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Neoproterozoic reorganization of the Circum-
Mozambique orogens and growth of
megacontinent Gondwana
Chao Wang 1✉, Xian-qing Jing2✉ & Joseph G. Meert3

The serpentine orogenic belts that formed during the Neoproterozoic assembly of Gondwana

resulted in geodynamic changes on the planet in advance of the Cambrian radiation. The

details of Gondwana assembly associated with the closure of the Mozambique Ocean are

enigmatic. We compile published geological and paleomagnetic data to argue that the Tarim

block was associated with the Azania and Afif–Abas–Lhasa terranes and they were the locus

of long-lived Andean-type subduction during the ~900–650Ma interval. Our model suggests

a subduction system reorganization between 750-720Ma, which resulted in two distinct

phases of Mozambique ocean evolution. Between 870-750Ma, a N-S oriented subduction

system marks the locus of ocean crust consumption driven by the extension of the

Mozambique Ocean. Beginning ~720Ma, a newly developed ~E-W oriented subduction

system began to consume the Mozambique Ocean and led to the assembly of eastern

Gondwana. Our new reconstruction uses true polar wander to constrain the relative paleo-

longitude of Tarim, South China and West Africa. In this scenario, the closure of the

Mozambique Ocean and formation of Gondwana was orthogonal to the preceding super-

continent Rodinia.
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The growth of megacontinent Gondwana resulted from plate
reorganization following the breakup of Rodinia during the
late Neoproterozoic–Cambrian interval. Gondwana

assembly involved the suturing of different blocks within the East
African, Brasiliano, Damara and Kuunga orogens and con-
comitant destruction of the Mozambique, Brasiliano, and
Damaran oceans1–8. The East African Orogen (EAO) is a long-
lived (>400Ma) accretionary-style margin at one side of the
Mesoproterozoic–Neoproterozoic Mozambique Ocean, which
separated India and Azania (central Madagascar, Somalia, eastern
Ethiopia and Arabia) from the rest of Africa6–9. Azania collided
with eastern parts of Africa between 640 and 600Ma6. This was
followed by final Gondwana amalgamation between 550 and
500Ma1–3. The assembly of Gondwana coincides with a period of
Earth’s history marked by dramatic changes in atmospheric cir-
culation, oceanic circulation, the rapid motion of continents,
nucleation of the inner core, hyperactive reversing magnetic field,
a decrease of geothermal gradients along subduction zones, cli-
matic variations, steep increase in O2 and the rise of metazoan
life10–17.

From a geodynamic perspective, the closure of the Mozambi-
que Ocean along the EAO can be examined in the context of
supercontinent assembly and breakup via introversion, extro-
version, or orthoversion18,19, which is related to the evolution of
the structure of the lower mantle structure beneath Africa20,21.
Despite the numerous controversies and general lack of high-
quality palaeomagnetic data during the Late Ediacaran, the
paleogeographic evolution leading to the closure of the Mozam-
bique Ocean and the development of the EAO is vital for con-
straining the evolution of the Neoproterozoic Earth system.

Various models that deal with the progressive assembly of
Gondwana have been proposed2–6,22,23. Recently, coeval Neo-
proterozoic orogenic activity was identified in the Tarim craton24

and the Lhasa Terrane hinting at possible links to orogenic events
in eastern Gondwana25. In this paper, we compile available
geological, geochronological, and paleomagnetic data to present a
new orthoversion model for the breakup of Rodinia, closure of
the Mozambique Ocean, and amalgamation of central Gondwana.

The Mozambique Ocean and the East African Orogen
The Mozambique Ocean was one of three prominent ocean
basins that existed or formed during the Rodinia break-
up1,6,7,26,27. The Mozambique Ocean closed as India and Aza-
nia converged with eastern Africa (Kalahari, Congo, Sahara
metacraton) during the East African Orogeny1–3. The EAO
encompasses most of eastern Africa extending from the Arabian-
Nubian Shield (ANS, in the north) to Mozambique (in the south).
Sandwiched within the EAO lies a broad band of Archean to
Paleoproterozoic crust between the Indian Shield and
Congo–Tanzanian Cratons that were identified Azania and the
Afif–Abas terranes28 (Fig. 1). The Azania block and the Afif–Abas
terrane (the Al-Mafid Terrane in Yemen and Abas terrane into
Saudi Arabia) were isolated microcontinents within the
Mozambique Ocean28. Geochronologic and structural evidence
suggests that Azania separated as a ribbon continent from the
Congo–Tanzania Craton29,30. The Mozambique Ocean was sub-
divided into a West and East branch by Azania at ~750Ma6,31.
Closure of the Mozambique Ocean involved island-arc collisions
and microcontinent accretion (ca. 1080–650Ma) followed by
continental collision with the Congo craton and Saharan Meta-
craton between ca. 650 and 620Ma along the length of the EAO
(for review see Fritz et al.32). Younger orogenic events in eastern
Gondwana include the ~550–520 Malagasy Orogeny between
Azanian-Afif-Abas and western India3 and coeval Kuunga Oro-
geny which completed the amalgamation of eastern Gondwana2.

Based on the published geological and geochronologic results
(Fig. 2, Supplementary Data), each of these sub-regions within the
EAO is described below.

The Arabian–Nubian Shield. Meso- to Neoproterozoic age
island arcs, including volcanic rocks, gneisses, and sedimentary
protoliths, are recognized in the ANS and developed between ca.
1.03–0.93 Ga and ca. 0.87–0.73 Ma31–36. In addition, numerous
dismembered fore-arc and back-arc ophiolites are found
throughout the ANS37–39. Blueschist-facies metamorphic assem-
blages have been reported from slices within western portions of
the ANS40. Subduction, volcanic arc formation, and terrane
accretion (ca. 830–650Ma) overlap with migmatization and high-
grade metamorphism (T: 700–850 °C and P: 0.7–0.9 GPa) (dated
at ~775Ma and 720–715–Ma34, 41,42). The granitoids in the ANS
show early arc-related affinities followed by collision-related calc-
alkaline assemblages (~715–700Ma), subsequent calc-alkaline
post-collisional (~640–600Ma), anorogenic alkaline A-type
granitoids and volcanics (~620–550Ma), and finally by post-
collisional extension as exemplified by the intrusion of
mafic–felsic dikes (591–545Ma)42–44. Although local variations
exist, an age of ~620Ma is proposed for the cessation of sub-
duction and initiation of the post-collisional extensional regime
in the western ANS34,35,44,45.

Neoproterozoic basement of Oman. Basement rock exposure is
limited in Oman, which is currently located on the eastern side of
the ANS. The volcanic and intrusive activity extended from 850
to 785Ma and was followed by the emplacement of granodiorite
around 750Ma and culminated with the intrusion of mafic dyke
swarms at ~620Ma46–48. Collision-related metamorphic and
intrusive activity ceased around 750Ma resulting in a relatively
strong lithosphere and establishing a fundamental tectonic
boundary in the central part of the Arabian plate dividing it into
two distinct domains6,49 (Fig. 1). Because of the differences in the
tectonic history, geochemistry, and geology, Oman is proposed to
have occupied a position closer to NW India and Pakistan during
the mid-late Tonian49.

The Mozambique belt. The Neoproterozoic MB represents the
central and southern regions of the EAO and consists of high-
grade granulite- and amphibolite-facies rocks2,50,51. Most pub-
lished zircon U–Pb age data on metamorphic zircons, meta-
morphic rims on igneous zircons are well grouped between ~650
and 620Ma52,53. At least two collisional events occurred within
the MB, the first between ~650 and ~620 Ma, particularly in the
eastern and western granulite belts, and the second at ~550Ma,
especially along the more southern reaches of the MB including
the Tanzania Craton and farther east in Madagascar where it has
reached regional ultrahigh-temperature metamorphism (UHTM)
conditions2,53–55 (Fig. 2).

Madagascar. Madagascar is made up of several domains with
Archean to Neoproterozoic rocks. Intrusive igneous rocks formed
between 1080 and 900Ma are restricted to the Ikalamavony
domain in southern Madagascar, which was interpreted to
represent a magmatic arc and marginal volcano-sedimentary
sequence within a continental back-arc tectonic setting outboard
of the Antananarivo domain56–61. 850–750Ma granitoids and
gabbros are widespread throughout Madagascar57,58,61. Younger,
750–720Ma volcanic, granitoid, and sedimentary rocks are
developed in the Bemarivo domain of northern Madagascar59,62.
There are ~670–630Ma intermediate-felsic volcanic and intrusive
rocks developed in the Vohibory and Androyan–Anosyan
domains of South Madagascar63,64. Central and South
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Madagascar were deformed and underwent amphibolite to
granulite facies metamorphism between ~650 and 610 Ma57,63–65

(Fig. 2). Ediacaran–Early Cambrian (580–510Ma) post-
collisional granitic magmatism, regional metamorphism, and
deformation occurred throughout Madagascar (Fig. 2). This
younger magmatism overlaps with the latter stages of high-grade
metamorphism in northern Madagascar between ca. 550 and
530Ma (750–850 °C and 6–8 kbar)64,65. In central Madagascar,
U-Pb metamorphic ages obtained from zircon rims range from
670 to 540Ma57. In southern Madagascar, high-temperature and
ultra-high temperature (UHTM) metamorphism took place
between 580 and 510Ma based on ages from metamorphic
monazite in metapelite, and igneous zircons, and monazite in
syn- and post-tectonic granitoids57,63–67 (Fig. 2). The tectonic
history of Madagascar is controversial. Collins and Windley28

divide Madagascar along the Betsimaraka suture and include the
central and northern regions into Azania. According to the
Azania model, central/northern Madagascar collided with the
Dharwar craton sometime prior to the final amalgamation of
Gondwana. Another model, the so-called SMIWH (South
Madagascar–India–Wanni-Highland) model, posits a Paleopro-
terozoic assembly of these regions around 1.8 Ga from then until
the breakup of Gondwana68. More recently, central and southern
Madagascar were separated into two distinct domains64. The
Vohibory–Graphite–Androyen domains represent the ‘western’
region of Madagascar on one side of the Mozambique Ocean
whereas the Anoysen-Ikalamavony domains were positioned on
the other side. In that model, the final Madagascar assembly took
place at ca. 580–520Ma, and the Beraketa high-strain zone marks
the closure of the Mozambique Ocean.

The Tarim Craton. The Tarim Craton is made up of Archean to
Neoproterozoic rocks covered by younger desert deposits that hin-
der direct outcrop sampling. There are two main areas (Tiekelike

and Altyn Tagh–Dunhuang) at the southern margin of the Tarim
basin, and the Aksu and Kuluketage areas at the northern margin of
the Tarim basin (Fig. 1). In previous models, the Central-South
Altyn was considered an integral part of the Tarim Craton; however,
the Central-South Altyn is now thought to represent an exotic ter-
rane accreted after the late Neoproterozoic69. The northern margin
(N Tarim) is characterized by late Mesoproterozoic–Neoproterozoic
tectonothermal events at (Fig. 2; see Ge et al.24 for a review): (1) ca.
1050–900Ma granitic magmatism and arc volcanic rocks; (2) ca.
830–750Ma K-rich adakitic granite, 823–800Ma mafic dykes,
816–787Ma high-pressure granulites and ca. 830Ma crustal ana-
texis; (3) ca. 780–700Ma basic dykes, volcanic rocks, and granites,
ca. 750–730Ma Aksu blueschists; (4) 680–600Ma basic dykes,
basalt, leucogranites and alkaline/ferroan/A-type granites. These
data suggest that N Tarim represents a long-term subduction-
accretion arc built along the northern Tarim margin between ca.
1050 and 600Ma. These ages correspond well with tectonic events
in the East African Orogen (Fig. 2). In the Tiekelike and West
Kunlun regions along the southwestern margin of the Tarim Craton
(SW Tarim), there are ca. 900–880Ma within-plate bimodal vol-
canic rocks69, OIB-type basic dykes which formed at 802 ± 9Ma and
the Kudi bimodal igneous complex which crystallized at
783 ± 10Ma70. Between ca. 0.9–0.7 Ga, SW Tarim evolved as a
passive margin with alluvial and shallow-marine deposition and
within-plate bimodal volcanism69.

The Lhasa Terrane. The Lhasa terrane (southern Tibetan Pla-
teau) is located between the Qiangtang and Tethyan Himalayan
terranes (Fig. 1). The Lhasa terrane contains a suite of Neopro-
terozoic meta-sedimentary rocks, meta-diabase/gabbro, and
meta-granite, which have undergone amphibolite–HP granulite-
facies metamorphism and varying degrees of deformation25.
Recent studies indicate that the Lhasa terrane is characterized by
ca. 930–902Ma rift-related magmatic and sedimentary rocks71,72,

N

E

S

W

MB

0° 30° 60° 90° 120°

0°

30°

30°

Sahara
Metacraton

Congo-Tanzania

Zimbabwe/
Kalahari

Azania

Azania

OmanANS India

South China

North China
Tarim

IAP
Lhasa

AL-Qa-QiKunlun

Afif Terrane 

NM
CM

SM

West African 
Craton

Baltica

Avalona

Hoggar A
D

M
B

Indian Ocean

Atlantic Ocean

P
acific O

ce an

Divergent boundary

Convergent boundary

NIB
M

T

A K

Al-Mafid Terrane 

?

M
O

S

Fig. 1 Distribution of Africa and Eurasian continental crust, ocean basins and plate boundaries at 0Ma (modified after Merdith et al.7). Light brown
polygons are areas of continental lithosphere in the Neoproterozoic that our model used, White polygons are areas of present-day continental lithosphere.
ANS Arabian–Nubian Shield; Al Altyn Tagh, Qa Qaidam, Qi Qilian, MB Mozambique belt, NM Northern Madagascar, CM Central Madagascar, SM
Southern Madagascar, IAP Iran–Afghanistan–Pakistan, ADMB Aravalli–Delhi mobile belt, M Mewar block, NIB North Indian Block, T Tiekelike, A Aksu, K
Kuluketage, MOS Inferred final Mozambique Ocean Suture (after Collins et al.6).

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00883-6 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:216 | https://doi.org/10.1038/s43247-023-00883-6 | www.nature.com/commsenv 3

www.nature.com/commsenv
www.nature.com/commsenv


ca. 830–700Ma arc-related calc-alkaline and tholeiitic mafic rocks
and granitoids (Fig. 2); followed by ca. 690–650Ma collision-
related magmatism and HP granulite-facies peak-metamorphism
metamorphism and amphibolite-facies metamorphism at
605–590 and 480Ma25,73. ~530–470Ma high-K calc-alkaline and
shoshonitic granitoid emplacement along with ~530–495Ma

A-type ultrapotassic rhyolites indicate a post-collision setting or
an extensional environment associated with an active margin74.

NW India. The 1.1–0.8 Ga Aravalli–Delhi mobile belt (ADMB)
of NW India marks a Late Mesoproterozoic–Neoproterozoic

5 00

6 00

70 0

80 0

900

1000

1 100

M
N

IS
N

 T ar im
A

N
S

O
m

an
A

D
M

B

Stenian Tonian Cryogenian Edicaran

C
am

NeoproterozoicMesoproterozoic Palepzoic

S Tarim

A
rab ian P

la te
Ta rim

N
W

I nd ian

N
M

C
M

S
M

L has a
M

ada gas car

granitoid

mafic dyke/gabbro

metamorphism 

volcanism

 monazite metamorphism 

 migmatization 

alkaline/A-type 
granite

M
B 

granulite

E
A

O

 bimodal volcanics

M
O

(M
a)

Fig. 2 Late Meoproterozoic-Cambrian magmatic or metamorphic events. Error bars represent the 1-sigma uncertainties. Data source in Supplementary
Data. Cam Cambrian, ANS Arabian–Nubian Shield, MB Mozambique belt, NM Northern Madagascar, CM central Madagascar, SM Southern Madagascar,
MNIS Malani–Nagar igneous rocks, ADMB Aravalli–Delhi mobile belt. EAO East African Orogen; MO Malagasy Orogen. See text for details, sources, and
discussion. Orange, gray, and green shadings are accretion, collision, and rifting/extensional settings, respectively.

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00883-6

4 COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:216 | https://doi.org/10.1038/s43247-023-00883-6 | www.nature.com/commsenv

www.nature.com/commsenv


subduction–collision orogen, thought to be associated with the
collision of the Marwar Block with the North Indian Block during
Rodinia assembly75,76 (Fig. 1). The ca. 1.1–0.9 Ga metamorphic
event is widespread in metapelites, ortho- and paragneisses,
which are characterized by a metamorphic transition from HP
granulite to HP amphibolite facies along clockwise P–T paths77.
Widespread Meso–Neoproterozoic aged volcano-plutonic rocks
constitute major parts of the southern segment of the Delhi Fold
Belt (SDFB). Peak metamorphic conditions in the SDFB were
followed by isothermal decompression78. The intrusion of the
‘Erinpura granites’ is coeval with the timing of shear activity and
retrograde metamorphism of granulite exhumation in the DFB
(830–820Ma)79,80. The youngest Neoproterozoic igneous activity
in the region (770–700Ma) constitutes the Malani Igneous
Province81 (NW India) and coeval plutonic rocks in the Nagar
Parkar region82 (Pakistan) where ages overlap with Malani but
also evidence for magmatic activity as young as ~650Ma. The
Marwar block is extensively intruded by the Erinpura and related
granites, and in several places has been covered by younger
volcano-sedimentary sequences belonging to the Sindreth,
Punagarh, and Marwar groups. The Malani igneous rocks include
voluminous felsic lavas and tuffs (occasionally bimodal at the
base), granite emplacement, and felsic and mafic dyke
intrusions75,81. Because felsic volcano-plutonic rocks are dis-
tributed over a large area >100,000 km2 in NW India, SE Paki-
stan, Seychelles, and Mauritia this late-Neoproterozoic magmatic
episode has been regarded as a silicic LIP83. Some have argued
that the Malani–Nagar–Parkar LIP formed in an extensional
setting81–83. The debate regarding the tectonic setting for Malani
magmatism is far from settled as support for an active Andean-
type margin has been argued based on similar-aged magmatic
activity in Seychelles, Madagascar, and Mauritia80,84–87.

Results and discussion
Ca. 900Ma Southern Tarim connection with Congo, West
Africa, and Lhasa in the southern hemisphere. Traditionally,
Tarim is positioned either between Australia and Laurentia88,89

or close to north India or west Australia in Rodinia90,91. How-
ever, these locations are difficult to reconcile with the contrasting
tectonic settings in north and south Tarim. Geologic evidence
from northern Tarim indicates an active continental margin24

and supports a peripheral location of Tarim in Rodinia. How-
ever, the development of a rift margin in southwestern Tarim
around 900Ma92, contradicts both the “missing-link“89 and
peripheral reconstruction models of Tarim in Rodinia. In those
reconstructions, Tarim is placed in the northern
hemisphere88–91. The northern hemispheric choice is pre-
sumably based on Tarim’s early Paleozoic affinity with eastern
Gondwana. Despite this common assumption, there is no a
priori reason to rule out a southern hemisphere position for
Tarim between 900 and 800Ma as discussed below (Supple-
mentary Table 1, Fig. 3). Here we compile high-quality Neo-
proterzoic paleomagnetic poles from Tarim (Supplementary
Table 1, reliability score (R) ≥ 593), and find that a southern
hemisphere placement of Tarim before the Ediacaran is possible.
We demonstrate that by reversing the 900–720Ma palaeopoles
from Tarim (all poles are listed in Supplementary Table 1), we
can generate a simpler APWP through the Neoproterozoic
(Fig. 3a). By inverting these poles, we reduce the arc distance
between 720 and 635Ma poles dramatically (from 129.7° to
50.3°) and decrease the APW rates from 17 to 6.5 cm yr−1, We,
therefore, propose a palaeomagnetically based reconstruction
with Tarim located in southern hemisphere until the Ediacaran
(Figs. 3b and 4). Geological evidences are also offered to support
our conjecture.

It is generally accepted that Congo-São Francisco, West Africa,
and the Lhasa block were assembled in the southern hemisphere
during the Neoproterozoic era71. Several rift-related provinces
developed during the 900-880Ma interval on many of these
blocks indicating large-scale breakup. In SW Tarim, ca. 900-
870Ma bimodal volcanic and ca. 900–850 Ma A-type granites
were used to argue for an intraplate rift setting91, 92,94. The
Bahia–Gangila large igneous province (LIP) in Congo-São
Francisco suggests two stages of (950–910 and 890–870Ma)
lithospheric stretching and rifting95. Previous studies based on
these ca. 900Ma rift-related LIPs, and Mesoproterozoic magma-
tism hint at a possible link between South Tarim, North China,
and Congo–São Francisco92. Although all of these continents
record 900–860Ma magmatism, Tarim has no record of rift-
related magmatism between 950 and 910Ma in contrast to
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prominent magmatism in both Congo-São Francisco and North
China. Therefore, we question the proposed links between Tarim
and North China or São Francisco. However, on the (present-
day) eastern side of Congo, bimodal volcanic and sedimentary
rocks in the Zambezi and Lufilian belts in Zambia and the
Sankuru-Mbuji-Mayi-Lomami-Lovoy failed-rift basin indicate
rifting in southeast Congo between ~890 and 800Ma96. This
history is broadly similar to events in SW Tarim. We propose a
link between SW Tarim and the Congo Zambezi belt during the
1.0–0.9 Ga interval. Dyke swarms in the Anti-Atlas region of
West Africa (Iguerda-Taïfast LIP, ~885-860Ma), Hoggar and
Reguibat shield (~850–800Ma) are consistent with a rift setting
in West Africa97. Mafic dyke swarms also are reported from
Ghana at 915 and 860Ma98. Geochronological studies on mafic
rocks in northern Lhasa indicate a late-stage rift setting at ca.
900Ma71. We place the Lhasa terrane close to Ghana and near
southern India between 1000 and 900Ma. The mafic rift
volcanism may represent a LIP beneath eastern Congo, west
Africa, Lhasa, and Tarim. Our placement of Lhasa, India, South
China, and Tarim (LIST) in the southern hemisphere at 900Ma
changes the size of the Mozambique Ocean and creates a separate
Mawson Ocean between LIST and Australia-East Antarctica
(Fig. 3b). We also position subduction zones adjacent to Azania
and along the western margin of India which are not present in
other full-plate models at 900Ma (see Fig. 15 in Merdith et al.7).

Neoproterozoic long-lived Andean-type subduction zone and
terranes in the EAO. Northern Tarim is characterized by
Andean-style subduction-accretion from 900 to 650Ma which
closely parallels the tectonic environment in the ANS, MB, central
and southern Madagascar, but is strikingly different from
northern Australia and western Laurentia in this period99.

If our ca. 900Ma southern hemisphere paleogeographic
reconstruction for LIST is correct (Fig. 3), then there is a
marginal subduction setting in the eastern Mozambique Ocean
around ~900Ma with Azania and Tarim close to the eastern
African margin (Fig. 3b). The suprasubduction system, con-
stituted by Tarim–Azania–Afif–Abas–Lhasa (TAL) terranes/
blocks, is characterized by volcanic arcs, intrusive rocks and
terrane accretion (ca. 830–650Ma) including migmatization and
high-grade metamorphism (Fig. 2). Therefore, we suggest that the
TAL terranes constitute the northern margin of the West
Mozambique Ocean, and the Saharan, Congo-Tanzania cratons
formed the southern margin of the West Mozambique Ocean
(Fig. 4a, b).

Peak metamorphism, migmatization, and associated syn-
collisional and syn-metamorphic orogenic granites within the
TAL developed between 660 and 620Ma. In our model, TAL
collides with the eastern margin of the Congo craton and Saharan
metacraton between 660–620Ma with a general north–south
progression. This orogenic belt extends from the ANS, Northern
Tarim, Lhasa into Madagascar and the MB (Figs. 2 and 4c). The
West Mozambique ocean is closed by continent–continent
collision causing granulite-facies metamorphism in Lhasa, south-
ern Madagascar, and the MB (Fig. 2). The metamorphic grade
generally decreases from south to north, with lower-grade
metamorphism in ANS and Tarim.

Between 590 and 520Ma, high-grade metamorphism in
southern India, Sri Lanka, Madagascar, and Mozambique was
interpreted to represent the final collision between India with
Azania during the Kuunga or Malagasy Orogeny and closure of
the East Mozambique Ocean2,3. Continued compression and
shortening between India with Azania and amalgamated Africa
might induce the northward-directed escape of Tarim and Lhasa
from the EAO via lateral escape tectonics1,100,101.
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Evolution of the Mozambique Ocean and growth of mega
continent Gondwana. Geological records from the Neoproter-
ozoic ANS suggest a marked change in the orientation of sub-
duction zones in the Mozambique Ocean at ca. 720Ma, from N–S
to E–W directed6. Hence, we divide the evolution of the West
Mozambique Ocean into two phases: spreading and closure
before and after 720Ma. Based on our interpretation of the
paleomagnetic data from Tarim89,90, we posit that Tarim and
Lhasa separated from Rodinia before 850Ma and the TAL blocks
moved toward the equator opening the West Mozambique Ocean
(Fig. 4a). The East Mozambique ocean developed as India-South
China broke away from Rodinia at ca. 790Ma102. The lengthy
N–S striking subduction system in the East Mozambique ocean
appears to be a relic of the circum-subduction system established
during the tenure of Rodinia. Following breakup around 720Ma,
the Tonian to Cryogenian magmatic arcs and associated meta-
morphic basement of the TAL moved equatorward establishing a
new E–W striking subduction girdle along the equator (Fig. 4b).

Breakup of Rodinia along the (present-day) western and Arctic
margins of Laurentia (~720Ma) established a new downwelling
locus along the relic circum-subduction girdle (Fig. 4b). Sub-
sequent motion of the continents was directed towards this new
downwelling (Fig. 4c). The closure of the West Mozambique
Ocean was related to subduction reorganization around 720Ma
from a predominately N–S strike to an E–W strike along with
spreading in the East Mozambique Ocean6. The growth of the
East Mozambique Ocean resulted from the southerly motion of
the TAL blocks. Paleomagnetic data from South China indicate
little latitudinal motion during the 780–635Ma interval (Fig. 5),
which would also apply to India if the two blocks remained in
contact102. Final closure of the East Mozambique Ocean results
from the post-635Ma southward movement of South
China–India (Fig. 4b, c).

Our reconstructions also differ from recent full-plate models7

in that we use TPW to constrain the relative paleolongitude of the
isolated blocks. Figure 5 illustrates the paleomagnetic data from
South China and West Africa between 810–790 and 615–570Ma
with proposed TPW great-circle trajectories (brown and orange
lines). Both South China and West Africa APWPs are close to, or
overlap, the true polar wander paths. Our interpretation is that

South China and West Africa were located near the downwelling
girdle that surrounded the Rodinia supercontinent between
810–790 and 615–570Ma, respectively19. In our reconstruction,
the older (>750Ma) subduction zone in the Mozambique Ocean
is a relic subduction system related to the formation of the
Rodinia. Therefore, they are subparallel with the true polar
wander path (Fig. 4a). After 750–720Ma, this relic subduction
system ceased, and a new subduction system developed, which
eventually led to the closure of Mozambique Ocean (Fig. 4b, c).
The evolution of these subduction systems is consistent with the
orthoversion supercontinent model19, 103 because they lie along a
girdle that is ~90° away from the center of Rodinia.

The “introversion” and “extroversion” models of superconti-
nent evolution predict that succeeding supercontinents will form
either by closure of an interior ocean (such as the classic “Wilson-
cycle” for the Atlantic Ocean)18 or by the closure of an exterior
ocean (such as the Pacific Ocean)104. In the general case, neither
the introversion nor extroversion models provide an adequate
explanation for the closure of young oceans (e.g. Rheic, Iapetus,
and Tethys oceans during Gondwana and Pangea formations). In
this specific case, the Mozambique Ocean is analogous to the
younger oceans cited above. Its closure fate was sealed, as it just
overlapped with the subduction girdle as suggested by the
“orthorversion” model (Fig. 4b, c). The new tectonic reconstruc-
tion could be turned into a full plate reconstruction and used as a
boundary condition of mantle flow models in future work.

Conclusions
Available Neoproterozoic geological and paleomagnetic data are
compatible with Tarim in the southern hemisphere during the
900–650Ma interval (Figs. 2 and 3). The Tarim, Lhasa, Arabia,
Azania, and Afif–Abas terranes constitute an enlarged EAO along
the northern margin of the West Mozambique Ocean. The West
Mozambique Ocean grew in size until ~720Ma. A post-720Ma
subduction reorganization developed almost orthogonal to the
centroid of the former Rodinia supercontinent and resulted in the
closure of the relatively young West Mozambique Ocean. This
geometry is consistent with the orthoversion model of super-
continent evolution from Rodinia to Gondwana.
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Methods
The metamorphic and magmatic rocks produced during mountain building is
crucial to constrain geodynamic processes. We compiled zircon U-Pb ages between
1.1 and 0.52 Ga from Neoproterozoic metamorphic and magmatic rocks from
Tarim, the Arabian–Nubian Shield, Oman, Mozambique belt, NW India, Mada-
gascar, and the Lhasa terrane. The vast majority of ages in this compilation are
from felsic to mafic intrusive or extrusive rocks, or their metamorphic equivalents.
The dataset is available in Supplementary Data.

This manuscript is based on a tectonic reconstruction of the last billion years
that was developed on the open-access software GPlates (www.gplates.org). The
continent’s shape and rotation files are from Merdith et al.7 with the exception of
the rotation parameters of the Tarim, Yangtze, Cathysia, India, Lhasa, and Congo-
São Francisco, and Afif-Abas regions. These parameters are listed in Supplemen-
tary Table 2. The position of Tarim is constrained by using the palaeomagnetic data
to place it in the southern hemisphere prior to 635Ma.

Data availability
All data used in this manuscript are included in the published article (and
its supplementary information files). In addition, all Supplementary geochronologic data
have been uploaded to Figshare at https://doi.org/10.6084/m9.figshare.22873493
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