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Country-level energy demand for cooling has
increased over the past two decades
Enrico Scoccimarro 1✉, Oreste Cattaneo1, Silvio Gualdi1, Francesco Mattion2, Alexandre Bizeul2,

Arnau Martin Risquez2 & Roberta Quadrelli2

Cooling degree days provide a simple indicator to represent how temperature drives energy

demand for cooling. We investigate, at country level, the changes in cooling degree days

worldwide in a recent twenty-one-year period starting in 2000. A new database, jointly

generated by CMCC and IEA based on ERA5 reanalysis’ global gridded data, is used for the

analysis. In contrast to the existent literature, the factors of population-weighting and

humidity are considered, which affect the magnitude and the spatial distribution of these

changes. Annual tendencies show a general increase of cooling degree days over the different

countries, fostering more energy consumption for cooling demand, as confirmed by some

regional studies. We also focus on the temporal clustering, to measure if peaks occur evenly

random or tend to cluster in shorter periods. We stress that including humidity is important

both for general tendencies and clustering. India, Cambodia, Thailand and Vietnam represent

the emerging countries where this effect is stronger.
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Population growth and global warming are imposing a major
challenge for the future energy supply and its ability to
address energy demand requirements across geographies,

globally. A significant growth of global energy use in the last years
has been shown1: driven by enhanced demand across sectors such
as buildings, industry and transport, the total energy supply
increased 2.5 times between 1971 and 2020, and 39% in the last
twenty years. In 2020, global energy use in buildings (defined as
the sum of residential, commercial and public services sectors)
accounted for almost 40% of the total energy use, including pri-
mary use of the energy required to produce the associated elec-
tricity and heat, generating over a quarter of human-made carbon
dioxide emissions1,2.

In International Energy Agency (IEA) member countries, the
largest residential use of energy, all sources combined, is for
heating purposes (not necessarily reflecting the global picture),
followed by appliances3. In the United States, 35% of total pri-
mary energy consists of heating, ventilation and air conditioning
(AC)4 and similar proportions are expected for China within five
years. China and the United States are driving energy demand in
buildings, followed by Europe for heating and India for cooling5.
In IEA countries, space cooling may account for up to 20% of
total energy and up to 30% of total electricity use in residential
buildings in different countries, with shares varying mainly
depending on climatic conditions and on levels of diffusion of
cooling equipment, as shown in Supplementary Fig. S1 (not
complete in coverage since based on a sample that actually shares
end-use data with the IEA). It is also well known that most of the
largest metropolitan areas are in developing countries, such as
India, southeast Asia and Africa, and most of them are in warm
to hot climates6. Following the recent increase in ownership of
cooling equipment, although often still far from reaching
saturation, cooling is the fastest increasing energy use in the
buildings sector: it doubled its share in residential energy use in
IEA countries over the last twenty years. Notably, several tropical
countries with potentially high cooling requirements still have
rather low percentages of households equipped with air con-
ditioning - which implies a large potential for a significant
increase of energy use in the future, as shown in Supplementary
Fig. S2. IEA estimated a three-fold increase in global air con-
ditioning stock by 20507, as reported in Supplementary Fig. S3.

While the sensitivity of electricity consumption to temperature
depends primarily on location, penetration of air conditioning
equipment across buildings, and thermal quality of the building
stock, at the first order, cooling consumption relates to outdoor
air temperature. Degree days represent a measure of how much
(in degrees) and for how long (in days) the outdoor air tem-
perature is below/above a certain threshold (respectively HDD/
CDD) and their trends have been used as metrics for future
building energy demand8,9. In short, HDD/CDD describes the
overall need for warming/cooling.

Cooling degree days are defined as from formula (1)

CDDb ¼ Te � Tb ð1Þ
for T_e >=T_b, where T_e is the external temperature and T_b is
the base temperature. For instance for CDD21, the base tem-
perature T_b= 21 °C and, given a daily time series of external
average temperatures as T_e= 18, 24, 30 °C, the total CDD21
index will result in 0+ 3+ 9= 12 °C.

In addition, we also consider the humidity corrected CDD,
named CDDhum, taking into account the perceived temperature
instead of air temperature only, to have an indicator better
representing the human body disease. Humid Cooling Degree
Days are defined as from formula (2)

CDDhumb ¼ TPe � Tp ð2Þ

for Tp_e >=Tp_b, where Tp_e is the external perceived tem-
perature and Tp_b is the base perceived temperature. The per-
ceived temperature is computed aiming at combining the effects
of air temperature and relative humidity, empirically, into a single
parameter that provides a measure of the perceived temperature
(more info available at https://www.iea.org/articles/weather-for-
energy-tracker).

Spinoni et al.9 (2017) pointed out that population weighting of
HDDs and CDDs better represent the energy load; population
weighting results in lower HDD and higher CDD values when
averaged over all Europe due to the low weights assigned to wide
and more sparsely inhabited regions in northern Europe. On
average, heating degree days are decreasing8 and cooling degree
days are increasing9, and their relative contribution to the energy
demand is not uniform in space. For example, Waite et al.4 show
that among thirty-five cities analyzed worldwide, OECD (Orga-
nization for Economic Co-operation and Development) cities
show a 35-90W/°C/capita cooling electricity response to ambient
air temperature changes in contrast to 2-9W/°C/capita in non-
OECD ones.

On a national level, CDDs are fundamental metrics for cooling
energy demand, which is expected to grow because of expected
increased penetration of cooling equipment at global scale. The
changing climate will likely provide an additional driver to
increase cooling demand.

Not only the annual number of CDDs can be useful for the
evaluation of the tendency and the interannual variability of
cooling energy demand, but also their clustering in space and
time (at the high frequency, e.g., daily) matters. Wang et al.10

identified groups of US states sharing temporal patterns for CDD
by a clustering algorithm and assessed sensitivity of monthly per
capita residential electricity demand by means of a hierarchical
Bayesian regression model for some (economic) factors such as
GDP, discovering that the sensitivity to CDDs is stronger for
northeastern US. A similar clustering approach was developed for
the optimization of energy supply in a Brazilian city by detecting
seasonal trends and anomalies like for September/October, when
the demand varies between weekdays and weekend11. Tempera-
ture, and CDDs in particular, are very important not only as a
metric of energy consumption, but also because they affect energy
supply. An important climate risk for the energy sector is
represented by drought-induced cooling water shortages to
thermo-electric power plants: during intense hot periods power
plants are not only stressed by higher demand, but also require
bigger availability of cooling water. Despite the gradual decom-
missioning of these plants, the coming Carbon Capture and
Storage technologies are above 50% more water-intensive than
conventional plants12.

Temporal clustering of energy-related climate indices, as
HDDs and CDDs, is not much investigated in the literature. But
since the clustering might have an impact on the definition of the
energy storage capacity and on the peak energy production
capacity of a country, an additional aim of our work is to provide
a first assessment of the temporal clustering of such indices, with
a special focus on clusters of intense CDD, at the global scale.
Research on temporal clustering in the past found evidence of
extreme events that tend to cluster in alternating quiet and active
periods in terms of number of events. Trends of climate indices,
defined as day counts above local thresholds, exhibit symmetric
changes in the cold and warm tails of the temperature distribu-
tions on long periods and asymmetric changes on shorter ones13,
as for the case of extreme temperature over Europe in the period
1946–1999. There is also evidence for temporal clustering of
extreme events during the past hurricane activity in Florida and
models for yearly counts of hurricanes have been improved by
determining a cluster size of two hurricanes per year14. Since
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Poisson processes assume unrealistic independence among
events, one approach to count rare events could be analyzing the
dispersion (i.e., ratio of variance over mean of the count dis-
tribution, subtracted by one for equi-dispersion that represents
the ratio of equal variance and mean), that for positive values
indicates possible clustering since the over-dispersion supports
the time aggregation of events. For example, a north-south pat-
tern for clustering of extra-tropical cyclones in western Europe
has been highlighted15. A peak over threshold quantile-based
approach can be also considered to analyse the peak of electricity
demand on a daily basis16–19.

Understanding trends in CDDs, as well as the distribution and
trends of the occurrence of their extreme events, at global and
national scales, provides an essential basis to the analysis and
planning of the potential evolution of cooling energy demand in
buildings, globally. The present work aims to provide a global
assessment of trends of national level CDDs, and a first assessment
of their time clustering, based on a new dataset of energy-related
climate indicators made available by the International Energy
Agency (IEA, https://www.iea.org/) and the euro-Mediterranean
Center on Climate Change (CMCC, www.cmcc.it). This dataset20 is
based on ERA5 reanalysis (https://www.ecmwf.int/en/forecasts/
datasets/reanalysis-datasets/era5) and includes a number of indi-
cators (Table 1) that are relevant to analyse energy supply and
energy demand, both at grid and national level. In the database,
demand-related indicators such as CDDs, are defined according to

several thresholds and averaged nationally, either by surface or by
population weight, in order to better represent the national energy
consumption profiles (see the Data and Method section).

Next section describes our results, both in terms of trends of
national CDDs and on their clustering in time, with focus on
those (tropical) emerging countries that are more exposed and
less adaptive to thermal stress. We calculate specific parameters to
represent the aggregation in time of consecutive intense days and
investigate their tendencies from the first (2000–2009) to the last
(2011–2020) decade of the past period, for selected countries. We
include both results from standard dry CDDs and humidity-
corrected CDDs (CDDhum) over the same regions.

Results
Humidity-corrected Cooling Degree Days. We are interested in
countries with high cooling demand, which is driven by high
temperature and humidity. For this purpose, among the available
indicators we selected humidity-corrected cooling degree days at
21 °C threshold, CDDhum21. The importance to consider the
humidity factor in determining stress conditions for the human
body, leading to a more pronounced request of cooling, is also
made evident in Fig. 1: most of the tropical countries are affected
by increasing CDDhum21 (Fig. 1, panel b), even more than dry
CDD21 (Fig. 1, panel a). Many of the most affected countries are
also densely populated (India, Bangladesh, Thailand among
others) and subject to a not negligible population increase in the

Table 1 Available variables in the IEA-CMCC dataset18.

NAME DESCRIPTION UNITS AVERAGE

Temperature Temperature (taken 2m above ground) °C Population, surface
Temperaturedew Dew point temperature (taken 2 m above ground)) °C Not averaged
Temperaturewb Wet bulb temperature (taken 2m above ground)) °C Population, surface
Precipitation Total precipitation mm/h Surface
Snowfall Snowfall mm/h Surface
Runoff Runoff mm/h Surface
Evaporation Evaporation mm/h Surface
Cloud Cloud coverage % Surface
DNI Direct normal radiation J/m^2/h Surface
GHI Global horizontal irradiance J/m^2/h Surface
Pressure Surface pressure Pa Surface
Temperaturemax Temperature max (taken 2m above ground)) °C Population, surface
Temperaturemin Temperature min (taken 2m above ground)) °C Population, surface
HeatIndex Heat index (taken 2 m above ground)) °C Population
Humidex Humidex (taken 2 m above ground)) °C Population
CDD CDD (using a base temperature of 65 °F) °F days Population
CDDX CDD (X °C, X= 10/16/18/21/23/26) °C days Population
CDDTholdX CDD (X °C, X+ 3 °C threshold, X= 18/21/23) °C days Population
CDDVar CDD (variable) °C days Population
CDDhum CDD (65 °F, humidity) °F days Population
CDDhumX CDD (X °C, humidity, X= 10/16/18/21/23/26) °C days Population
CDDhumTholdx CDD (X °C, X+ 3 °C threshold, humidity, X= 18,21,23) °C days Population
CDDhumVar CDD (variable, humidity) °C days Population
CDDwet CDD (65 °F, wet bulb) °F days Population
HDDX HDD (X °C, X= 14/16/18/20) °C days Population
HDDTholdX HDD (X °C, X-3 °C threshold, X= 16/18/20) °C days Population
HDDVar HDD (variable) °C days Population
HDD HDD (using a base temperature of 65 °F) °F days Population
HDDwind HDD (14 °C, wind) °C days Population
RH Relative humidity % Surface
Daylight Sun light minute Population, surface
WindXint Wind speed (X m, X= 100/10) m/s Surface
WindXdir Wind direction (X m, X= 100/10) degree (anticlockwise, 0° East) Not averaged
Wind100power Wind capacity factor (100m) % Not averaged

NAME indicates the variable name (bold if primary) in the filename, AVERAGE indicates if averaged by population or by surface for aggregated variables available at the country level. Variable is
available at grid level only when “Not averaged is specified”. Parameter X denotes separate variables. More detailed information is available in the User guide downloadable at: https://www.iea.org/data-
and-statistics/data-product/weather-for-energy-tracker.
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considered period, reinforcing the value to consider indices
weighted based on the population distribution (see methods). A
first look into CDDhum21 nationally aggregated values shows a
rising tendency in the frequency, particularly in the temporal
clustering, of intense days (days when the daily CDDhum21
value exceeds the 90p value of the whole CDDhum21 series, see
Methodology) worldwide. In fact, the majority of available
regions (see Supplementary Table S1) have significantly higher
values in the second decade for the selected parameters (see
Methods). For example, the total number of intense days (N) per
decade rises in almost all countries. In terms of clustering, at least
one of the considered parameters rises in more or less 75% of the
considered countries and 50% of the countries shows all para-
meters rising. We know that both frequency and temporal clus-
tering of intense days induce greater cooling energy demands and
the countries affected by such significant increases are mainly
concentrated in South America, Southeast Asia and Africa. In the
sample there are also less developed countries for which it is
more difficult to cope with higher cooling energy demand. The
effect in the distribution of intense CDDhum21 days is mea-
surable worldwide, and thanks to this updated dataset (https://
www.iea.org/articles/weather-for-energy-tracker) we will keep
track of next changes in the CDDhum21 spatio-temporal
distribution.

By classifying countries according to the national 75p of
CDDhum21 over the two decades (considering the warm season
only, see Methods) the top 23 countries (representing the top
10%) are mainly located in the tropics with Central Africa, Arabic
Peninsula and South Asia leading. Figures 2 and 3 show the linear
regression of CDD and CDDhum21 per year (see Methodology)
for the four countries, within the selected 23, showing the most
pronounced increase in the trend of the annual accumulated
values: Fig. 3 shows that the CDDhum21 per year has risen the
most in Bangladesh (Fig. 3 panel a) with 22.31 °C-year per year
until 2020, meaning that the necessity of cooling increased
considerably in intensity and duration. High positive trends are
also found for Thailand (Fig. 3 panel c) and India (Fig. 3, panel
d). There is concern for Bahrain (Fig. 3, panel b) since this is the
country with the highest CDDhum21 values that also increased,
in the twenty years considered, from about 3200 to 3600 °C-year.
Following this trend, the impact on the national energy supply
could worsen fast in the the near future.

Countries of Arabic peninsula dominate when considering the
temporal variability expressed in terms of standard deviation
(SD). In fact, the greatest values of standard deviation (SD) are
found in Bahrain, Qatar and Iraq, followed by Hong Kong and
Pakistan (Fig. 4). The spatial pattern of intense CDDhum21
values, expressed as the 90p, over each country (Fig. 5) suggests

Fig. 1 Global trends of national-level CDD21 and CDDhum21, based on IEA-CMCC (2022) over the period 2000-2021. CDD21 is shown in a. CDDhum21
is shown in b.
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highest values for the tropical countries of the Northern
Hemisphere (all of the 23 highlighted countries are located in
the Northern Hemisphere) such as United Arab Emirates,
Kuwait, Iraq, Pakistan, Saudi Arabia and Bangladesh, followed
by India, Vietnam, Cambogia, Thailand, Mali, Mauritania and
Niger.

Figure 6 presents the CDDhum21 time series for a selected set
of countries from this group: Barhain, Iraq, Hong Kong, Pakistan
respectively in panels a,b,c,d. Looking at the peaks indicated by
the intense days when the percentile threshold (blue line in Fig. 6)
is crossed, the magnitude shows little variability in time. On the

other hand, peaks look wider in the second half, and we observe a
tendency of increasing clustering of intense days especially for
2016 and 2017 years in those countries. This apparent regularity
will be investigated to check for temporal clustering (Table 2).

A higher cooling needs are expected in the second decade as
intense periods last longer because of increased clustering (Fig. 6,
red marks), in Hong Kong especially. Computing the cumulated
CDDhum21 over the year, an increasing tendency is found for all
of the 23 regions. These trends are everywhere significant (5%
level) except for six countries in the subset. Looking at the yearly
trends of the total cumulated values of CDDhum21 over the full

Fig. 2 Linear regressions of yearly CDD21-accumulated (warm season only) for top four countries according to the coefficient, significant at the 5%
level. Egypt, Saudi Arabia, United Arab Emirates and Kuwait are shown in a, b, c and d respectively.

Fig. 3 Linear regressions of yearly CDDhum21-accumulated (warm season only) for four top countries according to the coefficient, significant at the
5% level. Bangladesh, Bahrain, Thailand and India are shown in a, b, c and d respectively.

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00878-3 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:208 | https://doi.org/10.1038/s43247-023-00878-3 |www.nature.com/commsenv 5

www.nature.com/commsenv
www.nature.com/commsenv


period, different countries emerge by their slope coefficient. These
locations are also characterized by important growth of the
urbanization degree over 2000-2020.

The results relative to the clustering of CDDhum21, based on
the computation of the Coefficient of Variation (see Methods),
are summarized in Table 2: the top twenty-three countries are
located in the northern hemisphere, concentrated in Arabia and
South East Asia. Table 3, instead, shows the 75th and 90th

percentiles, and other statistical parameters for CDDhum21 (see
Methods) computed over the whole 2000-2020 period. The total
number of intense days (N) increase significantly everywhere
moving from the first to the second decade of the considered
period, except for Iraq where it slightly decreases from 190 to 178.
The strongest increase of N, from 70 in 2000–2009, to 298 in
2011–2020 is observed in Thailand. In general, the total number
of intense days almost doubles from the first to the second
decade, but a threefold increase is found for Vietnam, India,
Bangladesh and Cambodia. This means that high-end cooling

demand is rapidly increasing in already warm countries affecting
severely the population and challenging the energy grid in richer
countries. Bahrain leads both in magnitude and variability, with a
high value for the coefficient of variation (CV) suggesting the
tendency to clustering. Over the 20 years period all the countries
show values of CV greather than two and some greather than
four, such as Burkina Faso, Mali and Benin. This gives evidence
for clustering of intense CDDhum21 days in these regions. The
change of CV from the first to the second decade is significant for
most countries. Despite the increase of N, in Bangladesh, the CV
is almost the same. On the other hand, CV strongly increases in
Cambodia, Burkina Faso, Mali, Niger, India, Thailand and
Vietnam (where it raised from 1.89 to 3.33). Looking at the
distribution of the intense days, several clusters of (at least 2)
consecutive days arise. To characterize the clustering motivated
by the CV values we compared the decade 2000–2009 against the
decade 2011–2020 through the total number of clusters and their
maximum size in the decade. In Table 2 the temporal clustering is

Fig. 4 Distribution of CDDhum21 for the first decile of countries (23) with highest 75th percentile. Countries are sorted by decreasing standard
deviation of CDDhum21. In these box plots the blue rectangle indicates the interquartile range (IQR), the green line the median, the whiskers extend to
Q1–1.5 * IQR and Q3+ 1.5 * IQR or to the last data point if it is less than this value. Any points that fall beyond the whisker limits (black dash) are known as
outliers (black circles).

Fig. 5 Map of regions by their 90th percentile value of daily CDDhum21 over 2000–2020. Warm season only is shown as MJJASO/NDJFMA according
to the latitude.

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00878-3

6 COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:208 | https://doi.org/10.1038/s43247-023-00878-3 | www.nature.com/commsenv

www.nature.com/commsenv


expressed also in terms of the K function (see Methods). The K
function of Bahrain, Kuwait, Saudi Arabia, Oman and India
exceeds ten days in the second decade, while in Thailand and
Vietnam is more than doubled. These former countries, in fact,
show a significant clustering in time for the other parameters too.
The increase of the K function from the first to the second decade
is significant for most countries, similarly to CV. In Mauritania

and Bangladesh the K function raises significantly, despite the CV
does not follow the same tendency.

In general, the last decade exhibits a general strong increase
both in the occurrence and the duration of clustes, suggesting a
potential increase in the cooling demand as well as a more
clustered demand, less sparse in time, inducing persistent stress
conditions for people and energy providers.

Fig. 6 Time series of CDDhum21. In black the CDDhum21 and the associated point processes. as red crosses (only days above threshold) for the top four
countries. The thresholds of 75th percentile and 90th percentile (which is used for the point process) are indicated respectively in green and blue. Bahrain,
Iraq, Hong Kong and Pakistan are shown in a, b, c and d respectively.

Table 2 CDDhum21 values of the 23 countries sorted by decreasing standard deviation, separately for the decade 2000–2009 (I
in table) and the decade 2011–2020 (II).

Country CV I CV II K I K II N I N II N_C I N_C II M_C I M_C II

BAHRAIN 2.83 3.21 11.13 12.36 150 218 25 33 18 25
QATAR 2.80 3.00 8.95 9.76 160 208 33 46 13 23
IRAQ 2.91 2.94 10.92 9.61 190 178 28 32 29 22
HONG KONG (China) 2.06 2.87 4.19 7.51 115 253 29 58 9 15
PAKISTAN 2.41 3.21 5.09 8.26 129 239 35 59 6 19
KUWAIT 2.49 2.96 8.59 10.40 125 243 25 41 14 17
UNITED ARAB EMIRATES 2.68 2.92 7.09 8.71 159 209 38 43 9 17
BANGLADESH 2.26 2.31 4.32 5.69 94 274 21 71 8 11
BURKINA FASO 3.71 4.72 7.87 8.76 126 242 30 69 8 8
VIET NAM 1.89 3.33 2.28 7.94 79 289 22 60 5 11
SAUDI ARABIA 2.51 3.27 9.00 12.14 122 246 23 32 15 49
GUINEA-BISSAU 2.75 3.08 5.88 6.67 149 219 35 50 13 9
OMAN 2.52 3.31 7.31 10.12 125 243 22 46 26 20
MALI 3.47 4.53 6.80 8.60 123 245 30 63 8 12
INDIA 2.61 4.13 8.15 11.07 80 288 13 47 12 23
GAMBIA 3.15 3.50 5.50 8.20 167 201 43 43 7 13
CAMBODIA 2.95 3.95 5.32 9.73 97 271 18 50 9 16
DJIBOUTI 2.18 3.06 5.28 7.02 149 219 29 46 9 13
BENIN 3.53 4.43 9.61 9.59 135 227 24 50 20 13
NIGER 2.94 4.27 5.55 8.56 106 262 24 61 12 11
CAYMAN ISLANDS 2.30 3.10 5.05 7.36 126 242 31 57 7 9
THAILAND 2.71 4.25 4.80 9.90 70 298 17 57 9 23
MAURITANIA 2.37 2.44 3.49 4.96 157 211 42 60 4 7

For each country the coefficient of variation CV, the K function, the total number N of events above 90p, the total number of clustered events N_C and the maximum cluster size M_C in days of the
decade (in bold countries where differences are 5% statistically significant) are shown.
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Sixteen countries show an increase in the size of the maximum
cluster (M_C, see Methods) from the first to the second decade.
M_C doubles in Vietnam and Thailand, while three times greater
values are found for Pakistan and Saudi Arabia (where M_Cmoved
from 15 to 49). Furthermore Saudi Arabia, together with Bahrain,
United Arab Emirates and Gambia (all countries with larger M_C
in the second decade), are the countries where the number of
clustered intense events per decade (N_C) didn’t increase
significantly. On the other hand, over most of the other countries
the total number N_C of clusters doubles in the second decade. In
particular, moving from the first to the second decade, 22 clusters
became 60 in Vietnam, 13 clusters became 47 in India, 17 clusters
became 57 in Thailand and 21 clusters became 71 in Bangladesh. A
significant increase of N_C as well as M_C is found in the last four
countries. These countries are the most interesting since they show
significant values for all the three parameters. In other words, in
Vietnam, India, Niger and Thailand not only the intense days have
risen in the last decade but also their clustering in time, implying
higher and more concentrated in time energy demand. Figure 7
focuses on the results over these countries. Starting from N_C
yearly series (Fig. 7, red lines) we notice a clear positive tendency.
The decade 2000-2009 is characterized by lower N_C values, in fact
there are also years with few to absent clusters like 2000, 2001, 2002
and 2008 especially in India and Thailand. The variability of N_C
through the years is high in Thailand and Vietnam where the
maximum value of 12 clusters in 2020 is reached. Furthermore,
Thailand’s variability arises also for M_C (Fig. 7, panel d). The
yearly widest cluster size exceeds 20 days with the exceptional
24 days long cluster of 2010 in Thailand. Instead, India exhibits a
more regular positive tendency for both N_C and M_C (Fig. 7,
panel b).

Moving from the aggregated point of view (Table 2) to the grid
point (see Methods), the results summarized in Table 4 are, in

general, confirmed. Regarding the N parameter, both magnitudes
and trends are similar, suggesting that the two methods could be
considered equivalent (aggregation does not change the out-
come). The countries most demanding for cooling energy with N
exceeding 150 days in the first decade are Qatar, Iraq, United
Arab Emirates (UAE hereafter), Oman and Gambia. Instead,
considering a higher threshold of 250 day in the second decade
the high demanding countries are Hong Kong, Bangladesh,
Vietnam, Cambodia and Thailand (Table 2 and Table 4). An
interesting difference is given by Iraq where the detected
decreasing trend of N, obtained based on aggregated data, results
increasing when moving to the grid point approach. The number
N_C of clustered events is the indicator better preserved between
the two methods, especially in the case of Qatar, Hong Kong and
Cambodia. Generally the differences shown in Table 4 well agree
with the ones shown in Table 2, also when the magnitudes are
different, such as in the case of Pakistan and Kuwait. For Iraq and
Gambia the found increases are more pronounced compared to
aggregated results (Table 2). The potential demand for energy is
significantly higher in the second decade, according to most of the
significant countries in Table 2, showing the same increase and
the same magnitude in Table 4, except for Pakistan and India
where also other indicators are less preserved. This is suggesting
that, possibly, the population distribution in this region has an
important effect and this will be the object of future investigation.
Interesting to note that differences for clustering in the two
decades over Quatar, are significant only when computed on
aggregated values (Table 2) and not when computed at the grid
point level and then aggregated (Table 4).

Dry Cooling Degree Days. Figure 1 shows that the extended CDD
rising tendency along the tropical belt is confirmed for CDD21
(Fig. 1, panel a) with pattern similar to the CDDhum21(Fig. 1,
panel b) but with a lower magnitude. This is confirmed by Sup-
plementary Table S2, compared to Supplementary Table S1. The
frequency of intense days has risen worldwide and the temporal
clustering too. Greater values of the selected parameters in the
second decade are found in most of the regions. The number of
countries affected by significant changes in the clustering is of the
same order of magnitude but slightly smaller when humidity is
removed (Supplementary Table S2 with respect to Supplementary
Table S1). The four parameters together changed in 87 countries,
where both frequency and temporal clustering of intense days are
driving higher energy demand for cooling. These countries are
concentrated in South America, Southeast Asia and Africa, where
population is also increasing meaning that cooling will be an even
higher key issue related to energy demand. Again, the notable cases
of e.g., U.S.A. and Spain are present, recalling that the effect in the
distribution of intense CDD21 days does not involve only less
developed regions. Similarly to what has been done for
CDDhum21, from now on the top 23 countries, based on the
intensity of CDD21 daily values, are investigated, since these are the
regions with potentially strong consequences for people’s health
and where cooling energy demand could grow dramatically. The
shown increase in CDD21 is consistent with previous works sug-
gesting a significant change over all continental areas. This is
consistent with the already highlighted climate-driven energy
demand trends for heating and cooling, more pronounced moving
from pre-1990 to post 199020.

Neglecting humidity, the results for CDD21 are similar both in
terms of magnitude and clustering, but generally less pronounced.
Additional countries such as Turkmenistan, Egypt, Chad, South
Sudan and Togo appear in the list (Table 5 to be compared to
Table 2). However, the order based on decreasing SD is changed
and some countries are no more statistically significant in terms

Table 3 75th and 90th percentiles of the the region
aggregated CDDhum21 time series.

Country 75p 90p SD CV K

BAHRAIN 22.79 26.51 5.93 3.05 11.71
QATAR 19.65 23.86 4.93 2.94 9.44
IRAQ 15.2 17.00 4.42 2.91 10.15
HONG KONG
(China)

13.63 15.44 4.41 2.53 6.40

PAKISTAN 15.56 17.47 4.34 2.84 7.12
KUWAIT 16.57 18.10 3.97 2.87 9.52
UNITED ARAB
EMIRATES

18.15 20.27 3.87 2.81 8.04

BANGLADESH 15.03 16.78 3.55 2.63 5.23
BURKINA FASO 12.06 13.89 3.07 4.32 8.52
VIET NAM 12.01 13.52 2.86 2.99 6.93
SAUDI ARABIA 14.68 15.84 2.80 2.94 11.25
GUINEA-BISSAU 11.49 12.72 2.79 3.02 6.77
OMAN 15.06 16.09 2.74 2.99 9.25
MALI 12.37 13.87 2.73 4.09 8.10
INDIA 12.69 13.91 2.70 3.73 10.31
GAMBIA 11.82 13.19 2.62 3.28 6.79
CAMBODIA 13.03 14.32 2.62 3.74 9.05
DJIBOUTI 14.73 15.37 2.43 2.6 6.20
BENIN 11.53 12.79 2.30 4.03 9.50
NIGER 12.83 13.86 2.25 3.83 8.06
CAYMAN ISLANDS 12.18 13.01 2.23 2.78 6.32
THAILAND 12.19 13.51 2.20 3.89 9.46
MAURITANIA 12.69 13.66 1.62 2.41 4.37

The Standard Deviation (SD), the Coefficient of Variation (CV) and the Ripley’s K function (K)
(see Methods) of intense days for the full period 2000-2020 (warm season only) are also
shown.
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Fig. 7 Number of clustered CDDhum21 events and size of the maximum cluster. N_C is shown in red and M_C (units are days) is shown in blue. Annual
values are shown, for the countries where both indicators are significant at the 5% level. The dashed line separates the decades and represent the removal
of 2010 year. Vietnam, India, Niger and Thailand are shown in a, b, c and d respectively.
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of N_C and M_C changes, such as Burkina and India with poor
evidence for clustering tendency. The opposite is valid for
Bahrain and Saudi Arabia where clustering is now statistically
significant for both N_C and M_C. In Fig. 8 the global pattern of
intense CDD21 is shown: the map is similar to the one shown for
CDDhum21 (Fig. 5) with less pronounced values especially over
the tropics.

In the case of dry CDD21 the strongest trends of cumulative
potential cooling energy demand, displayed in Fig. 2, are found in

Egypt (14.01 °C-year/year) followed by Saudi Arabia, UAE and
Kuwait (7.74 °C-year/year). The much higher tendency of Egypt
is interesting and further analyses could verify how the degree of
urbanization has changed during the considered twenty years as
well.

Table 5 also contains the results of the K function in the dry
case over the two decades (for the statistical values computed over
the whole 2000-2020 period please refer to Table 6). The highest
values above ten days in the second decade are found in UAE,

Table 4 Analogous of Table 2 where N, N_C and M_C are the averages of the same indicators, calculated for each grid point
inside the nation, weighted by the corresponding gridded population.

Country N I N II N_C I N_C II M_C I M_C II

BAHRAIN 142,05 206,72 25,97 29,13 18,97 24,79
QATAR 154,97 199,85 34,03 42,33 14,18 22,54
IRAQ 175,02 182,72 33,84 36,19 18,51 18,54
HONG KONG (China) 118,41 257,27 28,48 55,33 9,03 17,52
PAKISTAN 136,12 221,77 34,34 52,28 7,99 13,99
KUWAIT 130,12 227,67 29,42 53,98 13,67 15,8
UNITED ARAB EMIRATES 156,86 210,61 36,56 44,71 9,87 15,25
BANGLADESH 100,94 264,99 22,11 66,61 9,14 11,33
BURKINA 126,38 228,42 30,39 61,99 8,47 8,12
VIET NAM 91,14 262,63 20,94 54,23 7,87 17,52
SAUDI ARABIA 125,15 225,01 27,71 46,11 11,65 17,6
GUINEA-BISSAU 146,3 205,54 34,34 46,06 11,43 12,84
OMAN 154,02 209,3 35,85 44,9 12,85 15,23
MALI 121,01 233,46 30,27 58,7 6,82 10,83
INDIA 121,92 236,38 26,83 45,97 12,22 19,66
GAMBIA 162,78 201,96 38,42 43,11 8,61 12,25
CAMBODIA 85,97 260,16 17,84 50,98 8,73 21,36
DJIBOUTI 130,94 234,16 28,87 53,3 7,99 13,26
BENIN 144,11 215,91 35,28 51,22 10,33 11,36
NIGER 106,72 240,69 22,96 59,75 8,73 9,31
CAYMAN ISLANDS 121,77 230,59 29,91 57,04 7,14 7,27
THAILAND 90,31 251,74 20,46 51,27 7,64 15,99
MAURITANIA 131,68 225,85 28,9 52,69 8,29 10,35

The countries where all parameters changed significantly from I to II decade are highlighted in bold.

Table 5 Same as Table 2 but for CDD21 instead of CDDhum21.

Country CV I CV II K I K II N I N II N_C I N_C II M_C I M_C II

IRAQ 2.90 2.94 10.85 9.61 190 178 28 32 29 22
TURKMENISTAN 2.44 3.22 5.09 9.10 132 236 32 46 10 23
KUWAIT 2.33 3.05 5.48 7.72 128 240 36 65 7 10
BURKINA FASO 3.94 4.46 7.82 9.57 154 208 33 40 14 15
PAKISTAN 3.40 3.48 6.70 7.72 169 199 39 40 13 9
UNITED ARAB EMIRATES 2.29 3.17 5.79 10.59 105 263 24 41 8 25
SAUDI ARABIA 1.88 3.53 4.68 11.59 73 295 18 41 9 37
EGYPT 2.06 2.81 4.07 7.78 108 260 26 46 7 26
MALI 4.21 4.36 9.78 9.58 164 204 37 39 15 12
QATAR 2.66 2.86 5.17 7.05 161 207 44 53 6 11
NIGER 3.84 4.54 8.08 9.12 150 218 30 48 14 13
CHAD 3.72 4.75 10.17 10.75 138 229 22 44 16 15
DJIBOUTI 2.69 3.03 5.72 9.45 148 220 32 41 8 13
BAHRAIN 2.74 2.86 7.20 7.43 161 207 38 49 8 16
OMAN 2.97 3.35 5.95 7.45 130 238 30 54 8 13
INDIA 3.70 4.43 11.15 11.70 149 219 21 30 39 30
SOUTH SUDAN 3.13 3.55 7.54 9.97 157 205 30 37 13 16
SUDAN 3.80 4.32 8.50 9.20 155 213 34 43 13 20
MAURITANIA 2.96 3.18 5.28 6.57 159 209 42 55 10 13
BANGLADESH 2.55 2.30 5.04 5.22 123 245 25 65 13 9
BENIN 3.44 4.11 9.60 10.14 144 218 27 43 21 14
TOGO 3.14 3.96 8.40 9.53 134 228 28 41 20 12
CAMBODIA 3.08 3.79 6.82 9.61 124 244 25 42 10 16
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Chad, Benin as well as in India and Saudi Arabia. In particular,
removing the effect of humidity, the K function more than
doubles in Saudi Arabia. The majority of countries show a
significant rise in the K function for the second decade, in
agreement with the CV, except for Iraq, Mali, Bahrain and
Bangladesh. Similarly to CDDhum21, also for CDD21, the K
function looks to better represent the temporal clustering in this
context.

N_C (and N) of dry CDD significantly increased from
2000–2009 to 2011–2020 for most of the countries. Among the
most affected regions the increase of all parameters is more
pronounced in Saudi Arabia. It is remarkable that moisture
affects not only the geographical pattern of intense days but also
their clustering in time. In fact, M_C difference is statistically
significant for CDD21hum in 70% of the 23 countries, while for
CDDhum21 only for 56%. There are some countries with higher

evidence in the tendency for clustered cooling demand, having
N_C changes significant for both humid and dry cases: this is the
case of Niger, Oman and Bangladesh.

Figure 9 shows the analysis of clustering for the three relevant
regions of UAE, Saudi Arabia and Oman. Regarding the number
of clustered CDD21 events (N_C), the increase in cluster density
from the first to the second decade is evident (red line). It is
important to highlight the high temporal variability in Oman,
when in the year 2012 the maximum number of 9 clusters is
found, followed by the 2013 year associated to no clusters at all.
In support of a more intense second decade, all of the three
regions share big values of N_C, where also UAE reaches 9
clusters. Looking at the blue line in Fig. 9, relative to the size of
the maximum cluster (M_C), the variability results higher for
UAE and Saudi Arabia where maximum cluster size exceeds 20
days in 2012 and 2017. Comparing Fig. 9 with Fig. 7, we notice
that humid countries have more, but smaller, clusters than dry
ones with the record of 37 consecutive intense days in 2017 for
Saudi Arabia.

In Table 7 the results at the grid point level are shown.
Similarly to what we found for the humid case, the magnitudes
and the increasing trends agree with those of the aggregated
counterpart (Table 5). Iraq, Burkina, Pakistan, Mali, Qatar,
Bahrain, South Sudan, Sudan and Benin are the countries
potentially most demanding for cooling energy with N exceeding
150 days in the first decade. The second decade’s threshold of
250 day is crossed only by Egypt in the humid case (Table 5) but a
significant increse up to 235 is found also in the dry case (Table 7)
confirming the Egypt as the most affected country in the last
decade. The general equivalence in the two approaches is
confirmed, with the exception of Iraq in accordance with Table 7.
In Supplementary Table S1, covering all of the countries, the N_C
is the better preserved indicator, especially in terms of magnitude
in the second decade.

The agreement of the results relative to N_C obtained based on
the computation of the index based on the two methods for both
CDD21 and CDDhum21, suggests that weighting for the
population before or after the computation of the index is not
influential for this parameter confirming that the usage of pre-
computed indices, aggregated and made available on the IEA web
site, is a valid approach to study the evolution of cooling energy
demand for stakeholders. The maximum cluster size M_C
generally agrees both in magnitude and trend, despite few

Fig. 8 Map of regions by their 90th percentile value of daily CDD21 over 2000-2020. Warm season only is shown as MJJASO/NDJFMA according to
the latitude.

Table 6 The CDD21 results analogous to Table 3.

Country 75p 90p SD CV K

IRAQ 15.2 16.99 4.42 2.94 10.21
TURKMENISTAN 9.04 11.03 4.17 2.86 7.60
KUWAIT 16 17.16 3.64 2.72 6.79
BURKINA FASO 10.77 12.33 3.26 4.21 8.69
PAKISTAN 11.13 12.53 2.80 3.43 7.16
UNITED ARAB EMIRATES 14.57 15.65 2.55 2.85 9.10
SAUDI ARABIA 13.25 13.99 2.52 2.93 10.25
EGYPT 8.53 9.43 2.51 2.54 6.51
MALI 10.02 12.32 2.47 4.29 9.68
QATAR 14.34 15.29 2.44 2.75 6.22
NIGER 11.17 12.98 2.36 4.23 8.91
CHAD 8.87 11.11 2.26 4.27 10.67
DJIBOUTI 12.23 13.02 2.25 2.92 8.03
BAHRAIN 12.58 13.42 2.22 2.81 7.26
OMAN 12.57 13.59 2.15 3.27 6.88
INDIA 8.85 10.60 1.98 4.14 11.89
SOUTH SUDAN 9.75 10.91 1.94 3.32 8.77
SUDAN 10.76 12.16 1.91 4.06 8.82
MAURITANIA 11.01 12.11 1.62 3.12 6.20
BANGLADESH 8.3 9.03 1.37 2.64 5.06
BENIN 8.31 9.01 1.30 3.8 9.85
TOGO 8.16 8.82 1.28 3.6 9.10
CAMBODIA 7.96 8.74 1.23 3.53 8.97
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Fig. 9 The number of clustered CDD21 events and size of the maximum cluster. N_C is shown in red and M_C (units are days) is shown in blue. Annual
values are shown, for the countries where both indicators are significant at the 5% level, where the dashed line separates the decades and represent the
removal of 2010 year. United Arab Emirates, Saudi Arabia and Oman are shown in a, b and c respectively.
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countries such as UAE, Saudi Arabia and Egypt have values of
M_C in Table 7 that sligthly underestimate those of Table 5. This
means that not only space aggregated N, but also space
aggregated M_C results, can be considered comparable using
the two methods. About statistical significance, the countries
agree well also for CDD21, confirming the comparability between
the two aggregation methods. It is curious to note that in terms of
CDD21 changes, Bahrain results now significant, while Djibouti
and Oman are no more significant in all three parameters
compared to CDDhum21 results.

Conclusions
This work mainly focuses on the global recent tendencies in terms
of energy demand by emerging countries for cooling needs. The
energy demand is here expressed in terms of Cooling Degree
Days, both standard (CDD) and humidity-corrected Cooling
Degree Days (CDDhum), weighted by population, based on a
joint IEA-CMCC database (https://www.iea.org/articles/weather-
for-energy-tracker). The database derives country level indicators
at global scale from the year 2000 and is regularly updated at the
country level with quarterly frequency. Few studies make use of
population weighting for CDD9, and even less studies consider
humidity, which is relevant to characterize heat stress
conditions21. The aim of this work is to fill this gap based on
actual data rather than projections, especially for emerging
countries, for which there are no studies on this subject.

First, we show that cooling degree days have increased sig-
nificantly worldwide. Then we found that intense events showed
increased tendency to cluster in a set of countries with high
cooling demand. We also demonstrate that considering humidity
is relevant, compared to the standard CDD, highlighting the
importance to use a proper measure of (a country’s) levels of
warmth.

The concept of energy reliability for peak demand is important
for energy providers’ planning. This is often based on the

distribution of 90th percentile (the threshold for intensity of
cooling degree days applied in our study, see Methods) of past
high temperatures assuming a stationary climate22. Here we show
that significant changes in the clusters emerge between the last
two decades for specific tropical countries.

Most of the high demanding countries, according to
CDDhum21 are located in Asia led by the Arabic Peninsula
(Bahrain at the top). Looking at the yearly accumulated values,
over the considered twenty-year period, the positive significant
trend is observed almost everywhere, with countries in the tro-
pical belt showing a trend ranging from about 15 to about 25 °C-
year/year (see Fig. 1). Similarly, the distribution of intense days is
asymmetric towards the last decade for most of the countries. In
particular, India and Thailand become warmer, and also register
an increase of the number and length of intense events, together
with Vietnam and Niger. On the other hand, Thailand shows a
less clear tendency given the high temporal variability of N_C and
M_C.

In the first decade of the current century the total energy
demand of Vietnam more than doubled21. A relevant cause is the
fast population rise, particularly true for the urbanized one. Our
findings confirm positive trends in the buildings’ cooling poten-
tial demand, but also that demand becomes more clustered with
longer intense periods. Today Vietnam is self-sufficient in the
energy supply, however it is expected to import energy soon. On
this respect the government had proposed several energy effi-
ciency and conservation policies to control the impact of near
future energy demand. A study on world largest metropolitan
areas6, reported the cities of Madras (India), Bangkok (Thailand)
and Ho Chi Minh (Vietnam) as the warmest ones looking at
annual CDD, followed by many other Indian cities. They
observed that given the rising electrification rate as well as AC
penetration the Mumbai city alone has a potential future cooling
demand that corresponds to the 24% of the current demand in
the entire US (in population-weighted CDD). We confirm this
positive trend, and we add that not only more clusters are

Table 7 The CDD21 analogous of Table 4 where N, N_C and M_C are the averages of the same indicators, calculated for each grid
point inside the nation, weighted by the corresponding gridded population.

Country N I N II N_C I N_C II M_C I M_C II

IRAQ 175,04 182,60 33,89 36,09 18,47 18,53
TURKMENISTAN 135,80 228,42 32,96 44,40 8,15 21,34
KUWAIT 131,62 233,65 32,77 59,68 6,94 10,50
BURKINA 170,14 198,25 36,13 43,54 14,26 12,56
PAKISTAN 167,71 188,87 37,79 40,80 11,75 14,09
UNITED ARAB EMIRATES 110,70 244,65 28,57 51,38 7,32 19,08
SAUDI ARABIA 118,67 235,14 28,10 49,17 9,62 16,63
EGYPT 103,74 250,28 23,78 52,96 8,44 19,70
MALI 160,69 206,61 36,69 45,59 12,40 12,70
QATAR 157,91 211,46 42,43 53,55 7,09 10,07
NIGER 145,84 215,34 32,25 46,74 13,51 12,55
CHAD 140,21 219,81 24,22 42,91 18,16 15,29
DJIBOUTI 148,53 231,08 34,78 46,52 9,67 16,68
BAHRAIN 157,16 205,94 39,42 48,66 7,88 15,55
OMAN 156,32 216,82 35,94 50,41 10,39 12,03
INDIA 147,51 209,06 25,78 34,63 18,89 24,17
SOUTH SUDAN 174,31 192,92 31,76 41,53 15,71 14,53
SUDAN 158,93 202,79 33,47 43,47 14,14 13,98
MAURITANIA 142,52 220,08 36,85 54,06 8,38 11,57
BANGLADESH 123,77 241,72 27,11 58,23 10,89 11,35
BENIN 154,52 208,48 35,55 47,73 12,86 10,78
TOGO 147,74 212,97 34,17 50,37 11,03 12,29
CAMBODIA 109,61 244,75 21,85 45,12 10,42 20,32

The countries where all parameters changed significantly from I to II decade are highlighted in bold.
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emerging but also their duration tends to be longer, meaning that
their estimate could be conservative if clustering is ignored. In
Bangkok (Thailand) the already highlighted warming trend23 is in
line with our results up to 2012 and we show that it continues
until now.

The consequences of the described tendencies in Niger can be
even worse, considering that it struggles meeting the low daily
energy demand, often resulting in summer shortages. Most of the
electricity consumption (a total of 474 GWh in 201024) comes
from the capital city of Niamey and Niger imports more than
85% of its energy from Nigeria. We stress that the harsh condi-
tions will be exacerbated by shortages due to significantly more
frequent intense periods, for the last decade, in the order of 6
clustered events per year (10 only in 2019) with mean length of 7
consecutive days, as reported in Table 2. Several simulations agree
that future cooling demand will be led by Indonesia, China and
particularly India where the impact of rising CDD is more
pronounced24 in agreement with our evidence and reaching 60%
of the peak summer load. Today 8% of Indian households have
air conditioning and are expected to grow six-fold in the next
twenty years. A survey in Delhi (highest electricity consuming
region in India) suggested that above 40% of households own
AC25. The growing demand for AC in India, driven by higher
incomes, will stress the energy grid under longer clusters as
shown in this paper. Our results suggest that considering CDD
instead of CDDhum in India might hide the clustering effect that
is not negligible (Table 2 for details).

Removing the effect of humidity gives notable differences. In
fact, some countries, such as Hong Kong, emerge only when
humidity is considered, or when it is neglected, such as Egypt. But
more surprising is the effect on temporal clustering, where Saudi
Arabia shows an increase in clusters only on dry conditions. On
the other hand, the clustering over India is significant only on
humid conditions. In the dry climate UAE, Saudi Arabia and
Oman are the only regions where clusters increase significantly
both in number and length. Instead, Kuwait, Bangladesh and
especially Niger are relevant in both dry and humid analysis,
hence requiring more awareness on health and energy stand-
points. In Saudi Arabia the population raised by 2% but the
energy demand raised by almost 5% per year26. Figure 9 shows
that the clusters notably increased in the last 20 years in Saudi
Arabia and a single cluster can overcome an entire month as in
2017. UAE is one of the highest energy consumers per capita in
the world because of its economic and population growth and a
low cost for energy27. Over 1980–2000 the electricity consump-
tion for cooling raised from 5 to 50 billion kWh. We found that
UAE has a tendency in clustering similar to that of Saudi Arabia,
with very long clusters which stress energy supply for longer.
Despite the strong increase in clusters, these Arabian countries
could mitigate the consequences by financing an energy-efficient
transition of the emerging residential sector that is more effective
under their drier climate.

The results of Table 4 for CDDhum21 and Table 7 for
CDD21 show that the prior aggregation in space, used to provide
the IEA dataset available online (https://www.iea.org/articles/
weather-for-energy-tracker), is not a limiting factor for the tem-
poral analysis here presented. The results obtained for N, N_C
and M_C are similar and confirm a strong increase of the cooling
energy demand. In this sense N_C is the least affected by the
method of aggregation and can be used for the statistical analysis
of cooling energy demand based on the already aggregated data.
For some countries, in the CDDhum21 case, the increase of M_C
is different between the two approaches and bigger in the original
countries’ aggregated dataset linked to different magnitudes of
M_C in the first decade. This is unclear and it could be motivated
by some regional factors, not investigated in the present work.

Finally, the results found in Table 4 and Table 7 largely confirm
those of Table 2 and Table 5 respectively, so we consider the input
dataset suitable for temporal analysis of CDDhum21 and CDD21.
For a better interpretation of the clustering results, Tables 2 and 3
are partially summarized in Fig. 10, where the clear geographical
pattern for the temporal clustering of the significant changes in
CDD indices emerges.

In general, in the selected countries the increase in cooling
demand overwhelms the slight decrease in heating demand (not
shown) resulting in an overall rise in energy demand in the last
two decades, stronger in 2011–2020. In addition, the energy
consumption is not limited only by households’ income but also
by energy access. Evidence from India suggests that, differently
from urban areas, in rural areas energy poor (i.e., low-end con-
sumers) households are 57% where only 22% are income poor28.
This means that if economic development will improve energy
access, the increase in the energy demand can exceed the supply,
resulting in more summer shortages, already more frequent in
Southeast Asia because of the earlier discussed CDDhum21
clustering.

Based on our analysis, intense population-weighted humidity-
corrected cooling degree days have significantly increased during
the considered twenty-year period in 14 countries out of the
sample of 23, 9 of them only when humidity is considered.
Humidity is important also for clustering and intensity. India,
Cambodia, Thailand and Vietnam are the emerging countries
where this effect is stronger. Further studies should consider these
regions, where a large part of global population lives, to assess the
impacts on the future energy sector. The metric used for esti-
mating heat exposure here reflects the need for the adoption of air
conditioning, already increased dramatically worldwide as aver-
age temperature increases29 and this need might become even
more pressing in the future depending on the radiative scenario30.

Methods
Reference data. To explore the impacts of weather and climate on the energy
sector, IEA jointly with CMCC developed a series of energy-related climate indi-
cators based on ERA5 reanalysis31, covering the period 2000–2022 and made it
available online32. The horizontal resolution is 0.25° of longitude-latitude and the
temporal resolution ranges from daily to yearly. Data are available at the grid level
and at the country aggregated level for a total of 234 countries. Data are available in
different formats as netCDF files, Excel files, and customized extractions from the
visual platform are also available. Each indicator is provided at the global scale, for
a total of 10 primary indicators and 42 derived indicators (see Table 1). In general,
variables at the country level are derived based on averaged over grids weighted by
surface, if primary, or weighted by population if derived, though few variables are
available for both averaging methods. Primary indicators are weather variables
such as mean temperature and precipitation that serve to calculate derived indi-
cators such as CDD and HDD. The population data are derived from the dataset of
gridded population at 0.25° spatial resolution from NASA SEDAC33, including
population estimates consistent with national censuses of 2000, 2005, 2010, 2015,
2020, and linearly interpolated for the years in-between. In particular, CDD time
series are available at 10, 16, 18, 21, 23, 26 °C base temperatures and represent the
cumulated differences of mean daily temperature above these fixed thresholds. The
humidity-corrected CDD time series are based on the same thresholds (now on
CDDhumX with X= 21 °C in our study), and reflect the fact that human thermal
comfort is affected by moisture, better representing the cooling demand especially
for tropical countries. This work uses CDDs and CDDhum based on the threshold
of 21 °C, and averaged nationally, based on population weights, to more accurately
relate to buildings energy demand.

Methodology. To identify the optimal timespan for the annual warm period, we
compared different six-month periods’ averages across all countries and decided to
define the warm season as the periods May to October (MJJASO) and November to
April (NDJFMA), for the countries located in the Northern and Southern Hemi-
sphere, respectively. Exploring different thermal thresholds and statistical indica-
tors, we ended choosing the criterium of 75th percentile (75p) of daily CDDhum21
values from 2000 to 2020 limited to the warm season, to determine the countries to
focus on, for cooling demand tendencies and clustering. The same ranking is
obtained using the 90th (90p) percentile. Also, the usage of different temperature
thresholds (X value) in the computation of the CDDhumX index - such as X= 21,
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23 and 26 °C – leads to the selection of the same countries: there is no dependence
on this threshold in the definition of the top decile of the warmth countries.

We first analyze the temporal tendencies of total cooling demand by means of
CDDhum21 per year and CDD21 per year (measured in °C-year and obtained by
summing the daily series of CDD over the year, in our case limited to the warm
season MJJASO) to identify countries affected by most pronounced tendencies: to
assess total (relative to warm season) CDD-driven potential cooling demand, we
performed a linear regression of yearly cumulated values of CDDhum21 and
CDD21 at global scale (see Fig. 1). Cumulated CDD are often used to study
tendencies of potential cooling demand6,34. Linear regressions here are related to
cumulated CDD measured as °C-year (as in Figs. 2 and 3) while the rest of the
paper refers to °C-day unless otherwise specified.

Then, we focus on areas of potentially intense cooling demand analysing the
temporal clustering of daily CDDhum21 (and CDD21). Boxplots are also used to
represent the distribution of CCDhum21 events (Fig. 4). We first determine all
countries worldwide showing any increase in the indices related to temporal
clustering, as reported in Table S1 for CDDhum21 and Table S2 for CDD21. The
temporal clustering is mainly considered for the evaluation of the number of
clustered intense events per decade (N_C) and the number of days of the widest
cluster per decade (M_C). Then we focus on the countries where CDDhum21 75p
values result higher (driving a more relevant energy demand for cooling), selecting
the top decile: in other words we ranked the countries based on the 75p value
resulting from CDDhum21 time series in each country and we selected only the top
decile. This results in a sub-set of twenty-three countries (Fig. 4), all showing
statistically significant results in terms of tendency in temporal clustering.
Important to note that the ranking results the same using the 90p threshold instead
of the 75p: the countries top decile does not change.

To observe the distribution in time of intense CDDhum21 daily values over the
2000-2020 warm season, and to analyze the clustering in time, we set a threshold of
90p (different values are associated to different regions) for daily CDDhum21 (and
CDD21), and defined a binary time series consisting of values 1 when the daily
CDD is above the threshold (i.e. intense days) and values 0 when it is below35. We
count the number of intense events in each year, the duration of each event, and
the distance in days between each intense event and the following one. Based on
the prior binary series we define series of inter-event times, times in days spanning
between an event (intense day 1-valued) and the following, by counting consecutive
0-valued not intense days; in case of consecutive intense days the difference is set to
0 (e.g. starting from a series [1 0 0 0 1 0 1] we get [0 3 0 1 0] where zeros
correspond to previous ones and positive numbers correspond to aggregated count
of previous zeros). We can calculate the Coefficient of Variation (CV) of this series
checking for values above 1 (the threshold of a not clustered process), as the ratio of
standard deviation over mean, equal to 1 for events evenly distributed

(equidispersed) in time36. We look for clustering as overdispersion (i.e., CV > 1),
meaning that standard deviation of time differences is greater than the mean
difference and consequently more events are distributed as clusters in time. In
addition to the CV defined over the entire 20 years period, we also provide CV
computed over decades to highlight changes from the first to the second decade
(Tables 2 and 5): decade I covers the period 2000–2009, decade II covers the period
2011–2020.

We define clusters as the groups of (at least two) consecutive intense days
(above the 90p threshold). The size of the cluster represents its duration in days
and higher values indicate a longer driver for cooling energy demand. The
maximum duration of clusters is studied for trends over the two decades,
comparing specific parameters across the two decades 2000–2009 and 2011–2020,
and testing for significant differences, given the relatively short period covered by
the dataset. Through a simple random sampling with replacement bootstrap
(simple bootstrap) method, 95% confidence intervals are defined for the differences
in the means before and after 2010. The parameters analyzed (Tables 2 and 5) are:
N as the number of intense days per decade, N_C as the number of clustered
intense events per decade and M_C as the number of days of the widest cluster per
decade. While Tables 2 and 5 show the results only for the top-23 countries, for
completeness the results are extended worldwide in Supplementary Tables S1 and
S2, respectively, for all region where a 5% statistically significant difference between
decades is found for at least one parameter, independently of the magnitude of
degree days values.

A similar analysis is performed at the grid point level: from the CDDhum21
time series, the same indicators described above are calculated for each grid point
within a given country (0.25° × 0.25° longitude by latitude grid). Every single point
is characterized by a specific time series of CDDhum21/CDD21 that is analyzed by
first calculating the grid point’s temporal 90th percentile necessary to compute the
three indicators. After the calculations of N, N_C and M_C, those are averaged
with the corresponding decade’s average of interpolated population data within the
region. In other terms, here we calculated the indicators at each grid point and only
then we averaged them over the population, while in the former approach the
indicators were calculated at the national level from the already population-
weighted cooling degree days, in order to answer if prior averaging of variables31

(IEA-CMCC, 2020) could affect the clustering analysis results. The results can be
found in Table 4 for CDDhum21, and this analysis is extended to CDD21 as well
(see Table 7) and presented in the next section.

Another method we use to detect temporal clustering is the Ripley’s K function37

as defined by Barton et al. (2016): this function represents the average number of
intense days within a time t (where we selected t= 10 days). To find a proper time
window t of the K function for all countries, the resulting K function is compared to
the K function retrieved from a Monte Carlo simulation of a homogeneous Poisson

Fig. 10 CDD21 and CDDhum21 changes in the second decade compared to the first decade. Differences of indicators N_C (a and c) and M_C (b and d)
from the first decade to the second, both for CDD21 (a and b) and CDDhum21 (c and d), are shown as calculated in Table 2 and Table 5 for countries
where the difference results statistically significant. Black color is associated to all the remaining countries.
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process (where its intensity rate matches the average monthly number of intense
days) which represents a sequence of intense events equi-dispersed in time. For each
intense day we calculate the number of intense days within 10 days around that day,
sum these numbers over all the n intense days and divide by n. These calculations are
repeated for each of the 23 warmest countries for CDDhum21 (Table 3) and CDD21
(Table 6). Making use of the bootstrapping method, we look for statistically
significant differences between the two decades in the selected countries for these
parameters as well (see Table 2 and Table 5).

Since we found limited evidence in literature for clustering in time, related to
degree days, we considered more than one method to generalize our results. CV
and K function are better known metrics in clustering’s literature but we also
developed the indicators N_C and M_C to provide an alternative approach to
clustering, that we consider more intuitive for the interpretation of the results.

Data availability
Data used in this work are available through the IEA - CMCC International Energy
Agency, Weather for energy tracker (https://www.iea.org/articles/weather-for-energy-
tracker) and can be also derived, following the described methodology, based on ERA5
climate data and NASA gridded population data (https://doi.org/10.7927/H4JW8BX5).
Table S1 doi is https://doi.org/10.5281/zenodo.7965869. Table S2 doi is https://doi.org/
10.5281/zenodo.7966287.
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