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Zooplankton grazing is the largest source of
uncertainty for marine carbon cycling in CMIP6
models
Tyler Rohr 1,2✉, Anthony J. Richardson3,4, Andrew Lenton 5, Matthew A. Chamberlain4 &

Elizabeth H. Shadwick1,5

The current generation of Earth system models used by the United Nations to project future

climate scenarios (CMIP6) relies heavily on marine biogeochemical models to track the fate of

carbon absorbed into the oceans. Here we compare 11 CMIP6 marine biogeochemical models

and find the largest source of inter-model uncertainty in their representation of the marine

carbon cycle is phytoplankton-specific loss rates to zooplankton grazing. This uncertainty is

over three times larger than that of net primary production and driven by large differences in

prescribed zooplankton grazing dynamics. We run a controlled sensitivity experiment in a

global marine biogeochemical model and find that small changes in prescribed grazing

dynamics (roughly 5% of what is used across CMIP6 models) can increase secondary and

export production by 5 and 2 PgC yr−1, respectively, even when tuned to identical net primary

production, likely biasing predictions of future climate states and food security.
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The rate at which zooplankton graze phytoplankton reg-
ulates marine carbon cycling by directly and indirectly
modifying the size of both populations and their associated

rates of net primary production (NPP)1,2, gross secondary pro-
duction (GSP), and export production (EP)3–5. Grazing thus
mediates the transfer of carbon to both higher trophic levels,
where it sustains fisheries production6, and to the deep ocean,
where it can be sequestered for 100s–1000s of years7. Accurately
simulating the role of grazing is essential to predicting the ocean’s
ability to feed a growing human population and buffer a changing
climate. Yet the way in which we simulate zooplankton grazing in
marine biogeochemical (BGC) models remains a large gap in our
representation of marine carbon cycling.

Zooplankton species exhibit considerable functional diversity,
and their relative distribution varies widely8–13. However, BGC
models must represent the integrated behavior of all zooplankton
using a strictly limited number of zooplankton groups14, espe-
cially in computationally expensive IPCC coupled-climate models
that typically include only 1–2 groups15,16. This leads to sub-
stantial uncertainty in how modelers implicitly represent complex
communities and their impact on marine carbon cycling17–26.

Substantial observational work over the last two decades has
helped describe the global distribution of zooplankton and their
grazing dynamics, but remains limited as a means to constrain
grazing in global models. In-situ measurements of zooplankton
biomass27–30 are patchy and must reconcile uncertainties across
disparate acoustic, optical, and net-based methodologies31,32.
Progress has been made towards estimating zooplankton biomass
with satellites, but current products are either limited to swarms
of specific species33 or heavily reliant on statistical inference from
chlorophyll fields34–36.

Grazing pressure, defined as the phytoplankton’s specific loss
rate to grazing24, varies with both zooplankton biomass and the
specific grazing rate of zooplankton. However, empirical esti-
mates of the parameters that describe how specific grazing rates
change with prey abundance span three orders of magnitude,
varying with zooplankton size, species, and age37–39. This means
that detailed information about community composition must
accompany bulk estimates of biomass to estimate grazing pres-
sure. Field-based dilution experiments can help average over this
variability, providing estimates of community-averaged grazing
pressure40–43, but these are highly localized in space and time and
can be biased by nonlinearities in the functional response44,
trophic cascades45,46, and the presence of mixotrophs47. Review
studies have helped constrain the range of reasonable values, but
are limited to broad basin-scale averages and often exclusively
target microzooplankton48–50. Measuring the contribution of
larger mesozooplankton in the field typically requires gut content
analysis and various assumptions about metabolic rates40,51.
Finally, trait-based bio-geographies9,11,12 give a good snapshot of
which functional groups belong where, but do not provide time-
evolving global data sets. Collectively, the observational records
provide a strong baseline understanding of zooplankton grazing
dynamics but cannot be used in the same way as high spatial and
temporal resolution, satellite-derived, chlorophyll and NPP pro-
ducts to tune global models.

This leaves a large degree of uncertainty in how grazing dynamics
should be represented, with models differing largely in their asso-
ciated qualitative and quantitative assumptions15,18,21,39. This could
contribute substantially to the persistent uncertainty surrounding
global and regional estimates of NPP19,52, EP20,53, and zooplankton
biomass21 across future climate projections. Marine BGC model are
tuned to observations of NPP and EP but still remain notoriously
under-constrained and over-parameterized54–56. This means they
could get the same answer for different reasons, but that once
perturbed, different mechanisms will lead to different outcomes.

One of the most important mechanistic differences in IPCC-class
marine BGC models is the representation of zooplankton
grazing19,20,24–26,57–62.

Here, we investigate zooplankton grazing dynamics in 11 IPCC
Earth system models from the most recent (CMIP6) inter-
comparison project63. We first quantify variability in the mag-
nitude of the prescribed grazing formulation using a new metric,
the Prescribed Grazing Index (PGI). We then quantify variability
in various facets of emergent marine carbon cycling, including
grazing dynamics, from historical simulations of each model.
Here we show that the largest source of inter-model uncertainty is
grazing pressure and that differences in emergent grazing pres-
sure can be largely explained by differences in the PGI. Finally, we
show how other emergent properties of the marine carbon cycle,
such as GSP and EP, vary with the magnitude of the PGI, both in
CMIP6 models and in a controlled sensitivity study. We believe
that better constraining the established uncertainty in grazing
dynamics is likely to substantially improve model estimates of
past, present, and future marine carbon cycling.

Results and discussion
Variability in the grazing formulation. The representation of
grazing in CMIP6-class BGC models varies widely, differing in
the number of plankton functional types (PFTs) included, the
food web that transfers carbon between them, and the functional
response curves that specify how grazing rates vary with available
prey (Figs. 1, 2). At one end of the spectrum, iHAMOCC64,
CMOC65, and WOMBAT66 include only one zooplankton
functional type (zPFT) grazing exclusively on one phytoplankton
functional type (pPFT). OECOv267 and MARBL68 introduce
additional pPFTs, each grazed independently by the same zPFT.
CanOE69 adds a second zPFT, but each graze independently,
pair-wise, on a single pPFT. Finally, MEDUSA2.170, PISCESv271,
BFM5.272, and COBALTv273 introduce non-phytoplankton prey
and allow zooplankton to graze on multiple prey options. In
MEDUSA2.1 and PISCESv2, zPFTs distribute grazing effort based
on fixed prey presences, while BFM5.272 and COBALTv273

include density-dependent prey preferences, known as active
switching. Of the 10 BGC models surveyed, only four (MARBL,
PISCESv2, BFM5.2, and COBALTv2) include temperature-
limited grazing. See “Methods” for further details.

Variability in the structure of the food web and grazing
formulation substantially impact ecosystem stability22,74, plankton
diversity23–26, NPP19,24, EP20,58,62,75, regional23 and global18,24,60

phytoplankton distributions, and phytoplankton bloom
phenology59,76,77. However, while this work has highlighted the
influence of qualitative differences in the grazing formulation, less
attention has been paid to large differences in the magnitude of
grazing pressure assumed across models. This may be because
differences in the structure of the food web, value of parameters,
shape of the functional response, and determination of prey
preferences collectively exert a multivariate, often competing,
influence on emergent grazing dynamics, making it difficult to
discern how fast zooplankton, in a general sense, are assumed to
graze by the full set of equations. We thus introduce a new
diagnostic metric, the Prescribed Grazing Index (PGI), to
approximate the magnitude of grazing rates prescribed by the
innate properties of a given grazing formulation.

Variability in the prescribed grazing index. The prescribed
grazing index (PGI) is defined as the specific rate at which zoo-
plankton would graze in a standardized plankton community (see
“Methods”). It is computed by evaluating each model’s grazing
formulation (Fig. 2) at the long-term mean sea surface temperature
and median observed global concentration of phytoplankton and
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zooplankton PFTs (Table S1). The PGI in surveyed CMIP6 models
ranges from 0.009 d−1 in MEDUSA2.1 to 0.637 d−1 in MARBL
(Figs. 1b, 2). This means that zooplankton in MARBL would graze
~70 times faster on the observed median plankton community
than those in MEDUSA2.1. Even when ignoring the two most
extreme models on either side, the PGI range is still over an order
of magnitude.

To put this in context, we considered the functional response
curves measured empirically from 107 different laboratory
dilution experiments on >60 species of zooplankton37 and
computed the PGI for a theoretical model including one zPFT
grazing on one pPFT as described by each set of empirical
parameters (see “Methods”). We then sorted the empirical
experiments into functional types and computed the PGI for 10
theoretical models, each including 1–2 zPFTs with grazing
described by their median empirically measured parameter values
(Table S2). Most models (7 out of 10) have a PGI larger than that
of a theoretical model with two zPFTs parameterized using the

median empirical meso- and microzooplankton measurements
(0.06 d−1; Fig. 1b). This is consistent with the fact that the
apparent half-saturation concentration (K1/2) for the mean state
of a patchy grid cell should be lower than any individual
zooplankton grazing in it39. However, it is inconsistent with the
fact that laboratory experiments are highly idealized and consider
grazing on exclusively optimal prey. It is thus unclear which bias
should dominate. More concerning is the spread of the PGI in
models relative to empirical estimates.

Ostensibly, inter-model differences should reflect uncertainty in
the mean state of their selected functional groups, but not
uncertainty in the much larger, full range of species-level diversity.
Yet, the PGI range across all surveyed CMIP6 models, is roughly as
large as the middle 80% of all surveyed zooplankton species
(0.005–0.55 d−1). Only five models have a PGI within the middle
50% of over 60 species (see Table 3 of ref. 37 for a list of
included species). On one hand, three models (MEDUSA, OECOv2,
and WOMBAT) have a PGI equivalent to or lower than a model

Fig. 1 Variability in CMIP6 food webs and the Prescribed Grazing Index. a The marine food webs represented in 10 CMIP6-class BGC models are
presented in clockwise order of increasing complexity. Next to the name of each BGC model is the number of parameters required to describe grazing.
Grazing relationships (arrows) are solid for single-prey responses, dashed for multi-prey responses with fixed preferences, and dotted for multi-prey
responses with active switching. Red arrows indicate temperature sensitivity. Green, red/orange, and purple color schemes refer to models with 1, 2, or
actively switching zooplankton. Hue scales qualitatively with complexity. PFTs have been generalized into small (nano-, small, non-diatom, or
nanoflagelate), large (large, diatoms), or diazotrophs for phytoplankton (P) and small (micro-, small), medium (meso-, medium), or large (macro-, large)
for zooplankton (Z). Bacteria (B) and Detritus (D) are included when available as prey. Model specific nomenclature for PFTs is included in Fig. 2. b The
Prescribed Grazing Index (PGI), an innate property of the grazing formulation, is plotted for all models below the PGI associated with empirical estimates of
the functional response for 7 zPFTs reported in the review of ref. 37. We further include three theoretical model configurations: two with a single zPFT
described based on the median empirical parameters for meso- (dark red) and microzooplankton (blue), and one with 2 zPFTs including both (see
“Methods”). Overlaid is the PDF of PGI for all 107 survey experiments.
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with only one zPFT parameterized using the median empirical
mesozooplankton parameters. On the other, three models (BFM5.2,
CMOC, and MARBL) have a PGI equivalent to or larger than a
model with only one zPFT parameterized using the median
empirical microzooplankton parameters (Fig. 1b and Table S2).
While well-mixed, in vitro experiments do not exactly represent the
dynamics required to recreate the mean state of a patchy ocean, it is

concerning that some models imply something statistically similar
to an ocean filled entirely with very slow-grazing meroplankton
larvae (MEDUSA2.1, OECOv2) and others an ocean filled entirely
with very rapidly-grazing ciliates (MARBL and CMOC).

Although decreasing the complexity of the food web should
generally increase the strength of predator-prey interactions22 and
thus increase the PGI (as appears true in MARBL and CMOC),

Fig. 2 Grazing formulation in CMIP6 BGC models. PFT notation has been generalized by size for convenience, but full names as described in each model
(or advised per personal communication) are reported in column 4. Food webs as described in Fig. 1. A Parameters gmax and K1/2 are abbreviated as g and
K. Parameters values for g, K, Pth, λ are reported in units of d−1, mmolCm−3, mmolCm−3, and m3 mmolC−1, respectively. Units are converted to carbon
using the model’s stoichiometry. B Models that use disk parameters converted to mathematically equivalent Michaelis–Menten parameters39. C Prey
threshold values (Pth) in MARBL vary with PFT, depth and temperature, ranging from 0 in sufficiently cold or deep waters to 0.02 for diatoms and 0.01 for
other PFTs. The PGI was computed using surface (>80m) prey threshold values in MARBL, a temperature of 15.3 ∘C in all models with temperature
sensitivities, the observed global median PFT biomass for all models (see “Methods”). Emergent grazing rates were computed using the explicit depth and
temperature fields. D In PISCESv2, in addition to the Pth term, the FLim is set equal to 0.5 when total food is below 0.6 mmolCm−3 and declines as total
food increases (see eq. 26a in ref. 71).
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OECO-v2, and WOMBAT have the second and third lowest PGI
despite having the simplest food webs. This confirms that the
influence of qualitative differences in food-web structure can, in
some cases, be dominated by quantitative differences in parameter
values18, which vary dramatically39. Nevertheless, the PGI reduces
manymodes of variability into a single variable. It is plausible, then,
that the emergent dynamics in models do not reflect the large
differences implied by their PGI. To test the hypothesis that
variability in the PGI can either capture or dominate the influence
of other qualitative aspects of the grazing formulation, such as
trophic complexity, prey-switching preferences, non-maximal
feeding, and/or prey refuge18,24,25,60, we assess the variability in
emergent grazing dynamics and determine if it can be explained by
variability in the PGI.

Global variability in emergent grazing dynamics. We computed
the emergent zooplankton grazing and mortality rates (which
are not typically saved) from 11 CMIP6 Earth system
models64,66,67,69,70,72,78–81 using the zooplankton dynamics
explicitly prescribed in each model (Fig. 2) evaluated with
monthly mean biomass and temperature fields simulated in
their historical (1850-1900) reconstructions82–92 (see “Meth-
ods”; Table S3).

The global, annually-averaged, biomass-weighted, zooplankton-
specific grazing rate (g) increases by almost an order of magnitude,
from 0.09 d−1 in OECO-v2 to 0.82 d−1 in CMOC (Fig. 3a, b).
Compared to observations estimated by combining field estimates

of microzooplankton48,49 and mesozooplankton51 bulk grazing
rates with MAREDAT28 estimates of microzooplankton93 and
mesozooplankton94 biomass (see “Methods”), nearly half of the
models (5 out of 11) fall outside the observed uncertainty window.

In a globally-averaged sense, the large variability in g is not
compensated for by offsetting differences in zooplankton
mortality, leading to similarly large variability in grazing pressure
imposed on the phytoplankton population (gp ¼ gZ=P). While
there is a positive, relationship between g and mean zooplankton-
specific mortality rates (m, Fig. 3a), suggesting that models are
tuned to have more efficient grazers die faster, there is not a
statistically significant relationship between g and the mean
globally-integrated zooplankton biomass (Z) (Fig. 3b), further
suggesting that the magnitude of this tuning is insufficient to
constrain grazing pressure (gp). Instead, variability in gp appears
to be driven by variability in g. That is, gp has no statistically

significant relationship with m (Fig. 3c) or Z (Fig. 3d), but is
correlated with g (Fig. 3e). In turn, there remains a very large
degree of uncertainty in the representation of gp, which increases
by over an order of magnitude (116%) from OECO-v2 to
MARBL, largely mirroring the uncertainty in g and drifting even
further from observed estimates (Fig. 3c–e).

In fact, grazing pressure appears to be the largest source of
uncertainty in simulated marine carbon cycling. To quantify
sources of uncertainty across CMIP6 models, we compared the
inter-model coefficient of variation (σ x�1) for 14 major carbon

Fig. 3 Inter-model variability in grazing pressure is best explained by variability in specific grazing rates. Inter-model variability in global, biomass-
weighted, annually-averaged a, b zooplankton-specific grazing rates and c–e grazing pressure plotted as a function of a, c zooplankton-specific mortality
rates, b, d biomass, and e specific grazing rates. Colors correspond to models in Table S3 and Figs. 1, 2. Regression statistics are provided above each plot,
with the linear fit included in red if the relationship is significant above the 95% (solid) or 80% (dashed) confidence threshold. Vertical and horizontal error
bars refer to the amplitude of the seasonal cycle, computed separately in the northern and southern hemisphere, then averaged. The black horizontal line
corresponds to observed values, with uncertainty bounds overlaid in gray (see “Methods”).
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Fig. 4 Inter-model uncertainty in marine carbon cycling. a The coefficient of variation calculated across 11 CMIP6 models (standard deviation divided by
the mean) is shown for the annual (orange), winter (blue), and summer (yellow) median of major biological marine carbon fluxes, stocks, and rates. Winter
values are computed using December and June for the northern and southern hemispheres, respectively. Vice versa for summer. Medians are computed
for the top 200m of the water column and weighted by either (1) volume, (2) NPP, (3) phytoplankton biomass, or (4) zooplankton biomass to account for
the distribution of where/when the relevant carbon cycling occurs. Note, qualitatively similar values computed using weighted means, instead of medians,
and are reported in Fig. 6. b–o Hovmöller diagrams (month vs. latitude) of the seasonal and zonal distribution of inter-model uncertainty are provided for
each variable. Areas in which the standard deviation is greater than the mean are contoured in black.
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fluxes, pools and rates, computed using global, annual median
values from each simulation (Fig. 4). By this metric, uncertainty in
grazing pressure is 15% larger than the next largest source, specific
grazing rates. Notably, uncertainty in specific grazing rates is 60%
larger than zooplankton-specific mortality rates. Thus, it appears
inter-model differences in the rate of zooplankton mortality are
insufficient to balance much larger differences in the specific rate of
grazing. In turn, uncertainty in grazing pressure is at least three
times larger than that of EP, NPP, and export efficiency, and two
times larger than that of phytoplankton and total plankton
biomass. By contrast, uncertainty in phytoplankton-specific
division rates is substantial, on par with zooplankton mortality,
and appears necessary to offset large differences in grazing pressure
in order to constrain NPP.

Zonal and seasonal variability in emergent grazing dynamics.
Uncertainty in grazing pressure (Figs. 4o, 5a–c) and specific
grazing rates (Figs. 4n, 5d–f) is even larger at smaller spatial and
temporal scales. During the winter, when relieved grazing pres-
sure regulates the phytoplankton seed population required to
initiate a spring bloom1,95, the median global grazing pressure is
43-times larger in MARBL than OECOv2 (Fig. 5a; left panel) and
the inter-model standard deviation is 20% larger than the inter-
model mean (Fig. 4a, o). During summer, when zooplankton
biomass is higher (Fig. 5g–i) and slow-grazing meso- or macro-
zooplankton regulate standing stocks of phytoplankton, especially
in the Southern Ocean60, the largest source of uncertainty in
models is specific grazing rates (Fig. 4a, n).

Zonally, the inter-model uncertainty in grazing pressure is
largest in the tropics, regardless of season, with a roughly 20-
times difference between MARBL and the three models with the
lowest median grazing pressure (Fig. 5b). This is partly driven by
substantial enhancement in the specific grazing rates of models
with temperature-limited grazing (MARBL, PISCESv2, BFM5.2,
and COBALTv2) in the tropics (Fig. 5e). Variance in zooplankton
biomass, however, is largest at the poles, where models vary from
almost 0 (CMOC and CanOE) to over 400 (COBALTv2 and
MEDUSA2.1) mmolCm−2 in the Southern Ocean summer for
example (Fig. 5h).

Variability in grazing pressure across models is not well
constrained by observations (see “Methods"). Qualitatively,
observations of grazing pressure agree with the zonal distribution
simulated in models, peaking at the equator, then tapering off
towards the poles48,49,51, but the models simulate much lower
values and exhibit a much larger spread. In no region do more
than 65% of models fall with the middle 50% of zonally-binned,
basin-scale observational estimates (Fig. 5b; black diamonds).
While this underscores how poorly constrained grazing pressure
is in models, it is important to remember that field measurements
are sparse and subject to substantial sampling biases48,51. Thus, a
small uncertainty window is probably a consequence of small
sample size, rather than low natural variability (see “Methods”),
suggesting that the solution is not simply nudging models toward
current observations but also further constraining observations.

Perhaps a more useful comparison is a more complex BGC
model. While no CMIP6 model included more than three
zooplankton or phytoplankton types, we show in Fig. 5 (black
traces) the DARWIN model of ref. 96, which includes 31 pPFTs
and 16 zPFTs. Only BFM5.2, COBALTv2, and MARBL come
close (r2 > 0.6) to matching the zonal variability in grazing
pressure simulated in DARWIN during both winter and summer.
MARBL, however, exhibits by far the largest magnitude bias,
while BFM5.2 has the second smallest. This suggests that active
prey switching, only included in COBALTv2 and BFM5.2, is an
essential ingredient in implicitly simulating the more diverse

ecosystem explicitly resolved in DARWIN22–24,97. Interestingly
though, grazing pressure in DARWIN is achieved via much lower
specific grazing rates (Fig. 5e) and higher zooplankton biomass
(Fig. 5h) than in BFM5.2 or COBALTv2. This is likely due to a
decline in the direct interaction strength between predators and
prey in a more complex food web18 combined with a reduction in
non-linear mortality to explicit and implicit predation, which will
be smaller in aggregate when biomass is distributed across more
discrete biomass pools.

Sensitivity of marine carbon cycling to the PGI in CMIP6
Models. Large differences in emergent grazing dynamics at the
global, regional, and seasonal scales appear to be driven by large
differences in the magnitude of the grazing formulation, as quan-
tified by the PGI. Here we investigate the relationship between the
PGI and emergent properties of broader marine carbon cycling.
Qualitative differences in the functional response are explored in
“Supplemental Discussion 1”.

Despite reducing many modes of variability to a single value, the
PGI is a strong predictor of not only global annually-averaged
specific grazing rates (Fig. 6b; r2= 0.82), but also grazing pressure
(Fig. 6a; r2= 0.78). In fact, emergent grazing pressure is better
correlated with the PGI at the global scale than emergent
zooplankton mortality (m), biomass (Z), or even specific grazing
rates (g) (Fig. 3c–e). Moreover, despite substantial spatial-temporal
variability in zooplankton biomass (Fig. 5h), the PGI remains
significantly, positively correlated with specific grazing rates
(Fig. 5f) and grazing pressure (Fig. 5c) at most latitudes, during
both winter and summer. In turn, even though most NPP and EP
disproportionately occur during blooms, when the biomass is
much higher than the global median, it appears that understanding
how fast models assume zooplankton will graze at lower
concentrations (as quantified per the PGI) is an excellent predictor
of emergent grazing dynamics across all prey concentrations, likely
due to feedbacks on the size of the prey population.

Given the close link between the PGI and emergent grazing
dynamics, we examine if large differences in the PGI can explain
other modes of uncertainty in the marine carbon cycle (Fig. 6).
Notably, there is no significant relationship between the PGI and
NPP, EP or export efficiency at global (Fig. 6i, j, m), regional or
seasonal scales (Fig. S3). Despite the importance of top-down
controls19,20,24,58,62,75, this is unsurprising because CMIP6
models are highly tuned towards observed estimates of NPP
and EP. However, because BGC models are otherwise largely
undetermined98, large uncertainty in grazing pressure must be
compensated for elsewhere. While the PGI is correlated with
faster zooplankton-specific mortality rates (Fig. 6d and S4c), these
differences are already accounted for within grazing pressure and
are insufficient to constrain its variance. In turn, models with a
larger PGI transfer more carbon more efficiently from primary
producers to higher trophic levels (Figs. 6k, l, n and S5) and must
balance larger grazing losses and lower phytoplankton biomass
(Figs. 6e and S4i) with faster phytoplankton-specific division rates
(Figs. 6c and S4f). Thus, NPP appears to be tuned via faster
turnover of a smaller phytoplankton population. However,
because the large variance in specific grazing rates is not
adequately balanced by zooplankton mortality, there is not
necessarily a higher turnover in the zooplankton population. In
turn, zooplankton biomass exhibits nearly twice as much inter-
model uncertainty as phytoplankton biomass (Fig. 4a, e, k) and a
weaker, statistically not significant relationship with PGI (Fig. 6f).

In short, large differences in the PGI, and thus grazing
pressure, appear to be tuned out in terms of historical NPP via
faster nutrient uptake, but models with similar NPP can have very
different standing stocks of phytoplankton (Figs. 6e and S4g–i),
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Fig. 5 Zonal and seasonal variability in emergent zooplankton biomass and grazing. The distribution of median a–c grazing pressure, d–f zooplankton-
specific grazing rates, and g–i depth-integrated zooplankton biomass. a, d, g The global median of each variable is plotted during the climatologic winter
(December/June above/below the equator) and summer (vice versa). Medians are computed over the top 200m of the water column and weighted by
a phytoplankton, d zooplankton biomass or g volume. Model colors correspond to the traces below. b, e, h Zonal distributions are plotted for each model
using a sliding 3∘ latitudinal band. Diamonds correspond to the median observed estimate with error bars for the 25th and 75th percentiles (see
“Methods”). c, f, i On the border, the inter-model correlation with the PGI is plotted for each zonal band and season, with statistically insignificant
relationships x'd out. Lighter x’s indicate a casual, but statistically insignificant, relationship with . 2 > p > 0.05%.
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zooplankton (Figs. 6f and 4g–i), total biomass (Figs. 6g and S6g–i)
and zooplankton to phytoplankton ratios (Figs. 6h and S6d–f).

Influence of the PGI in a controlled sensitivity study. To better
control for non-grazing differences in CMIP6 models16 and
directly investigate the mechanisms by which the PGI can reg-
ulate marine carbon cycling, we ran our own suite of global

simulations (Table S4), all forced with identical physics (see
“Methods”). Simulations were run in WOMBAT66, which uses a
simple, single-prey grazing formulation (Fig. S7) to isolate the
influence of uncertainty in the PGI from the influence of other
qualitative differences in the grazing formulation.

We first ramped up the PGI without tuning any other
parameters (Figs. 7 and S8). Unsurprisingly, globally-integrated
NPP (Fig. 7a) and EP (Fig. 7c) collapse from complete nutrient

Fig. 6 Sensitivity of marine carbon cycling to the PGI in CMIP6 models. a–n The relationship between global, annually-averaged marine carbon cycling
and the PGI. Vertical error bars reflect seasonal variability, as per Fig. 3. Horizontal error bars reflect the precision of the PGI and are computed by
evaluating the PGI with ±25% total phytoplankton biomass. The black horizontal line corresponds to our best guess of the observed values, with
uncertainty bounds overlaid in gray (see “Methods”). Linear regressions are included in red if the relationship is significant above the 95% (solid) or 80%
(dashed) confidence threshold. o Statistical properties of the observations, model spread, and relationship between the inter-model variability and the PGI
are reported.
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utilization to nearly nothing as the PGI increases. However,
surprisingly this collapse occurs across roughly the same range of
PGI used in CMIP6 models, further highlighting the degree to
which the PGI is under-constrained. For example, running
WOMBAT66 with a PGI as large as MARBL68 causes NPP to
drop by nearly 40 PgC yr−1, all else being equal. Worse, while the
range of PGI used in CMIP6 models spans nearly two orders of
magnitude (70-fold), just doubling the PGI at intermediate values
(from 0.0125 to 0.25 d−1) can drive a roughly 8 PgC yr−1 drop in
NPP, roughly 15% of observed estimates (Fig. 6o; see “Methods”).

Moreover, export efficiency in WOMBAT monotonically
declines with PGI (Fig. S8n). This is driven by a non-linear
reduction in particle formation, which scales with the square of
each biomass pool (Fig. S7), such that less biomass exports less
efficiently. Notably though, export efficiency declines even as total
biomass initially increases (Fig. S8f). This cannot be explained by
a decrease in particle formation through sloppy feeding or a
decrease in PFT-specific aggregation rates as GSP and the ratio of
zooplankton (which aggregate more efficiently in WOMBAT;
Fig. S7) to phytoplankton both increase. Instead, this decline is
dominated by a reduction in the skewness of the biomass
distribution as the Z to P ratio approaches 1. This reduces the
sum of the squares of the two biomass pools (Fig. S8i) and, in
turn, community-integrated particle formation. Thus, so long as
particle formation occurs non-linearly99, trophic controls on the
distribution of biomass can regulate export efficiency despite
competing assumptions about the differential rate of particle
formation in PFTs with implicitly different size and
composition20. This is consistent with the reduction in export
efficiency associated with spreading out biomass across longer
food chains62 and means that a shift to more efficient exporters
may not necessarily increase export efficiency if accompanied by a
decrease in the skewness of the biomass distribution.

While grazing pressure (Fig. S8l) and grazing efficiency (Fig. S8m)
monotonically increase with the PGI, zooplankton-specific grazing
rates (Fig. S8k), zooplankton biomass (Fig. S8e) and GSP (Fig. 7b)
all peak at intermediate PGI then decline. This means a larger PGI
can actually lead to slower emergent grazing rates and less
secondary production if overgrazing stifles phytoplankton biomass
before it has a chance to bloom. It also demonstrates how NPP is
not necessarily correlated with the bulk transfer of mass and energy
up the food web. Thus, while future increases in temperature-
limited grazing can reduce NPP, even if accompanied by improving
phytoplankton growth conditions19, it is not clear how this will
translate to higher trophic levels. Likely, different BGC models will
yield qualitatively different projections of secondary production
based on their initial PGI and on what side of the overgrazing
inflection point they begin. This is particularly problematic for
ecosystem100 and fisheries models101, which are typically driven
with a one-way forcing from NPP and assume NPP and GSP have
an exclusively positive relationship101,102, further stressing the need
for two-way coupling with primary producers to forecast fisheries
stocks accurately103.

Regionally, the redistribution of nutrients can lead to large
deviations from the global mean, a shift in the global distribution of
productivity, and, at times, opposite responses at different latitudes
(Figs. 7d–f, 8). As phytoplankton are grazed down in more
eutrophic waters, nutrients are left unutilized and recirculated into
more oligotrophic regions, allowing regional productivity to
increase despite greater grazing pressure. Thus, misrepresenting
the PGI could lead to inaccurately simulating the distribution of
nutrients and productivity and thus inaccurately identifying regions
that could be impacted by future changes in ocean productivity and,
in turn, fisheries production101,104.

Finally, we re-ran each simulation but allowed for faster
nutrient uptake (see “Methods”; Table S4). We then considered

Fig. 7 Sensitivity of marine productivity to the PGI in a controlled sensitivity experiment. Global, annually-averaged a NPP, b GSP, and c EP from each
simulation of WOMBAT (see “Methods”) is plotted against the PGI of the corresponding model. Horizontal error bars refer to the precision of the PGI, per
Fig. 6. The vertical uncertainty window is proportional to the amplitude of the seasonal cycle, computed as ±25% of the difference between the annual
maximum and mean. Vertical dashed lines refer to the PGI of CMIP6 models, color-coated per Fig. 2. Regional, annually-averaged d NPP, e GSP, and f EP
are plotted separately for eutrophic (left axis) and oligotrophic (right axis) regions. The boundary between “oligotrophic” and “eutrophic” regions is
contoured in black on the maps in Fig. 8. Vertical dashed lines denote which runs are plotted in the corresponding panels of Fig. 8.
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two ensembles, each tuned to the same NPP, but one with a
roughly 3-times faster phytoplankton saturation division rate and
a three times faster PGI (Fig. 9). Critically, this tuning only
reflects less than 5% of the full range of PGI used across CMIP6
models. Still, the ensemble with a marginally larger mean PGI and
faster phytoplankton turnover led to 58% more efficient carbon
transfer up the food web (Fig. 9m) and 35% more efficient carbon
sequestration (Fig. 9o). From a fisheries perspective, an extra 5
PgC yr−1 was transferred to zooplankton (Fig. 9b), leading to a
0.15 PgC increase in the zooplankton population (Fig. 9e),
roughly equivalent to the inter-model variability across historical
CMIP6 simulations and half the size of the globally-observed
population (Fig. 6f, o). From a climate perspective, this translates
to an extra 2 PgC yr−1 sequestered (Fig. 9c), or double the
maximum theoretical potential of Southern Ocean Iron
Fertilization105,106 and roughly 65% of the inter-model variability
in historical CMIP553 and CMIP6 simulations (Fig. 6j, o).

Importantly, though, the primary driver of elevated EP was a
larger zooplankton population (Fig. 9e) and zooplankton mortality
was not tuned in this experiment. Despite nearly identical total
biomass in each ensemble (Fig. 9f) accommodated by a 38%
reduction in phytoplankton biomass (Fig. 9d), the ratio of
zooplankton to phytoplankton grew by 151% (Fig. 9h). This led
to a dramatic skewing of the biomass distribution, an increase in
the sum of squares of the biomass pools (Fig. 9i), and an increase in
the efficiency of particle formation. Conceivably, zooplankton
mortality could be tuned up (alongside a larger PGI) to rein in the

size of the zooplankton population and constrain EP without
modifying grazing pressure or NPP. However, such tuning: (a)
yields large differences in the size and distribution of biomass
(Fig. S9) and (b) is difficult because zooplankton predation is
typically resolved implicitly107. This latter point is evidenced by the
inadequate tuning of zooplankton mortality across CMIP6 models
(Section “Global variability in emergent grazing dynamics”) and
the established benefit of explicitly adding higher trophic levels60.

Moving forward. Within the grazing formulation, qualitative
differences in the structure of the food web18,22,24, degree of
trophic complexity59,60, sensitivity to temperature19, and capacity
for prey refuge23–25,108 all exert a strong top-down control on
NPP and subsequent carbon cycling. Ideally, models that leverage
these distinctions to increase biodiversity23–26, prevent competi-
tive exclusion97, improve ecosystem stability22,74, or replicate
species succession24 and bloom phenology59,76, ought also tune
their parameters to converge on a relatively constrained degree of
bulk grazing pressure. However, this does not appear to be
happening. Large variability in emergent grazing dynamics is well
explained by the PGI at global, regional, and seasonal scales,
despite the PGI reducing many modes of qualitative variability
into a single value. In turn, models with substantial qualitative
differences in their grazing formulation and food-web structure
but similar PGIs can yield similar zonal distributions of emergent
grazing rates (i.e., MEDUSA2.1 vs OECO-v2; Fig. 5e) and/or

Fig. 8 Regional sensitivity of marine carbon cycling to the PGI. Maps of the distribution of mean annual a–c NPP, d–f GSP, and g–i EP from three
simulations from the “Slow Turnover” suite of WOMBAT experiments are plotted (see “Methods”). Specific simulations noted in Fig. 7. b, e, h show the
raw values from the run with roughly peak GSP and an intermediate PGI. To the left and right are the percent deviation that occur when a, d, g a 3.4-times
smaller and c, f, i 2.9-times larger PGI is used. The boundary between the “oligotrophic” and “eutrophic” regions plotted in Fig. 7 is contoured in black on
each map and defined by the region where GSP is reduced by more than 100% when using the smaller, relative to intermediate, PGI (i.e., in panel d).
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Fig. 9 Sensitivity of marine carbon cycling to model tuning. a–o Various aspects of global, annually-averaged marine carbon cycling are plotted against
NPP for two suites of experiments. The “Slow Turnover” WOMBAT experiments (solid lines) are the same simulations shown in Figs. 7 and S8. The “High
Turnover” WOMBAT experiments (dashed line) were parameterized with faster phytoplankton growth rates but are otherwise identical (see “Methods”;
Table S4). Dashed vertical line bracket the ensemble of runs used to quantify the difference between “Slow Turnover” and “High Turnover” (adjoining
horizontal lines) simulations. The x-axis is flipped to plot increasing PGI from left to right, consistent with Figs. 7 and S8.
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grazing pressure (i.e., CanOE vs PISCESv2; Fig. 5b). Together,
this highlights how far CMIP6 models remain from converging
on a first-order magnitude of zooplankton-specific grazing rates,
leading to very large uncertainty in the representation of grazing
pressure throughout the global ocean.

In turn, even if models are tuned to the same NPP and EP, they
must do so with very different-sized biomass pools and turnover
rates to accommodate such large differences in grazing pressure
(Fig. S9). However, to constrain EP with different-sized biomass
pools, models must further differ in their particle aggregation,
ballasting, and/or remineralization rates20. Yet each of these
terms have different temperature sensitivities, meaning they will
respond differently to a warming ocean. This helps explain the
large uncertainty in projections of EP53 despite fairly well-
constrained historical reconstructions (Figs. 4, 6j). Therefore,
constraining uncertainty in the PGI, and in turn, emergent
grazing pressure and the distribution and abundance of biomass,
appears to be a necessary and urgent next step towards
constraining predictions of future marine carbon sequestration
and transfer to higher trophic levels.

Adequately constraining the PGI may require a new generation
of observational products that leverage higher resolution, time-
evolving, remote sensing and profiling float data sets. While these
platforms cannot directly measure grazing, both satellites and float
products have been used to infer net community production from
biomass109,110 and oxygen budgets111,112. Combined with
observationally-based estimates of phytoplankton biomass113,
NPP113,114, and the assumption that phytoplankton losses are
dominated by grazing115,116, grazing pressure could then be
estimated at much finer space and time scales than shipboard
dilution experiments48,49. Further, pairing these with rough
estimates of zooplankton biomass, either from statistical models21,36

or emerging remote sensing products33–35, could yield specific
grazing rate terms, enabling modelers to better tune zooplankton
turnover (i.e., the balance of growth vs. mortality).

Together, such products will not only help constrain the mean
state of grazing at global and regional scales, but could also
complement existing bio-geographical resources to constrain how
regional grazing dynamics vary with community composition. That
is, by plotting the evolution of observed grazing rates against
phytoplankton biomass, one can empirically define the community-
averaged apparent functional response at regional and even seasonal
scales. Spatio-temporal variability in this curve will improve our
understanding of the distribution9,11,12, seasonal succession117,118,
and migration119,120 of zooplankton species, which can then be
compared to the associated variability in the emergent, community-
averaged apparent functional response simulated in models (see
“Supplemental Discussion 1”). Such comparisons will enable
modelers to determine if explicit competition in their assumed food
webs is reasonably approximating natural variability in community-
averaged grazing dynamics, or if increasing trophic complexity by
including, for example, macrozooplankton60, salps121, larvaceans,
euphausiids, chaetognaths, jellyfish36,122, pteropods123, hetero-
trophic protists124, or Rhizarians5,125 might be required.

Moreover, as stratification under climate change likely leads to
greater light availability but fewer nutrients, the phytoplankton
community may shift toward smaller phytoplankton with faster
nutrient uptake but higher light requirements126,127. This may
increasingly favor rapidly-grazing microzooplankton or gelati-
nous filter feeders, which can ingest smaller phytoplankton size
classes122,128, over crustacean mesozooplankton, which generally
graze slower but can consume much larger prey12,129. Consider-
ing these groups serve critically different roles in trophic transfer
through prey preference125 and carbon export through diel-
vertical migration and130–133 the formation of rapidly-sinking
fecal pellets and carcasses121,134, it is essential that models include

enough trophic diversity to capture present-day and emergent
changes to community composition and associated community-
averaged traits122.

As it stands, grazing dynamics appear to be the largest source
of uncertainty in contemporary simulations of the marine carbon
cycle. This is understandable given the considerable challenges
associated with observing and subsequently modeling
zooplankton32,135,136; however, moving forward, improving
zooplankton grazing will be critical. This is especially true given
that BGC models will be at the forefront of informing or deterring
the possible implementation of biogeochemically driven ocean-
based negative emissions technologies105.

Conclusions
We surveyed the marine BGC component of 11 state-of-the-art
Earth system models and explicitly computed their emergent
zooplankton dynamics. We found that the largest source of
uncertainty in their representation of marine carbon cycling was
grazing pressure. Large variability in grazing pressure is tied to
large differences in zooplankton-specific grazing rates, which are
not sufficiently compensated by the tuning of zooplankton
mortality. Moreover, the variability in both emergent grazing
pressure and specific grazing rates is well explained at global,
regional, and seasonal scales by large differences in the PGI - even
though it collapses many modes of variability into a single
dimension. This suggests that very large differences in the mag-
nitude of grazing assumed in models may dominate important
qualitative differences in the grazing formulation and food web
structure. To constrain NPP against such large top-down varia-
bility, models appear to tune the turnover of the phytoplankton
population. In a suite of control simulations, we found that small
changes in the PGI, compensated for with faster phytoplankton
division rates to tune NPP, can yield large differences in the
amount of carbon subsequently transferred to higher trophic
levels and exported to depth. These differences were largely dri-
ven by a skewing of the biomass distribution. Moving forward, we
believe that further constraining our observed understanding of
global grazing dynamics and improving the representation of
zooplankton grazing in marine biogeochemical models will lead
to more robust estimates of the marine carbon cycle.

Methods
Inter-model variability of the grazing formulation. The representation of grazing
and food webs in IPCC CMIP6 BGC models varies widely (Figs. 1, 2; see also
ref. 137). At one end of the spectrum, iHAMOCC64, CMOC65, and WOMBAT66

include only one zooplankton and one phytoplankton type. In each, the
zooplankton-specific grazing rate, g (d−1), is assumed to increase monotonically
with the phytoplankton concentration, P (mmolC m−3), before eventually
saturating74. This relationship, g(P), is known as the single-prey functional
response and is typically represented with a type II or III response curve39,138. Both
curves can be described with the same two parameters. The saturation grazing rate,
gmax (d−1), describes the food-replete specific grazing rate, whereas the half-
saturation concentration, K1/2 (mmolCm−3), specifies roughly where the curve
begins to saturate (Fig. S1). All else equal, both increasing gmax or decreasing K1/2

increase zooplankton-specific grazing rates.
iHAMOCC uses a type II response, which linearly increases with prey density

below K1/2, when prey is scarce (rectangular hyperbola; Fig. S1). A type II response
is typically what has been measured in empirical laboratory experiments37,38 and is
thus likely to be representative of individual zooplankton grazing in a well-mixed
environment. However, the type II response can contribute to dynamically unstable
solutions74, requiring iHAMOCC to include a small prey threshold (below which
grazing stops) to prevent phytoplankton from going extinct. WOMBAT and
CMOC use a type III response, which is concave upward below K1/2 (sigmoidal;
Fig. S1), thereby offering prey refuge and population stability at low prey
concentrations74,139 and increasing co-existence in the phytoplankton
community108. Ecologically, the type III response can be justified as the implicit
representation of more complex behavioral changes such as active prey
switching24,138, which has been observed in multiple zooplankton species13,140–142,
or as the mean state of a spatially patchy ocean39,143, which relatively coarse global
models must implicitly average across. Despite qualitatively identical grazing
formulations, differences in the parameter selection in CMOC and WOMBAT
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(particularly K1/2; Fig. 2) mean that zooplankton-specific grazing rates on
phytoplankton concentrations <1 mmolCm−3 are nearly 30-times faster in CMOC
than WOMBAT.

OECO-v267 and MARBL68 use a slightly more-complex ecosystem structure,
resolving multiple types of phytoplankton but just one generic type of zooplankton
that grazes independently on all phytoplankton types. Both models still employ a
single-prey response, in that the presence of one prey option does not influence the
zooplankton-specific rate at which the other is grazed, g (d−1). However, because
the biomass of the generic zooplankton group, Z (mmolCm−3), increases with
grazing on any single phytoplankton type, so does the grazing pressure, gp= gZ/P
(d−1) on all phytoplankton type, largely eliminating the possibility of refuge for
relatively scarce prey18. In turn, this structure can obtain an effective food web that
is functionally similar to including only one phytoplankton type18, in which strong
top-down controls work to prevent species co-existence and stifle large blooms59.
This is particularly relevant in MARBL, which uses a type II response, a very small
K1/2 value, and requires relatively large prey thresholds to prevent extinction
(Fig. 2), whereas OECO-v2 is able to offer prey refuge in the form of a type III
response with a relatively large K1/2 value.

CanOE69 is slightly more complex, with two phytoplankton and two
zooplankton types. Here, each zooplankton type grazes independently, pair-wise,
on one unique phytoplankton type, with the large zooplankton type additionally
grazing on the small zooplankton type. Unlike MARBL and CanOE, in which the
indirect interaction strength144 between phytoplankton types is always negative,
trophic cascades can now lead to positive interaction strength between
phytoplankton types18,60. That is, large phytoplankton growth can relieve grazing
pressure on small phytoplankton by increasing the biomass of large zooplankton,
which in turn graze down the biomass of small zooplankton, the sole predator of
small phytoplankton.

Increasing in complexity, MEDUSA2.170, PISCESv271, BFM5.272, and
COBALTv273 all include at least two zooplankton types, each with multiple prey.
In MEDUSA2.1 and PISCESv2, two types of zooplankton split their grazing effort
between two types of phytoplankton in addition to detritus and cannibalism from
large to small zooplankton, but both do so with fixed prey preferences. This means
that the abundance of one prey option does not influence the desirability of
another, such that when prey preferences are equal, the grazing effort is
proportional to the relative distribution of prey25. Using fixed prey preferences,
known as passive-prey switching, ensures maximal feeding (i.e., adding prey
biomass, all else equal, always leads to an increase in total ingestion) but does not
provide prey refuge for relatively less abundant prey24. In turn, to help prevent
extinction and provide some form of prey refuge, MEDUSA2.1 uses a type III
(sigmoidal) response and PISCESv2 includes a relatively strong prey threshold
which decreases the apparent prey concentration by half when the total prey
concentration <0.6 mmolCm−3.

The most complex models considered, BFM5.2 and COBALTv2, both include
density-dependent prey preferences. This is known as active prey switching and
allows zooplankton to redirect grazing effort to relatively more abundant prey, even
if it is otherwise less desirable145. Without invoking behavioral changes, active
switching can be understood as a community response, in which one zooplankton
type explicitly grazing on n phytoplankton types implicitly functions as n fully-
specialized zooplankton types growing in abundance in proportion to their
preferred prey25. In BFM5.2, only microzooplankton (but not mesozooplankton)
have density-dependent prey preferences, while in COBALTv2, the most complex
BGC model considered, three zooplankton groups all graze with density-dependent
preferences. Density-dependent, active prey switching can improve ecosystem
stability139, provide prey refuge145, overcome competitive exclusion97, increase
species diversity22–25, and better replicate species succession during phytoplankton
blooms24. However, active switching also results in the ecologically unlikely
phenomena of non-maximal feeding, in which total ingestion can decrease as total
prey abundance increases if prey simultaneously becomes more evenly
distributed25,74.25 have outlined a formulation for active switching in which the K1/

2 value for total ingestion decreases as prey become more evenly distributed, such
that maximal feeding with active prey switching can be achieved; however, this
formulation has not been included in any of the CMIP6 models surveyed here.

Many state-of-the-art BGC and ecosystem models include richer functional
diversity60,62,123, trophic complexity36,122,129, and allometrically scaled-size
spectra23,62,96,146–148, with some simulations including hundreds of PFTs26.
Increasing the size and complexity of the food web improves ecosystem stability by
increasing resistance to perturbations22, permits realistic self-regulation of food-
chain length62,129, replicates the observed bio-geography of PFTs and size
classes36,147, and can even play a larger role than iron limitation in shaping high
nitrate low chlorophyll conditions in the Southern Ocean60. However, increasing
complexity can also increase predictive uncertainty if the additional parameter
values cannot be constrained by observations. Even relatively simple BGC models,
with just four plankton types, can be heavily under-constrained55. Moreover, more
complex models are much more computationally expensive, and generally not yet
tractable in IPCC simulations, which require many years, ensemble members, and
scenarios to be run at increasingly high, mesoscale, spatial resolution. For this
reason, we focus on the current generation of state-of-the-art IPCC models, but
have included in our analysis, for comparison, the model of96, which is part of the
DARWIN Project, run on the MITgcm at 1x1 degree resolution, and includes 47
size-structured PFTs.

The prescribed grazing index. The prescribed grazing index (PGI) is computed as
the zooplankton-specific grazing rate, integrated across all phytoplankton prey
options, prescribed by a given grazing formulation (Fig. 2) when evaluated at the
observed global median phytoplankton and zooplankton plankton distribution and
long-term mean sea surface temperature. In models with multiple zPFTs, zoo-
plankton are assumed to be partitioned based on the observed global median
distribution (Table S1) and the PGI is their biomass-weighted mean specific
grazing rate on all phytoplankton prey options. When non-phytoplankton prey is
included in the food web (i.e. bacteria, detritus, or other zooplankton), it is
accounted for in so much as it offers refuge for phytoplankton by diverting grazing
effort. Mathematically, this is equivalent to evaluating Equation (3), which is used
to compute the offline emergent dynamics (see Section “Model output and offline
diagnostics”), except here, a standardized prey field is used instead of the emergent
monthly mean biomass fields. By using a standardized prey field, we can obviate
myriad other inter-model differences that drive the emergent distribution and
abundance of prey and thus quantify a reduced approximation of the magnitude of
grazing rates prescribed by the innate grazing formulation in each model.
Accordingly, the PGI does not necessarily reflect the emergent grazing dynamics of
a given simulation, which further depend on the formulation of bottom-up con-
trols, physics, zooplankton mortality rates, and other aspects of the grazing for-
mulation that cannot be captured with a single value.

The standardized prey field used to evaluate the PGI is based on the global
median picophytoplankton, diatom, Phaeocystis, diazotroph, microzooplankton,
mesozooplankton, macrozooplankton concentrations28, and the global mean long-
term average sea surface temperature from the NOAA ERSSTv5 product149. The
observed global median particulate organic carbon concentration150 and bacteria
concentration from the upper 200 m151 are included when available as prey. See
“Observational components of the PGI” below. To account for differences in the
structure of the food webs, some assumptions must be made about how biomass is
partitioned in models with different numbers of PFTs. However, total
phytoplankton and zooplankton biomass is kept constant. In models with just one
phytoplankton or zooplankton group, total phytoplankton and zooplankton
biomass is used. In models without diazotrophs or macrozooplankton, those pools
are added to the ‘large phytoplankton’ and ‘medium zooplankton’ pools,
respectively. Phaeocystis, which no surveyed model includes but compete with
diatoms for nutrients, particularly in the Southern Ocean57, are included in the
‘large phytoplankton’ pool.

Note that while these values are deliberately agnostic to the emergent dynamics
of any specific model run, thereby providing a standardized field to obviate other
inter-model differences and isolate innate properties of the grazing formulation,
they compare well to the inter-model mean of the global median simulated biomass
fields (Table S1). In both models and observations, the concentration of biomass
increases from total zooplankton to bacteria to total phytoplankton to detritus, and
the relative distributions are generally consistent. Finally, the zooplankton biomass-
weighted temperature from the models (i.e., the temperature the median simulated
zooplankton experiences) is close to the standardized observed surface temperature
used (15.30 and 15.61 ∘C, respectively). Together, this confirms that the
standardized observed values are representative of the median values simulated
across models.

Limitations and sensitivity of the PGI. One limitation of the PGI is that it is not
well suited for comparing models with much more trophic complexity than those
studied here. That is because evaluating the PGI for a model with many more PFTs
or an allometrically scaled-size spectrum within PFTs would require many further
assumptions about how the standardized prey field is partitioned across plankton.
While some of these assumptions could potentially be made using global estimates
of size-spectra129, the PGI becomes a less interesting metric for models that
explicitly resolve greater trophic complexity, as it is designed to reflect the differ-
ence in how simpler models assume that complexity is averaged over and
parameterized out.

A second, and larger limitation of the PGI is that it collapses many modes of
variability into a single dimension. While this is intentional and useful to
quantitatively compare the integrated influence of multiple models’ disparate
grazing formulations along a single axis, it means that two grazing formulations
could yield a different hierarchy of PGIs if evaluated using a different standardized
prey field. For example, even in the simplest case—a single zPFT grazing on a
single pPFT—using a type II versus type III response function with the same
parameter values would yield a higher PGI if evaluated below K1/2 and but a lower
PGI if evaluated above K1/2 (Fig. S1).

This underscores the importance of selecting an appropriate standardized prey
field. Using global median values rather than high phytoplankton concentrations
that characterize large blooms (during which global NPP and EP
disproportionately occur) is important for two reasons. First, almost all modern
grazing formulations, and all of those surveyed here, saturate at high
phytoplankton concentrations to simulate the satiation of predators once they
become limited by prey consumption rates, rather than capture rates74. In turn, if
the goal is to capture as much variability as possible across different formulations,
then they should be evaluated before they have begun to significantly saturate.
Second, and more importantly, the dynamical system is more sensitive to the values
of grazing at low phytoplankton concentrations than high ones39. Intuitively, this
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makes sense as all high phytoplankton concentrations must first pass through
lower ones and thus cannot emerge if grazing rates are fast enough at low
phytoplankton concentrations to stifle a bloom before it happens.

However, to test the sensitivity of the PGI to the selection of the standardized
prey field, we evaluated it using a total phytoplankton concentration ranging from
0.1–5.0 mmolCm−3, compared to the MAREDAT global median value of
0.79 mmolCm−3 (Fig. S2). In all evaluations, the relative distribution of biomass
across groups was kept the same. Generally, models with a larger PGI also have
more uncertainty when evaluated across a range of prey abundance. This is because
they typically have lower K1/2 or higher gmax values, leading to larger direct
interaction strengths at low to moderate prey concentrations, and thus, larger
changes to grazing with respect to changes in prey biomass18. In our result, we
express this uncertainty by including error bars representing the PGI evaluated at
±25% of the global median phytoplankton concentration, illustrating how PGI
generally becomes less precise as it increases (i.e., Figs. 3, 6, 7).

Still, when looking across the full distribution of PGI values (Fig. S2a), the
hierarchy of median values (horizontal black lines) is very similar to that obtained
when solely using the standardized MAREDAT field (red stars). Moreover, while the
difference in PGI between models decreases when evaluated at larger prey
concentrations, there is still a 680% difference between the model with the fastest and
slowest PGI when evaluated at a much larger total phytoplankton concentration of
5.0mmolCm−3 (Fig. S2b, blue trace). Even ignoring the two fastest and two slowest
grazing models, the difference in PGI is over threefold at 5.0mmolCm−3, and over
tenfold when evaluated below 0.5 mmolCm−3 (Fig. S2b, black trace). By comparison,
this ratio ranges from only nine- to tenfold when calculated using the empirically
measured functional response curves for micro- and mesozooplankton (see
“Empirical measurements of the functional response” below).

Combined with the fact that the PGI is well correlated with simulated specific
grazing rates and grazing pressure globally (Fig. 6) and at most latitudes, during
summer and winter (Fig. 5), it appears that it is a useful tool to compare large-scale
differences in the rate zooplankton are assumed to graze between models. That is,
while small differences in PGI are not particularly interesting, and sensitive to the
definition of the standardized prey field, large differences are. A 70-fold difference
in the PGI means zooplankton in CESM2 would graze 7000% faster than in
MEDUSAv2 if subject to the same temperature and prey. This implies something
fundamentally different about the model dynamics and likely requires a
substantially different parameterization of bottom-up controls to prevent complete
nutrient limitation and or ecosystem collapse.

Empirical measurements of the functional response. The single-prey functional
response curve describing how zooplankton-specific grazing rates increase with prey
abundance can be estimated empirically via laboratory dilution experiments. In these
studies, specific grazing rates are measured at different prey concentrations and then
typically fit to a type II response function. The empirical estimations of the PGI in
Fig. 1b are computed by evaluating empirically-estimated functional response curves
as if they described the grazing formulation of a theoretical model with 1 pPFT and 1
zPFT. We consider 107 empirically-estimated functional response curves from over
60 species of zooplankton compiled in a review of laboratory work by ref. 37. They
include seven zPFTs: nanoflagellates, dinoflagellates, ciliates, rotifers, meroplankton
larvae, cladoecerans, and copepods (Table S2). To control for prey quality, 37 applied
a selection criterion to exclude all studies in which dilution experiments were con-
ducted with prey of sub-optimal size, such that the empirical parameters they
compare are all assumed to constitute grazing on optimal prey, as is the implicit
assumption for models with a single pPFT and zPFT. Temperature, predator volume,
and empirically derived gmax and K1/2 values from each experiment are reported in
Table 3 of ref. 37. Here, we convert gmax values to units of d−1 and control for
temperature using a Q10 value of 2.8, the mean value reported by ref. 37. To be
consistent with model estimates of the PGI (Table S1), all gmax are converted to a
temperature of 15.3 ∘C using the relationship

gmax;15:3 ¼ gmaxQ
ð15:3�TÞ=10
10 ; ð1Þ

where gmax;15:3 is the temperature-dependent saturation grazing rate at 15.3 ∘C and
gmax is the value measured at an experimental temperature of T. K1/2 values are
converted from biovolume to mmolCm−3 using the reported carbon density of
0.12 gC cm−3, which is consistent with the range of carbon densities in
phytoplankton152. All empirical parameters were fit to a type II response. Empirical
estimates of the PGI are then derived by evaluating the measured single-prey func-
tional response curve for each species at the global median phytoplankton con-
centration (0.79mmolCm−3; Table S2), as described above. Note, as per the model
evaluated PGI, this is an estimate of how fast each zooplankton species would graze
on its optimal prey at the global median total phytoplankton concentration. It is not
an estimate of how fast each species actually grazes in the open ocean, but rather a
quantification of the innate properties of their empirically defined functional response
curves.

The probability density function for the PGI of all 107 experiments is overlaid
in Fig. 1b. The PGI reported for each zPFT (Fig. 1b and Table S2) is computed
using the median gmax and K1/2 values for all included species. zPFTs are further
grouped into microzooplankton (<1e4 μm3) and mesozooplankton (>1e4 μm3)
with their PGI computed identically. These coarser groupings do not account for
differences between the sample size of each species and their actual global

distribution, but do give a general sense of the difference in the PGI for broadly
categorized micro- and mesozooplankton. We also consider a theoretical model
with 2 zPFTs and 2 pPFT, with zooplankton grazing prescribed separately based on
the empirically described micro- and mesozooplankton parameters (Table S2). The
PGI here does take into account the actual distribution of micro- and
mesozooplankton (Table S1).

Finally, note that this is not inclusive of all important zooplankton species or
functional groups. For example, large photo-symbiotic Rhizaria may constitute
50% or all mesozooplankton biomass125 and help explain why the oligotrophic
food web may be shorter than predicted by classical ecology129. Moreover, neither
macrozooplankton nor gelatinous filter feeders are included. Macrozooplankton
typically graze slowly on smaller zooplankton but can regulate grazing pressure on
diatoms and other pPFTs through carnivorous trophic cascades60. On the other
hand, larvaceans and salps are extremely abundant mesozooplankton that can filter
bacteria and picophytoplankton, unavailable to crustaceans. They generally grow
an order of magnitude faster than crustacean zooplankton153 and have been shown
to play an important role in carbon export via the production of rapidly-sinking
carcasses and fecal pellets121,134. Never the less, the empirical values included here
are meant to provide context for the two zPFTs most typically included CMIP6-
class BGC models, not provide an exhaustive list of empirical parameters for all
known zooplankton species. Note, salps121,134 and macrozooplankton26,60 have
been routinely included in targeted global simulations, but their inclusion in high-
resolution climate-ensembles is not yet standard.

Observational components of the PGI. The global median standardized prey field
used to evaluate the PGI is primarily based on field observations collected by the
MARine Ecosystem biomass DATa (MAREDAT) initiative. MAREDAT is a
compilation of global, gridded biomass data sets for a range of PFTs and is
described in detail in28. Here, we use the reported global median epipelagic
(0–200 m) concentration of microzooplankton93, mesozooplankton94,
macrozooplankton154, picophytoplankton155, diatoms156, diazatroph157

and Phaeocystis158 to describe the phytoplankton and zooplankton distribution and
in models in which bacteria is available as prey, we use the global median pico-
heterotroph concentration (which also includes Archaea)151. Briefly, all MAR-
EDAT data is gridded onto a 1∘ by 1∘ grid with 33 vertical layers and a climatologic
monthly time step. Throughout, data has been quality controlled by contributing
researchers and Chauvenet’s criteria was used to omit anomalously high values.
Note, calcifying PFTs (coccolithophores, foraminifers, and pteropods) are reported
but were not included as no model explicitly represented them and their median
global values are small relative to other PFTs.

Uncertainty in these global values is fairly large due to patchiness and sampling
bias, as discussed in detail in ref. 28. However, estimates of total phytoplankton
(0.79 mmolCm−3) are generally consistent with our independent estimates of the
median phytoplankton biomass (0.97 mmolCm−3) calculated from 18 years (July
2002–April 2021) of remote sensing data from the Carbon-based Productivity
Model113. Note, in high-latitude regions with summer remote sensing coverage but
without winter coverage, winter-time concentrations were set to 0, assuming that
any overwintering biomass persisting through the darkness was trivial to the global
median.

Temperature and detritus are also needed to compute the PGI for some models,
but are not included in the MAREDAT database. In models in which grazing is
temperature-limited, rates are evaluated at the global (-60S–60N) mean long-term
average (1854–2022) sea surface temperature from the NOAA ERSSTv5
product149. In models in which detritus is available as prey, detritus is estimated as
the global median area-weighted particulate organic carbon (1–200 m) field
observations reported in Fig. 2 of ref. 150 less the global median living biomass
concentrations from Table S1.

Observations of global BGC rates and carbon stocks. The observed mean
annual global carbon stocks and fluxes reported in Fig. 6 are compiled and com-
puted from a variety of independent data sets, and thus are not necessarily
internally consistent. Where possible, uncertainty was estimated using the 25th and
75th percentiles of observed distributions; however, this was not always possible
and is discussed below in detail for each estimate.

Mean annual, globally-integrated biomass estimates (Fig. 6e–h) were computed
entirely from the MAREDAT dataset28. First, for each phytoplankton and
zooplankton PFT considered in the standardized prey field described
above93,94,154–158 we computed the mean annual carbon biomass inventory by
constructing global, monthly biomass profiles (0–200 m), then integrating in depth,
averaging in time, and multiplying by the global ocean area between 60S–60N.
Note, very high latitudes were excluded here and for model output to avoid regions
where models tend to perform poorly and observations are sparse. Monthly
biomass profiles were created by computing the median biomass concentration at
each depth horizon, with uncertainty bounds approximated using the 25th and
75th percentiles. We use the median ± 25% rather than the mean ± 1 standard
deviation to estimate the global carbon inventory because field experiments,
particularly those specifically targeting blooms, are typically designed to sample
where plankton are more abundant, likely creating a larger positive bias in the
mean. Uncertainty bounds reflect the middle 50% of the MAREDAT data to be
consistent with the uncertainty estimation of grazing pressure by ref. 48 (see below).
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Mean annual phytoplankton biomass (0.59 PgC (0.37, 1.25); Fig. 6e), zooplankton
biomass (0.33 PgC (0.20, 0.78); Fig. 6f), total phytoplankton and zooplankton
biomass (0.92 PgC (0.66, 1.7); Fig. 6g), and the ratio of zooplankton to
phytoplankton biomass (0.57 (0.25, 1.6); Fig. 6h) are then computed by operating
on the mean annual global PFT inventories and propagating uncertainty bounds
accordingly.

The observed mean global grazing pressure (0.34 d−1 (0.24, 0.62); Fig. 6a) was
computed from field measurements of microzooplankton48–50 and
mesozooplankton51 phytoplankton-specific grazing mortality rates (i.e., grazing
pressure) estimated primarily using shipboard dilution experiments and gut
content analysis, respectively. Field measurements for microzooplankton from
110 studies were compiled by ref. 48, extending the work of ref. 49, and grouped
into bio-geographic provinces as defined by ref. 159. Ref. 48 report the median, 25th
and 75th percentile for microzooplankton grazing pressure (referred to as the
grazing mortality rate) in each province. We estimate the global mean grazing
pressure from microzooplankton using an area-weighted average across all open
ocean provinces, with uncertainty propagated using the 25th and 75th percentiles
for each province. Field measurements for mesozooplankton from 27 studies were
compiled and used to fit a log-linear relationship between NPP and total
autotrophic ingestion by mesozooplankton51. We use this relationship along with
the median NPP in each province reported in Table 2 of ref. 48 to further estimate
the associated total mesozooplankton autotrophic ingestion rate in each province,
with uncertainty estimated using the standard error of the regression parameters
reported by ref. 51. We then compute the area-weighted global mean
mesozooplankton bulk grazing rate and divide by the global phytoplankton
inventory (see above) to estimate the global mesozooplankton grazing pressure,
add it to microzooplankton grazing pressure to reach total grazing pressure, and
propagate uncertainty accordingly. Note, grazing pressure from mesozooplankton
accounts for roughly 10% of total grazing pressure.

Schmoker et al. 48 also report the total autotrophic losses to microzooplankton
grazing (PgC yr−1), allowing us to estimate the globally-integrated bulk
phytoplankton grazing mortality rate (28.0 PgC yr−1 (23.2, 54.4); Fig. 6k) in a
similar fashion, again using the relationship from49 for the mesozooplankton
contribution. Dividing by globally-integrated zooplankton biomass from the
MAREDAT dataset gives us zooplankton-specific grazing rates (0.23 d−1 (0.12,
0.61); Fig. 6b). Dividing by globally-integrated NPP gives us an estimate of global
grazing efficiency (56% (46, 108); Fig. 6n). Note, a grazing efficiency over 100%
indicates that uncertainties in the observations exceed the theoretical bounds.
Additionally, we can multiply the globally-integrated bulk phytoplankton grazing
mortality rate by an estimate of assimilation efficiency to reach GSP (7.9 PgC yr−1

(19.6, 38.4); Fig. 6l). We assume assimilation efficiency to be 0.7, as typically
assumed by the ecological modeling community13,160–163, with an uncertainty
range of 0.3–0.913,161–163.

Globally-integrated NPP (53 PgC yr−1 (46, 60); Fig. 6i) is reported per ref. 164,
derived from ARGO-float measured diel-cycles in oxygen drawdown. This range is
consistent with observationally-constrained model estimates (~51165 and
58 ± 7 PgC yr−1166) and the climatologic (2012–2018) mean Carbon-based
Productivity Model (CbPM) remote sensing product (~51.1 PgC yr−1113) when
integrated between the 60S–60N (as for the models). However, the vertically
generalized productivity model (VGPM)167 estimates a lower climatologic mean
(2012–2018; 60S–60N) of 42.7 PgC yr−1, and some observationally-constrained
model estimates reach as low as ~35 PgC yr−1165. Note, integrating either remote
sensing product from 90S-90N only increases the NPP by 1–2 PgC yr−1 and is thus
reasonable to compare to full global estimates from refs. 164–166. Globally-
integrated EP (6 PgC yr−1 (5, 12); Fig. 6j) is reported per ref. 168 but estimates are
generally poorly constrained, ranging from 5–12 PgC yr−1168–170. Annually-
averaged global export efficiency (11.3% (8.9, 22.7); Fig. 6m) is estimated from the
globally-integrated NPP and EP estimates described above, with uncertainty
propagated accordingly.

Globally-averaged phytoplankton-specific division rates (0.25 d−1 (0.10, 0.54);
Fig. 6c) are derived by dividing NPP estimates from the literature by phytoplankton
biomass from MAREDAT (see above) and propagating uncertainty. Note, using
the mean annual climatologic CbPM-derived surface carbon inventory instead
(0.46 PgC assuming a mean MLD of 100 m), yields a similar estimate (0.30 d−1);
however, using field data reported in Table 2 of ref. 48 and computing the global
average as for grazing pressure yields much higher estimates (0.52 d−1 (0.41, 0.81)),
likely due to sampling bias. Here, we use the lower estimates to better account for
large swaths and seasons of un-sampled, likely low-productivity water but note that
grazing observations are still subject to sampling bias and likely overestimated.

Globally-averaged zooplankton-specific mortality rates (0.13 d−1 (0.10, 0.15);
Fig. 6d) are approximated from the species mean mortality rates of sac-spawning
copepods at the long-term global mean SST (15.3 ∘C), with uncertainty calculated
using the standard error of the regression fit between temperature and mortality
reported in Table 2 of ref. 171. Note, these values were inferred from field estimates
of fecundity and development using a steady-state assumption, not direct
observations of mortality, and do not take into account differences in
microzooplankton mortality rates171. We take these estimates to implicitly include
respiration as a cost in the growth-side steady-state estimates, but note this is likely
an underestimation as global epipelagic (0–200 m) respiration rates for
zooplankton have been estimated at 0.11 ± 0.04 d−1172 and predation is estimated
to account for 66–75% of the rates estimated by ref. 171.

Finally, it is important to note that given the sparsity of global observations and
large sampling biases, smaller uncertainty windows often reflect less observations
from which to calculate uncertainty than a true reflection of natural variability.
That is, it is difficult to quantify the uncertainty in the uncertainty. Thus, while
observational bounds provide useful context, they should be interpreted with
caution.

Zonal rates and carbon stocks. Zonally resolved observational estimates of grazing
pressure (Fig. 5b), zooplankton-specific grazing rates (Fig. 5e), zooplankton bio-
mass (Fig. 5h), phytoplankton-specific division rates (Fig. S4e), phytoplankton
biomass (Fig. S4H), bulk phytoplankton grazing mortality (Fig. S4b), total plankton
biomass (Fig. S6b), and the ratio of zooplankton to phytoplankton (Fig. S6e) were
computed in a similar manner to the global estimates described above. Following48,
zonal bins were partitioned into the northern high latitudes (>60∘N), northern
westerlies (30–60∘N), tropics (30∘S–30∘N), southern westerlies (30–60∘S), and
southern high latitudes (<60∘S). No explicit seasonal delineations were made;
however, the vast majority of field studies included in48 and28 were conducted
outside of the winter months, so observational estimates are thus considered more
representative of summer, and plotted accordingly.

First, zonal distributions of biomass for each PFT (i.e., Fig. 4 in ref. 28) were
downloaded from the MAREDAT Pangea database93,94,154–158 and binned as
described above. Similar to the global estimates, we found the median biomass for
each PFT in each depth layer and zonal band, then integrated these profiles across
depth and functional groups to yield the median phytoplankton, zooplankton, and
total plankton inventory. Uncertainty bounds were computed using the same
method but for the 25th and 75th percentiles. The ratio of zooplankton to
phytoplankton biomass is then computed for each zonal band with uncertainty
propagated accordingly.

Next, zonal estimates and uncertainty for bulk grazing mortality, grazing
pressure, and specific grazing rates are computed identically to the global values
described above, except now sorting the provinces of ref. 48 into the zonal bands
described above and pairing them with the corresponding MAREDAT biomass
zonal bins. Note, 48 do not distinguish the northern from southern westerlies, so
grazing data is identical for each. However, we use zonally resolved biomass data to
compute specific rates where required. Finally, the zonal estimate of
phytoplankton-specific division rates are now computed using the zonal estimates
of ref. 48.

Even more so than the global estimates, when interpreting uncertainty bounds,
it is important to remember that these field measurements are sparse (~100–500
experiments per zonal band), patchy (see Fig. 1 in ref. 48), and likely subject to
substantial sampling biases, as most studies are carried out during the spring or
summer, deliberately in proximity to the spring bloom.

Model output and offline diagnostics. We analysed the output from historical
simulations of 11 CMIP6 models (Table S3). Model output82–92 has been made
publicly available by the Earth System Grid Federation (ESGF) and was down-
loaded from the Lawrence Livermore National Laboratory data node (https://
aims2.llnl.gov/search). Note, three variables from ACCESS-ESM1.5 (phyto-
plankton biomass, zooplankton biomass, NPP) were not available on the ESGF-
LNLL node and were downloaded directly from the Australian National Com-
puting Infrastructure. For each model, we considered monthly climatologies cre-
ated from the historic period from 1850 to 1900. Considering years up to 1900
provides a long enough time series to average out ENSO variability but stops before
there is a substantial anthropogenic forcing, as we are interested in the non-
transient dynamics stemming from structural differences in the grazing formula-
tion between models. We used the pre-1990 historical simulation instead of the
pre-industrial control because more variables of interest were available across all
models. For each model, we downloaded monthly averaged column integrated
NPP, exported through 100 m, and all depth-resolved phytoplankton and zoo-
plankton plankton fields. Depth-resolved detritus, bacteria, temperature, and
oxygen fields were additionally downloaded when required for offline rate com-
putations. Any exceptions are discussed below.

We then calculated diagnostic rate terms offline, pixel-by-pixel, using a given
model’s specified equations and parameters (Figs. 2 and S13) evaluated with the
depth-resolved predator and prey biomass fields in addition to depth-resolved
temperature and oxygen fields where required. The bulk phytoplankton grazing
mortality rate (G, mmolC m−3 d−1), defined as the bulk rate at which all
phytoplankton biomass is lost to zooplankton grazing, was calculated by
integrating grazing losses from all phytoplankton pools to all zooplankton pools.

G ¼ ∑
nz

i¼1
∑
np

j¼1
g
Pj
Zi
ðPrey Field; TemperatureÞZi; ð2Þ

where nz and np are the number of zooplankton and phytoplankton types, Zi is the

biomass of zooplankton group i, and g
Pj

Zi
is the zooplankton-specific grazing rate of

Zi on Pj as described in Fig. 2, evaluated at the given prey field and temperature of
each grid cell. Note, the presence of non-phytoplankton prey (i.e., zooplankton,

bacteria, detritus) in the prey field does influence g
Pj

Zi
in so much as it redirects

grazing effort and provides refuge for phytoplankton; however, losses from non-
phytoplankton pools are not included in the integration of G. Zooplankton-specific
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grazing rates (g, d−1) and grazing pressure (gp, d−1) are calculated by dividing by G
by the total zooplankton and phytoplankton biomass pools.

g ¼ G

∑nz
i¼1 Zi

ð3Þ

gp ¼
G

∑
np
j¼1 Pj

ð4Þ

Gross secondary production (GSP, mmolC m−3 d−1) is defined as the gross
assimilation rate of phytoplankton biomass into zooplankton biomass, such that

GSP ¼ ∑
nz

i¼1
∑
np

j¼1
γ
Pj
Zi
g
Pj
Zi
ðPrey Field; TemperatureÞZi; ð5Þ

where γ is the assimilation efficiency of Zi grazing on Pi. Here, we define γ to
include all terms that scale G when computing the zooplankton biomass tendency
but note that depending on the model, this term can implicitly or explicitly include
sloppy feeding prior to ingestion, egestion as fecal production, and/or respiration to
account for the energetic cost of assimilation. Thus, GSP does not mean exactly the
same thing across models but consistently represents the gross assimilation of
zooplankton biomass before accounting for losses to basal metabolic respiration,
linear mortality (i.e., disease and senescence), and quadratic mortality (i.e., implicit
predation). For a more direct comparison to ref. 48, grazing efficiency is defined
here as the percent of NPP that is grazed (i.e., G

NPP), regardless of how much is
assimilated into zooplankton biomass (i.e., ≠ GSP

NPP). Note, in some cases (i.e.,
CMOC), grazing efficiency exceeds 1. This is an artifact of the offline averaging
over nonlinearities in the functional response, which will overestimate grazing in
all models. Nonetheless, the high grazing efficiency in CMOC reflects very high
grazing rates, a very low K1/2 value, and the fact that essentially all NPP is grazed.

Bulk zooplankton mortality rates (M, mmolC m−3 d−1) were calculated as the
sum of all zooplankton biomass loss terms, including basal metabolic losses to
respiration, less the biomass that is assimilated back into other zooplankton pools
via carnivorous grazing, such that

M ¼ ∑
nz

i¼1
Mi þ I; ð6Þ

where Mi is the mortality rate for a given zooplankton class excluding losses to
other carnivorous zPFTs and I accounts for all biomass lost via assimilation
inefficiencies during carnivorous grazing. Both terms are detailed in Fig. S13 for all
models. Although metabolic losses to respiration are not mortality, per se, they are
included because they are generally small compared to other losses, and it allows
for consistent comparison across models which do not consistently attribute their
linear loss terms to the same processes. Zooplankton-specific mortality rates were
reached by dividing by the total zooplankton biomass pool,

m ¼ M

∑nz
i¼1 Zi

: ð7Þ

Finally, phytoplankton-specific division rates, μΣ, (d−1), were computed in a
depth-averaged sense as depth-integrated NPP divided by total depth-integrated
phytoplankton biomass.

In a few cases, assumptions had to be made to fill in data that was not available.
OECO-v2 includes a diazotroph class, but only a single phytoplankton variable was
uploaded. We assume the partitioning between generic phytoplankton and
diazotrophs was 2%, equal to the global median averaged across the other two models
that resolved (and publically hosted) diazotrophs (CESM2 and COBALTv2).
COBALTv2 only provided surface fields for bacteria (a prey option for small
zooplankton) and included medium and large zooplankton together in a single
output field. Here, depth-resolved bacteria fields were assumed proportional to the
profile of total phytoplankton. Based on personal communication (see Table S3),
medium and large zooplankton were assumed to be split 40/60 in highly productive
waters, 60/40 in mesotrophic waters, and 90/10 in oligotrophic waters. Productivity
biomes were delineated based on the 33rd and 66th percentiles of annually-averaged,
depth-integrated NPP. Note, COBALTv2 provided explicit grazing rates, which
would obviate both assumptions but introduce uncertainty in comparisons with the
other models, which had to be computed offline. Here we report the offline
diagnostics for consistency, but note that the median bias between offline and explicit
zooplankton grazing rates in the top 200 m of COBALTv2 is−14%. Moreover, using
the explicit rate terms would not change our primary results regarding inter-model
differences in grazing pressure, which differed by over 4000% between the most
extreme models during the winter. In CanOE, the temperature-limited respiration
rate for zooplankton (β1TLimZ; Fig. S13) does not result in the catabolism of existing
biomass when excess carbon is available in ingested prey (which have variable
stoichiometry) relative to the fixed zooplankton (Redfield) stoichiometry. Nutrient
pools for individual phytoplankton types were not available, so we determined excess
carbon based on the stoichiometry of the total phytoplankton population. In
PISCESv2, the assimilation efficiencies depend on variable prey stoichiometry and are
approximated as their maximum efficiency and nutrient-limited excretion terms were
omitted, meaning GSP may be slightly overestimated and mortality rates may be
slightly underestimated.

Finally, in addition to the 11 CMIP6 models, in Figs. 5 and S4–S6 we
included the model of ref. 96, which is part of the DARWIN Project, run on the

MITgcm at 1∘ × 1∘ resolution, and includes 31 and 16 size-structured
phytoplankton and zooplankton groups, respectively. Here grazing rates were saved
explicitly at monthly resolution and integrated across phytoplankton and
zooplankton groups offline. To account for the inclusion of mixotrophs,
phytoplankton biomass is considered anything that is a primary producer (i.e.,
phytoplankton and mixotrophs) while zooplankton biomass is considered anything
that consumes primary producers (i.e., herbivorous zooplankton, omnivorous
zooplankton, and mixotrophs). The bulk phytoplankton grazing mortality rate, G,
thus includes phytoplankton and mixotroph losses to grazing by both zooplankton
and mixotrophs. Note, Darwin also includes zooplankton carnivory and 7 types of
bacteria. These are not included explicitly in our diagnostics, but since they
dynamically influence zooplankton biomass and grazing effort, their inclusion, and
the broader structure of the food web, is reflected in our diagnostics.

Lastly, note that when computing mean or median values, all variables are
weighted to appropriately reflect differences in the area of grid cells and
distribution of biomass. For instance, globally-averaged zooplankton-specific
grazing rates are weighted by the zooplankton biomass inventory of each grid cell,
such that the grazing rate of a very small concentration of zooplankton in a small
grid cell counts proportionally less than that of a large, densely populated one.
Similarly, grazing pressure is weighted by phytoplankton biomass to reflect the
grazing pressure felt by the mean (or median) phytoplankton in the model.

WOMBAT configuration. We tested a range of different grazing formulations (see
“Sensitivity experiments” below) in a 3D global BGC model. Given the established
sensitivity of BGC models to the underlying physics173,174, each experiment was
embedded in an identical general circulation model and subject to the same
atmospheric forcing. All non-grazing parameters were kept identical across runs,
unless otherwise noted.

The BGC model used, the Whole Ocean Model of Biogeochemistry and
Trophic-dynamics (WOMBAT)66, is the BGC component of the current Australian
Earth Systems Model (ACCESS-ESM1.5)175 and has been used extensively in
previous studies176–179 including the CMIP6 project referenced here66. WOMBAT
is a standard NPZD model that routes nutrients (and implicitly carbon) between
one phytoplankton pool, one zooplankton pool, one dissolved inorganic pool, and
one detritus pool (i.e., particulate organic carbon)179. Briefly, a single
phytoplankton pool grows based on a nutrient, light, and temperature-dependent
photosynthetic growth rate and is grazed by a single zooplankton pool.
Autotrophic cellular respiration is considered implicitly in the growth term,
meaning phytoplankton accumulation via photosynthesis represents net primary
production, while heterotrophic respiration and excretion is considered explicitly,
meaning zooplankton accumulation via grazing represents gross secondary
production. Microbial decomposition implicitly returns a phytoplankton mortality
flux and detritus remineralization flux to the inorganic nutrient pool. The fraction
of NPP that is eventually transferred to export depends on the size of the detritus
pool, which is fed by a quadratic phytoplankton aggregation term, quadratic
zooplankton mortality term, and a small fraction of phytoplankton lost to grazing
that directly enters detritus instead of zooplankton biomass due to sloppy feeding.
The zooplankton mortality/aggregation rate is 20% larger than the phytoplankton
aggregation rate. A schematic of the standard WOMBAT configuration and
parameterization is provided in Fig. S7.

The ocean model used for each experiment is based on the ocean component of
the ACCESS global climate model that is described in detail in ref. 180. In brief, the
model here is a global configuration of Modular Ocean Model version 5181 that is
nominally 1-degree resolution, with extra latitudinal resolution near the equator
and in the Southern Ocean. There are 50 vertical levels, with 10 m resolution in the
top 200 and 300 m resolution in the abyss.

Each run was initialized from the same initial state and forced with the same
surface flux and freshwater runoff from the Japanese 55-year atmospheric
reanalysis surface dataset, JRA55-do182. After initialization, each run was spun up
for 5 years to a quasi-steady state, at which point the model had equilibrated with
the changes made to its grazing formulation. Model output is reported from the 5th
year of the simulation and can be considered climatological, as it is embedded in a
repeat-climatological physical ocean.

Sensitivity experiments. In the standard “Slow Turnover” suite of experiments
(Figs. 7, 9 and S8; solid lines), we ran 19 simulations, each with different grazing
formulations but an otherwise identical model configuration. We test 18 parameter
combinations of gmax (0.5, 1.0, 2.0 d−1) and K1/2 (0.5, 1.0, 2.0, 4.0,
8.0, 16.0 mmolCm−3), which cover a representative range of parameter values used
in models and estimated empirically39. Additionally, one control run was simulated
using the most common WOMBAT configuration (Type III; K1/

2= 6.68 mmolCm−3; gmax = 1.58 d−1)66. All simulations in the “Slow Turnover”
experiment suite use a type III response, as in the control configuration of
WOMBAT, and all other parameter values are as described in Fig. S7. We then
repeated each simulation in two additional experiment suites (for a total of 57
unique runs), one using a faster phytoplankton growth rate parameter and one
using a type II response curve (Table S4). Otherwise, the grazing formulation and
all other parameter values were identical across experiment suites.

We ran the “High Turnover” experiment suite to determine how carbon cycling
is modified by models that are tuned to the same global, mean-annual NPP (NPP)
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by pairing either faster or slower zooplankton and phytoplankton growth rates.
Here, we allowed for more efficient nutrient utilization by parameterizing a higher
nutrient and light-replete phytoplankton saturation growth rate (μsat). The value of
μsat in the “High Turnover” experiment suite was chosen to match the value used in
MARBL68, the BGC model which has the largest PGI (Figs. 1, 2) and thus needs the
strongest compensation from other parameters to be tuned to observed NPP.
Accordingly, the μsat value used in MARBL and our “High Turnover” experiment
suite (2.38 d−1) is 3.2-times faster than the WOMBAT value used in the “Slow
Turnover” experiment suite (0.75 d−1) at 16 ∘C. Note, μsat is temperature-
dependent and temperature limitation is treated with slightly different equations in
MARBL (μsat= 5 × 1.7(T−30)/10) and WOMBAT (μsat= μsat. × 1.066T). We chose
μmax such that μmax: � 1:066T ¼ 5 � 1:7ðT�30Þ=10 at T= 16 ∘C, roughly the ACCESS
global mean SST. Although μmax in our “High Turnover” experiment suite at
T ≠ 16 ∘C will slightly differ from that of MARBL it remains roughly
proportionately elevated relative to our other experiment suites and thus is not
relevant to our results.

To quantify the divergence of the ‘High Turnover’ experiment suite (Fig. 9;
dashed lines) from the “Slow Turnover” experiment suite (Fig. 9; solid lines) we
consider two ensembles with, on average, identical NPP (see Fig. 9). To do so,
we fit a curve to the relevant model output from each simulation plotted against
their associated NPP (Fig. 9). We then averaged those curves across the same
range of NPP, such that each ensemble must have identical NPP, but may vary
across other dimensions of model output (Fig. 8; horizontal). We constrained
the range of NPP to that where both experiment suites overlap, such that the
curves we averaged across were never extrapolated beyond actual runs (see
Fig. 9; dashed vertical lines). This corresponds to a range of roughly 11 to 44
PgC yr−1, or the minimum and maximum NPP computed from the “High
Turnover” and “Slow Turnover” experiment suites, respectively. This range is
bracketed in Fig. 9, along with the associated mean model output from each
ensemble and their percent deviation.

Additionally, we ran a “Type II” experiment suite to determine how a
qualitatively different response curve modifies the sensitivity to its parameter
selection (Table S4). The sensitivity of marine carbon cycling to the PGI when
using a type II response (dashed lines) instead of a type III response (solid lines) is
shown in Fig. S8 and discussed in “Supplemental Discussion 1”.

Finally, note that WOMBAT quantifies biomass in nitrogen units and uses disk
parameters to describe the functional response. Therefore, before prescribing
parameters in WOMBAT, all parameter values reported here were first converted
from carbon to nitrogen units using a C:N ratio 106:16 and then from
Michaelis–Menten parameters into disk parameters (ϵ and gmax) using ϵ ¼ gmax K

�2
1=2

for a type III response and ϵ ¼ gmax K�1
1=2 for a type II response. For detailed

information on the difference between the two mathematically equivalent parameter
schemes, see ref. 39. This conversion has no effect on the prognostic integration of
the model and parameter values were reported in their Michaelis–Menten form with
carbon units for convenience, clarity, and comparison.

Data availability
All model output needed to reproduce the results from this study and associated
documentation can be found at the IMAS Data Portal (https://doi.org/10.25959/
B7XN-W655). This includes gridded grazing and mortality rate terms computed
offline for all CMIP6 models studied, as well as output from the WOMBAT sensitivity
analysis. Publicly available CMIP6 model output was downloaded from the Earth
System Grid Federation (ESGF) Lawrence Livermore National Laboratory data node
(https://aims2.llnl.gov/search). We’d like to thank readers of this document for their
attention and invite them to address any questions to Tyler Rohr, at
tyler.rohr@utas.edu.au.

Code availability
The CMIP6 participation guide for modelers is available at https://pcmdi.llnl.gov/
CMIP6/Guide/modelers.html and in-depth description of the each model’s code/
structure can be found in the references provided in Table S3. The code used to
compute all offline variables from the publicly archived CMIP6 data is hosted with our
dare on the IMAS portal: https://doi.org/10.25959/B7XN-W655.
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