increase
in ~λ between 1973–1979 and 1987–1993 is strictly positive at the
89.8% confidence level (CL) and the decrease between 1987–1993
and 2001–2005 is strictly negative at the 90.4%CL meaning that ~λ
has varied significantly over the last decades in response to another
process than volcanic eruptions.

The drop in ~λ in the early 2000s (see bottom right angle of the
triangle on Fig. 2b) occurs during the global warming “pause” also
called the “hiatus” period. In our record, which is filtered with a 15-
year pass filter (see Methods), the hiatus period is visible from 2003
to 2012 (Fig. 1). Over this period, surface temperature slowed while
the ocean heat uptake slightly increased and the forcing kept
increasing at about the same pace (Fig. 1). The sudden change in the
rate of the global mean surface temperature rise caused a drop in ~λ.

There has been debate on the intensity of the slowdown in
global mean surface temperature in the literature: some sea sur-
face datasets showing faster decrease in sea surface temperature
(SST) in the 2000s than others22. We tested the regression with
another global mean surface dataset which is based on a different
SST (see Methods). It reduced slightly the observed drop in ~λ (see
supplementary Fig. S1) but did not remove it, meaning this recent
drop in ~λ is robust in observations.

The Clouds and the Earth’s Radiant Energy System (CERES)23

provides with the spectral breakdown of the TOA radiation
budget between the hiatus period (2003–2012) and the post

Fig. 1 Time series of the different terms of the Earth energy budget. a Time series of radiative forcing. b Planetary heat uptake. c Global mean surface
temperature. All time series are low-pass filtered with a cutoff period at 15 years (see Methods). Confidence interval is 17–83%. Dash lines indicate the
time series corrected for major volcanic eruptions.
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hiatus period (after 2012). CERES measurement shows that global
mean outgoing shortwave remained relatively weak until the end
of the hiatus and then sharply decreased because of a decrease in
tropical Pacific low cloud cover whose regional distribution clo-
sely matched that of SST warming24,25. The SST warming showed
a pattern typical of the positive phase of the PDO over the eastern
Pacific. These observations are consistent with recent model
studies which suggest that recent time variations in ~λ are due to
large variations in the global mean cloud feedback in response to
changes in the Pacific SST pattern26–31. Specifically, the physical
mechanism proposed by these studies is that a positive (resp.
negative) shift in the PDO induces a cooling (resp. warming) in
the western tropical Pacific and a warming (resp. cooling) in the

eastern tropical Pacific which weakens (resp. strengthen) the low-
level atmospheric stability in the eastern part of the tropical
Pacific. The decreased (resp. increased) stability leads to reduced
(resp. increased) low-level cloud cover in this region which in
turn reduces (resp. amplifies) global reflection of solar radiation
at TOA meaning a strengthening (resp. weakening) of the global
mean cloud feedback.

This study provides a longer record of EEI than CERES which
enables to explore the time variations of ~λ before the 2000s. We
find that the drop in ~λ during the hiatus period is not exceptional.
~λ was around− 2 W ⋅m−2 ⋅K−1 also in the early 1970s and
experienced a sharp increase in the mid 1970s followed by a
continuous decrease since then. To identify the SST pattern that is
related to these time variations in ~λ, we regress the time series of ~λ
(which is estimated with the successive 25-yr windows, see the
light blue line in Fig. 3a and b) with the local SST that is pre-
viously filtered with a low pass filter and a cutoff period of 15
years (to remove noise, see methods). The correlation map shows
a typical basin scale PDO pattern in the Pacific (with the large
East-West dipole and the North-South Pacific asymmetry, see
Fig. 4). The correlation is positive in the Eastern part of the
Pacific and negative in the western part meaning that a cooling
(resp. warming) in the western pacific and a warming (resp.
cooling) in the eastern Pacific leads to a strengthening (resp.
weakening) of the global feedback (i.e. a global feedback that
becomes less negative). This comparison of ~λ against local SST
shows that ~λ time-variations are indeed associated to the Pacific
seesaw of the SST characterized by the PDO. The relationship
between ~λ and the PDO SST pattern holds over the total period
1970–2005 and also over the smaller period 1980–2005.

To check the synchronicity of ~λ variations with the PDO
oscillations we correlate the time series of ~λ (which is estimated
with the successive 25-yr windows, see the light blue line in
Fig. 3a and b) with the PDO index. We also test the correlation of
~λ with other climate modes of variability including the Indian
ocean Dipole (IOD), the Southern Annular mode (SAM) and the
Atlantic multidecadal oscillation (AMO) (see Methods). Only the
correlation with the PDO is significant (with p-value < 0.05, see
the supplementary information Table S1). The degree of corre-
lation with the PDO is high (>0.78) and it is maximum for a 0 yr
lag, confirming that multidecadal variations in ~λ are synchronous
with the PDO (Fig. 3b). However, the smoothing of the data
prevent from identifying any significant lag, between the PDO
and the time-variations of ~λ, that is below 1 yr. We cannot
determine either which leads the other.

Overall, the fact that ~λ time variations are associated to the
typical Pacific SST seesaw characterised by the PDO and the syn-
chronicity between ~λ time series and the PDO index show that the
pattern effect is closely related to the PDO not only during
the hiatus period (as shown by CERES) but also at multidecadal
time scales. This line of evidence combined with previous evidence
from climate model studies, which shows that the PDO modulates
the global mean cloud feedback26–31, suggest that, at multidecadal
time scales, the primary driver for the pattern effect is the PDO.

This result has consequences for the decadal variability of cli-
mate. If confirmed, it means that when the PDO switches to a long
positive (resp negative) phase (as it happened in 1976 when the
PDO switched from a negative phase between 1960 and 1976 to a
positive phase between 1976 and 1998), the SST pattern switches as
well and the negative (resp. positive) feedback due to SST pattern
changes to a positive (resp. negative) feedback, leading to rapid
enhanced (resp. damped) warming for several decades.

For the long term future, an important question is the extent to
which climate model simulations can reproduce the time varia-
tions in ~λ and its synchronicity with the PDO. This validation

Fig. 2 Estimates of the median climate feedback parameter. Climate
feedback parameter ~λ estimated over any window longer than 25 years
included within 1957–2017. The vertical axis indicates the length of the
window in years. The horizontal axis indicates the central date of the
window in years (as an example, the first 25-year window cover the period
1957–1982 and its central date is 1970 thus its coordinate on the triangle
are x= 1970, y= 25. Note that a horizontal section of the triangle at the
coordinate y= p gives the time series of ~λ computed over successive
windows of length p years). a Estimates of ~λ not corrected for the effect of
major volcanic eruptions. b Estimates of ~λ corrected for the effect of major
volcanic eruptions. Horizontal dashed lines indicate the horizontal sections
that serve for the computation of ~λ time series on Fig. 3.
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over the past is a necessary step to get confidence in the capacity
of climate models to simulate the forced pattern effect under
increasing atmospheric CO2 concentration and simulate the real
world ECS. We compared our estimate of ~λðtÞ with estimates
derived from Atmospheric General Circulation Model (AGCM)
simulations forced at the surface by observed historical SST
(AMIP-piForcing simulations). These simulations allow to eval-
uate in climate models the radiative response of the climate
system to the observed SST pattern (see Methods).

We find that, on long time scales (i.e. for windows of 40-year
length and above), AGCMs estimates of ~λðtÞ are consistent across
models and are consistent with observations despite a small bias
(Fig. 3c). (The bias is probably due to a more severe regression
dilution in the observed estimate of ~λðtÞ than in AGCMs simulation

estimates because there is additional noise in observations of the
surface temperature coming from instrumental errors, seeMethods).

At shorter time scales however (i.e. for windows of length
25 years for example), AGCMs show very weak decadal variations
in ~λ since 1970 (see Fig. 3a, Fig. S9 and also ref. 32’s Fig. 6a which
shows AMIP-piForcing simulations of ~λ over successive 30-year
windows). These weak variations do not reproduce the observed
variations in ~λ associated with the PDO (Fig. 3a). To investigate
further this discrepancy between AGCMs and observations, we
consider the ensemble mean of AMIP-piForcing simulations and
plot the correlation maps of ~λ with the local SST as we have done
before with observations. Results with the ensemble mean are
representative of the general AGCMs AMIP-piForcing simula-
tions as AGCMs AMIP-piForcing simulations are generally

Fig. 3 Time series of the climate feedback parameter. Time series of the climate feedback parameter ~λ computed over windows of length 25 years (a, b)
and over windows of length 40 years (c). These time series correspond to the horizontal sections indicated on the triangle of Fig. 2 (see the grey dashed
lines on Fig. 2). a Time series of ~λ computed over successive windows of length 25 years (light blue curve) and 17–83% confidence level (light blue shaded
area). The grey lines indicate the time series of ~λ computed over successive windows of length 25 years, derived from the AMIP-piforcing simulations. The
yellow dot indicates the estimate of ~λ derived with the planetary heat uptake record of the DEEP-C project52. The magenta dot indicates the estimate of ~λ
derived with the planetary heat uptake record of the CCI sea level budget project51 (see Methods). b Time series of ~λ computed over successive windows
of length 25 years (light blue curve) and corrected for volcanic eruptions and 17–83% confidence level (light blue shaded area). The orange dashed line is
NOAA ERSST v5 PDO index, low-pass filtered with a cutoff period of 15 years. c Time series of ~λ computed over successive windows of length 40 years
(light blue curve) and 17–83% confidence level (light blue shaded area). The grey curves indicate the time series of ~λ computed over successive windows
of length 40 years derived from the AMIP-piForcing simulations.
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consistent with each other in terms of ~λ and SST32 (see Fig. S7
and S8 of the supplementary information).

We find the ensemble mean of AMIP-piForcing simulations
behave differently over 1980–2005 than over 1970–2005. Over the
period 1980–2005 the correlation map between ~λ and the local
SST shows a general PDO pattern as in observations although the
correlation is significant for different portions of the PDO pattern
(Fig. 4). Overall, this means that the relationship between ~λ and
the PDO is broadly similar in observations and the ensemble
mean of AMIP-piForcing simulations, after 1980. This is in
agreement with ref. 32 who find in AMIP-piforcing simulations
that the Earth has warmed after 1980 with a strong tropical
Pacific SST gradient leading to an important pattern effect and a
largely negative ~λ of −1.65 ± 0.46W ⋅m−2 ⋅K−1. However, from
the map correlation of Fig. 4, we also note that there are
important differences between observations and AMIP-piforcing
simulations. Over the South American stratocumulus region,
correlations for the ensemble mean of AMIP-piForcing simula-
tions are strongly positive while they are weakly negative (or not
significant) in the observations. Off of the west coast of North
America, correlations are strongly positive in the observations but

they are weakly positive or not significant for the ensemble mean
of AMIP-piForcing simulations.

Over the longer period 1970–2005 the situation is different.
The correlation map does not show the PDO pattern in the
ensemble mean of AMIP-piForcing simulations (unlike in
observations see Fig. 4). It shows a more globally uniform pattern
with a local positive correlation in the atlantic sector of the
Southern ocean. This result suggests that before 1980, the relation
between ~λ and SST changes in the AMIP-piForcing simulations:
the sensitivity of ~λ to the Southern ocean becoming dominant
over the sensitivity to the Pacific SST. Such a change is not seen in
observations (Fig. 4). Note that, although the ensemble mean of
AMIP-piForcing simulations behaves differently before 1980, it
does not lead to a significant change in ~λ before 1980 (Fig. 3). We
suspect this is because there is a compensating effect of the cloud
response in the eastern equatorial pacific and in the central Pacific
before 1980 (Fig. 4e, f).

Overall, we find that in AMIP-piforcing simulations, ~λ varia-
tions are only weakly associated to the Pacific SST changes
induced by the PDO. They are also associated to SST changes in
other regions and in particular in the Southern ocean. This

Fig. 4 Correlation maps between the climate feedback parameter time series and local SST time series. a, b Correlation map between the observed time
series of the climate feedback parameter ~λ computed over windows of length 25 years (i.e. the light blue time series plotted on Fig. 3a or b) and the
observed local SST (from HadCRUT4) filtered with a low pass filter and cutoff period of 15 years. c, d Same as panels (a) and (b) but computed from
outputs of the ensemble mean of AMIP-piForcing experiments. e, f Same as panels c and d but the correlation is computed against the simulated total
cloud fraction rather than the local SST. Note that on panels (a, c, e) the correlation maps are computed over the whole period 1970–2005 and on panels
(b, d, f) the correlation maps are computed over the period 1980–2015. Note also that middle and bottom panels are reproduced in the supplementary
information Fig. S7 and S8, with the AMIP-piForcing experiment of each model rather than the ensemble mean.
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sensitivity of ~λ to the Southern ocean SST is only marginal in
observations compared to the sensitivity to the PDO.

Why do AGCMs simulations show a low sensitivity of ~λ to
Pacific SST before 1980 ? Is it because AGCMs show too little
sensitivity of tropical low clouds to Eastern Pacific SST changes
(as suggested by ref. 33 who find AMIP models have too little
cloud sensitivity to SST, particularly for shortwave TOA flux. See
their Figs. S7–S11)? Is it because AGCMs show too high sensi-
tivity of Eastern Pacific low clouds to the Southern ocean SST? Or
is it because of both? Could it be also the atmospheric stochas-
ticity alone, without any SST changes, which can cause decadal
variations in the TOA net flux (see e.g. ref. 34, their supplemen-
tary information Fig. 17c,d)? We don’t know yet. But these are
important questions to answer because if such systematic biases
across AGCMs are confirmed, it means that the forced pattern in
climate model simulations, which shows a positive low cloud
feedback in response to the late Eastern Pacific SST warming, may
be biased as well. This would mean that climate models’ estimates
of the ECS are systematically biased. This is an important issue
which calls for further research.

Methods
Estimating changes in radiative forcing, global mean surface temperature and
planetary heat uptake
Radiative forcing. Here we use the ensemble of effective radiative forcing (ERF)
from the IPCC AR635 in order to propagate properly the uncertainties and estimate
rigorously the confidence level of the time variations in ~λ. The ERF of the IPCC
AR6 is computed from two prescribed SST and sea-ice experiments after removing
the top of the atmosphere energy budget change associated with the land surface
temperature response. So it includes the aerosol and the non-aerosol cloud
adjustments. Note however that the IPCC ERF only accounts for the direct
radiative effect of the land surface temperature response and not the indirect effect
on water vapour and tropospheric temperature. But the latter effect is small of the
order of a tenth of W ⋅m−2 18. The IPCC AR6 provides the ERF in the form of an
ensemble of 100,000 time series which has been generated to include all sources of
uncertainty including the uncertainty due to the time correlation in errors. So, with
this ensemble, we can propagate the uncertainty from the observed forcing to the
estimate of ~λ (see below).

Global mean surface temperature. Global mean surface temperature (GMST) time
series are taken from ref. 36 v2 (https://www-users.york.ac.uk/~kdc3/papers/
coverage2013/series.html), spanning from 1850 to present. Following the recom-
mendation of ref. 37, a scale factor of 1.09 is applied to this dataset to correct for the
bias induced by the sea surface temperature present in the dataset that has been
retrieved by satellite. Since we use ordinary least squares method with GMST as
predictor, no uncertainty on GMST can be considered in the regression. However,
we conduct a sensitivity study (see below) to check the sensitivity of our ~λ estimates
with respect to the GMST product. In this sensitivity study we use the GISS GMST
time series38 and the ERSSTv5 dataset39.

Planetary heat uptake. We estimate the total planetary heat uptake by making an
inventory of the heat stored in the climate system. We account for the heat stored
in the cryosphere, in land, in the atmosphere and in the ocean. We use the most
recent estimate of the heat stored in the cryosphere, the atmosphere and land from
ref. 19. The heat stored in the cryosphere, land and atmosphere represents only
~7% of the total planetary heat uptake while the ocean heat uptake (OHU)
represents the remaining 93%. Thus, the Ocean Heat Uptake (OHU) places a
strong constraint on the planetary heat uptake. For this reason, in this study, we
pay a special attention in the estimate of the OHU and the associated uncertainty
(see below). Observations of OHU are primarily derived from the in situ record of
the ocean subsurface temperatures using the TEOS-10 equations of sea water2,40.
For the regression method we need time series of N as long as possible to make full
use of available information. The longest global and continuous ocean temperature
datasets are provided by four research groups41–44. They are objective mapping of
the ocean temperature over 1955–2017 either with a statistical interpolation of the
World Ocean Atlas (WOA) in situ data41–43 or with a combination of statistical
interpolation of WOA in-situ data and climate model information44. The four
products are based on the same database of in-situ data but they show differences
because they use different in-filling strategy for data gaps, different corrections for
instrumental biases and different climatologies. To account for these differences we
use an ensemble of five datasets. This ensemble comprises the NOAA dataset43, the
MRI-JMA dataset42, plus two versions of the EN4 dataset41 (UK Met Office’s
ENACT/ENSEMBLES version 4) and the IAP dataset44(Institute of Atmospheric
Physics) (each version using a different correction of the instrumental biases45,46).
We take as best estimate of OHU the average of the ensemble (named hereafter

“objective mapping solution”) because averaging allows to reduce the effect of
particular errors of individual datasets and emphasizes the common variability
among datasets. The uncertainty in the objective mapping solution is characterized
with the spread of the ensemble. An issue with in situ data is that the coverage is
not global and get sparser as we go back in time. The deep ocean below 2000 m
remains poorly observed. The main source of observations come from repeated
hydrographic campaigns by scientific research vessels. In addition, before the
ARGO era, the data collection relies primarily on ships of opportunity, leaving
areas outside of major trade routes with few direct observations. The objective
mapping approach is efficient to reconstruct ocean temperatures back to ~1950 but
it does not extend below 2000 m due to the sparse sampling at these depths. To
cope with this issue, we add to the objective mapping solution an extra deep OHU
below 2000 m depth of 0.0 ± 0.04W ⋅m−2 between 1960 and 1990 and then
0.07 ± 0.04W ⋅m−2 from 1991 to 201719.

The deep ocean estimate from ref. 19 is based on a statistical method to detect
large-scale trends in the deep ocean temperature from repeat hydrographic
sampling47,48). It has a coarse spatial resolution in particular before the mid-1980s
meaning its uncertainty is potentially underestimated before this period. To
account for this potentially biased uncertainty we use another estimate of the top-
to-bottom OHC change for 1946–201949 based on an autoregressive artificial
neural network (hereafter called “ARANN solution”). It uses in-situ temperature
data from the WOA and performs an iterative autoregression that adjusts spatio-
temporal correlation scales over time (estimated from the in situ temperature data
itself). The autoregressive neural network propagates information from well-
sampled times and regions to more sparsely sampled areas. This approach, which
has been successfuly tested with synthetic data produced from ocean models, is
more robust to sparse data than the objective mapping approach used in the
objective mapping solution. So, we use the ARANN solution as another estimate of
the total OHC since 1957 along with the objective mapping solution. We assume
the distance between the ARANN solution and the objective mapping solution
provides an estimate of uncertainty due to the poor sampling of the ocean below
2000 m depth before the mid 1980s.

Another issue with in-situ data is that they can be systematically biased. A good
example is the systematic instrumental bias in expandable bathythermograph
discovered in the 2000s45. This means that the ARANN solution and the objective
mapping solution which are both based on the same data (WOA) can both be
systematically biased in the same way. To account for this source of systematic
uncertainty we use a totally independent estimate of the global OHC changes since
1957 based on the sea level budget approach20. We use the sea level budget
reconstruction from ref. 21 and consider global mean thermosteric sea level changes
(GMTSL) estimated as the difference between the global mean sea level changes
(GMSL) and the barystatic sea level changes (BSL). We derive the global ocean heat
uptake over 1957–2017 by multiplying the GMTSL by the expansion efficiency of
heat20,50. This solution is called hereafter the “thermosteric solution”. It is a
solution on different sources of data that are totally independent from in-situ
temperature data. GMSL changes are derived from 559 tide gauge records from the
Permanent Service for Mean Sea Level until 1993 and from satellite altimetry after
1993. We use the GMSL time series from 1957 only, because there is a dramatic
drop in the number of tide gauges available before (particularly in the Indian and
subPacific oceans which are key) and the closure of the sea level budget is of a lesser
quality21. The BSL is derived from GRACE and GRACE-FO data from 2002 on.
Before 2002, each mass contribution to the BSL is considered separately. For
glaciers, a first estimate comes from a global glaciers model driven by 20th century
surface forcing; a second estimate, starting in 1961, comes from in situ glaciological
and geodetic observations of about 200 glaciers, extrapolated to obtain a global
estimate. For the Greenland Ice Sheet, three estimates are used: a mass-balance
reconstruction that covers 1900–2003, input-output estimates that cover
1972–2003, and a multi-method assessment that covers 1993–2003. For Antarctica,
no mass-balance reconstruction exists before the satellite era, so that a small
Antarctic Ice Sheet contribution before 1993 is assumed of 0.05 ± 0.04 mm ⋅ yr−1,
based on an existing compilation; for 1993–2003, a multi-method assessments is
used to derive the mass changes, with a spatial pattern based on GRACE observed
pattern. For terrestrial water storage, the natural contribution comes from a 20th
century reconstruction and the antropogenic contribution comes from an
inventory of artificial reservoir impoundment and groundwater depletion. Because
the thermosteric solution is based on data that is independent from in situ
temperature data we assume that the distance between the thermosteric solution on
one side and the objective mapping solution and the ARANN solution on the other
side provides an estimate of the potential systematic uncertainty.

To estimate the ocean heat uptake time series since 1957 we make an ensemble
of the three solutions: the mapping objective solution which only starts in 1960
(because of too much sparsity in the in situ temperature data before), the
thermosteric solution which starts in 1957 (because of too much sparsity in tide
gauge data before) and the ARANN solution. We take the ensemble mean as our
best estimate of the ocean heat uptake because averaging allows to reduce the effect
of particular errors of individual datasets and emphasizes the common variability
among datasets. We take for uncertainty the spread of the ensemble. In epochs
when the three solutions come to close agreement, this uncertainty is low, below
the level of uncertainty of the objective mapping solution. It means that at these
epochs, the systematic uncertainty due to the spatial coverage of the in situ data or
the systematic uncertainty due to instrumental biases is below the uncertainty due
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to the processing of the solutions. At these particular epochs, we take for
uncertainty the uncertainty of the objective mapping solution.

On Fig. 3a, in the main text, we derive two point estimates of the planetary heat
uptake based on recent data (see pink and yellow points on Fig. 3a). The first
estimate is a planetary heat uptake derived from the European space agency Sea-level
budget closure Climate change initiative (ESA SLBC CCI) dataset v2.251 (https://dap.
ceda.ac.uk/neodc/esacci/sea_level_budget_closure/data/timeseries_slb_elements/v2.
2//ESACCI_SLBC_TimeSeriesOfSeaLevelBudgetElements_v2.2.csv). In this estimate
we use the sea level budget approach to derive the ocean heat uptake. We follow
precisely the same approach as for the thermosterisc solution but with the ESA sea
level closure budget data. From this calculation we can estimate only one point
because the ESA sea level closure budget data covers only the period 1993–2018.
With this N dataset, we found ~λ ¼ �1:958½�4:047; 0:592�W �m�2 � K�1 (median,
17–83%). The second point estimate of the planetary heat uptake is the direct TOA
earth energy imbalance reconstruction from ref. 52 (https://researchdata.reading.ac.
uk/271/18/DEEPC_TOA_NET_v04.0_198501-201906.nc) (hereafter DEEP-C). It is
calculated from ERBS WFOV v3.0 dataset on 1985-1999, and from CERES v4.1 data
on 2000-2019. With this N dataset, we found ~λ ¼ �1:468½�1:945;�1:027�W �
m�2 � K�1 (median, 17–83%).

Estimate of the climate feedback parameter by regression. First, all time series
of the radiative feedback, the GMST and the planetary heat uptake are filtered with
a low pass filter and a cutoff period at 15 years in order to remove the interannual
effect of the internal variability. For the planetary heat uptake which is derived
from the thermosteric solution the filtering with a cutoff period at 15 years is
particularly important because tide gauge records are known to be affected by
coastal effects which introduce spurious interannual to decadal variability when
they are aggregated to estimate the GMSL53. With a cutoff period at 15 years we
expect to remove most of this spurious variability in the global mean sea level
estimate derived from tide gauge records53.

The time series of the radiative feedback, the GMST and the planetary heat
uptake show time-correlation in their errors, thus errors in the ~λ time series are
likely to be correlated in time as well. This time correlation must be taken into
account to evaluate the significance of the estimated time variations in ~λ. To
estimate the uncertainty in ~λ, including the uncertainty due to time-correlation in
errors, we propagate the uncertainty in radiative feedback, GMST and planetary
heat upatke through the regression. First we generate a priori an ensemble of 500
radiative feedback time series and 500 N time series which include the time
correlation of their errors. The 500 radiative feedback time series are drawn
randomly from the 100,000 time series provided by the IPCC AR6. For the 500 N
time series, we assumed the time correlation in errors in N is dominated by the
error induced by the internal variability. The time correlation in the internal
variability in N decrease exponentially from 1 to 0 with a typical e-folding time
scale of 2 years (as suggested by climate models54). So to draw the 500 N time series
we used a variance-covariance matrix with diagonal terms equal to the variance of
the ensemble of the three ocean heat uptake estimate (i.e. the in situ solution, the
ARANN solution and the sea level budget solution see methods) and cross diagonal
term aligned with a 2-yr e-folding exponentially decreasing covariance.

Then, we consider all windows of more than 25 years between 1957 and 2017. In
total, between 1957 and 2017, there are 35 successive 25-year windows, 34 successive
26-year windows, etc., and one single 61-year window. For each window, each N time
series and each F time series, we regress ΔN− ΔF against ΔT to estimate ~λ2. In total
for each window, we compute 500 values of ~λ from which we deduce a distribution of
~λ (note that positive values of ~λ are not truncated). The median of this unique
distribution of ~λ is then plotted as a point on the triangle on Fig. 2.

Note that for each N time series and each F time series we computed one ~λ time
series. So, in total we computed 500 ~λ time series. We evaluate on these 500 ~λ time
series, the change in ~λ between 1976 and 1990 and the change between 2005 and
1990. From the 500 ~λ time series we find that 89.8% (resp. 90.4%) of the time series
lead to a change in ~λ between 1976 and 1990 (resp. between 1990 and 2005) that
are strictly <0 (resp. >0).

We apply the same procedure when N is derived respectively from the ESA CCI sea
level budget and from DEEP-C but the procedure is applied on a single window of the
length of respectively the ESA CCI sea level budget record and the DEEP-C record.

As an indicator of the Pacific Decadal Oscillation we use the PDO index ERSST
v555 (https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat).
The index is also filtered with a low pass filter and a cutoff period at 15 years to be
comparable with ~λ.

Correction for volcanic eruptions. The long time series of ΔN, ΔF and ΔT are
affected by three major volcanic eruptions between 1957 and 2017: Agung (1963), El
Chichon (1982) and Pinatubo (1991). In order to evaluate and correct their effect on
the historical record of the variables ΔF, ΔN and ΔT, we use climate model simu-
lations of the historical period. Climate model simulations of the historical period do
not have the same realization of the internal variability as the real-world climate so
they cannot be used directly to evaluate the effect of volcanic eruptions. We use large
ensembles of historical simulations to remove the internal variability and isolate the
forced response of climate. In each large ensemble, we take the median across
realizations in ΔN and ΔT during the 3 years following the eruptions of Agung, El
Chichon and Pinatubo and we use this estimate to correct the historical time series in
ΔN and ΔT. To correct ΔF we use the simulation of the historical period forced with
natural forcing only and forced at the surface boundary with the SST of the control
simulation (the so called piclim-histnat simulation from the Radiative Forcing Model
Intercomparison Project phase 6 (CMIP6)56). In this simulation the radiative
response is null because the SST is kept at the level of the control simulation so the
TOA radiative imbalance N gives an estimate of the forcing (which is here the
natural forcing). We isolate the forcing during the 3 years following the eruptions of
Agung, El Chichon and Pinatubo and use this estimate to correct the historical time
series in ΔF. In total only 4 CMIP6 models provide at the same time large ensembles
of the historical simulation and the piclim-histnat simulation, namely CanESM557,
IPSL-CM6A-LR58, CNRM-CM6-159 and MIROC660. We estimate a correction in
ΔN, ΔT and ΔF from each model and take the multi-model mean to correct the
historical time series in ΔN, ΔT and ΔF used in the manuscript.

Sensitivity of the ~λ estimate to surface temperature. A limitation of our
approach is that the ordinary least square regression cannot account for the
uncertainty in GMST while all other sources of uncertainty have been taken into
account. To evaluate the impact of this limitation we test the sensitivity of our
estimates of ~λ to GMST by using another GMST dataset, namely the GISS GMST
time series38. The estimate of ~λ with the GISS GMST is shown on supplementary
information Fig. S1 and show no significant differences with Fig. 2. The pattern in
time variations of ~λ is the same. We find a drop in ~λ in the 1970s and in the 2000s
when ~λ is computed over windows shorter than 35 years and we find a fairly
constant ~λ when ~λ is computed over windows longer than 35 years.

Note that there is a systematic source of uncertainty in ~λ which comes from the
surface temperature record and which is not evaluated by the change of GMST
product. It is the variability in GMST which does not produce radiative response in
the form ~λT . This type of uncertainty is called regression dilution (see for example
ref. 17, their appendix D). The regression dilution generates a bias and a dispersion
around the true ~λ. We cannot estimate the bias in ~λ from observations because we
don’t know the variability of GMST which does not produce radiative response in
the form ~λT . So we did not estimate the bias generated by regression dilution and
we did not correct for it. However, we estimated the uncertainty range in ~λ

generated by regression dilution with the spread in ~λ across different AGCM
historical realizations which show different realization of the noise in GMST that
does not produce radiative response in the form ~λT (see ref. 2 for more details
on the method). Our computation of the uncertainty includes the uncertainty due
to the dispersion of ~λ generated by the regression dilution. Note that in
observations the instrumental noise is an additional noise in GMST that does not
produce radiative response in the form ~λT . The regression dilution due to this
noise has not been evaluated. It certainly explains part of the bias in ~λT between the
estimates from AMIP-piForcing simulations and from observations (Fig. 3).

Estimate of ~λ in AMIP-piForcing simulations. To compare our estimate of ~λ with
climate model simulations we use the AMIP-piForcing simulations61 which have
the same realization of the internal variability as in the real climate. In AMIP-
piForcing simulations six AGCM (see Table 1) are forced with monthly time-
varying observed fields of SST and sea ice from 1871 to 2010 using the Atmo-
spheric Model Intercomparison Project (AMIP) II boundary condition
dataset62–64. All simulations have natural and anthropogenic forcings held constant
at preindustrial conditions. With constant forcing the variation in radiative fluxes
comes only from the changing SST and sea ice boundary conditions, allowing the
radiative response of the Earth to be accurately diagnosed directly from TOA
imbalance N65. So, to estimate ~λ in AMIP-piForcing simulations, we apply exactly
the same approach as in observations except that we regress the radiative response
of the Earth (i.e. N in AMIP-piForcing simulations) against T. On long windows
(longer than 35 years) AMIP-piForcing simulations capture the observed quasi
constant ~λ (Fig. 3c). However on short windows (shorter than 35 years) the AMIP-
piForcing simulations fail in capturing the significant time variations in ~λ (see also
Fig. S9 in the supplementary information). The issue probably comes from the

Table 1 AMIP-piForcing simulations used in this study.

Model Reference

CESM2 66

HadGEM3-GC31-LL 67

IPSL-CM6A-LR 58

MIROC6 60

MRI-ESM2-0 68

CNRM-CM6-1 59
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atmosphere model because the SST is prescribed in AMIP simulations. This issue is
potentially linked with the too little sensitivity of tropical low clouds in AGCMs to
the tropical SST changes33.

Sensitivity of the results to the time smoothing of data. We tested the sensitivity
of our results to the time smoothing of the input data. We have redone all the
computation, the figures and the correlation maps with input data (i.e. GMST,
radiative forcing and planetary heat uptake) not filtered and filtered with a low pass
filter and a cutoff period of 5 and 10 years. The change of filtering affects the estimate
of ~λ only marginally. There is slightly more noise on the estimate of ~λ as the cutoff
period of the filtering decreases (See Fig. S2). This is because the regression itself,
which is done on windows of length > 25 yrs already filters the data. However the
filtering of the indices (PDO, IPO, SAM, IOD and AMO) and the local SST has an
impact on the correlation calculation and the correlation maps (see Figs. S3, S4S5 and
S6). When we apply a filter with a decreasing cutoff period to the indices and to the
input data of the ~λ computation we find the correlation between PDO/IPO and the ~λ
time series decreases and its significance as well (Table 2). The correlation is still
dominant (corr. 0.33) and significant at the 80%CL (p-value < 0.1) with a 5-yr cutoff
period but below, the correlation is not significant anymore. The reason comes from
the filtering of the PDO indices. With no filtering, the interannual variability dom-
inates in the PDO index and this interannual variability does not correlates with the ~λ
time series which only shows decadal variability.

A similar situation occurs for the correlation maps between the ~λ time series
and the local SST. Whatever the filtering, the correlation maps show the same
pattern for observations and AGCMs simulations. But as the cutoff period of the
filtering decreases the significance of the correlation decreases. The level of
significance is down to 80% CL for large portions of the Pacific when we apply a
5-yr cutoff period. As for the PDO index, the reason is the filtering of the local SST
rather than the filtering of the input data used to compute ~λ. With no filtering the
interannual variability dominates in the local SST and this interannual variability
does not correlates with the ~λ time series which only shows decadal variability.

On the overall we find that the estimate of ~λ remains the same whatever the filtering.
However the correlation with the PDO index and with local SST holds only for
smoothing at 5 and 10 years and less so with no filtering. The reason is that interannual
variability dominates in the PDO index and in the local SST, generating too high level of
noise to get significant correlation with ~λ which only shows decadal variability.

Data availability
IPCC AR6’s radiative forcing time series can be dowloaded from https://zenodo.org/
record/5705391#.Yz1tPXZBy7035. Global mean surface temperature (GMST) time series
are taken from ref. 36 v2 and can be downloaded from https://www-users.york.ac.uk/
~kdc3/papers/coverage2013/series.html. GMSL time series are taken from ref. 21 and can
be downloaded from https://doi.org/10.5281/zenodo.3862995. ARANN ocean heat
content time series49 can be downloaded from https://doi.org/10.6084/m9.figshare.
12959489. EN4 temperature/salinity data41 can be downloaded from https://www.
metoffice.gov.uk/hadobs/. World ocean atlas data43 can be downloaded from https://
www.nodc.noaa.gov/OC5/WOD13/. IAP ocean heat content44 data can be downloaded
from http://www.ocean.iap.ac.cn/ftp/images_files/IAP_OHC_estimate_update.txt. MRI-
JMA ocean heat content data42 can be downloaded from https://www.data.jma.go.jp/
gmd/kaiyou/english/ohc/ohc_global_en.html.

Code availability
The code that support the findings of this study are available from the corresponding
author upon reasonable request.
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Table 2 correlation coefficient and p-value of ~λ against the
PDO index for different filtering applied at the input data.

Filtering ~λ vs PDO

No filtering corr: −0.26 p-val: 0.25
Low pass filtering corr: 0.31 p-val: 0.11
cutoff period 5 yr
Low pass filtering corr: 0.59 p-val: 0.000
cutoff period 10 yr
Low pass filtering corr: 0.78 p-val: 0.000
cutoff period 15 yr
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