
ARTICLE

Prefectures vulnerable to water scarcity are not
evenly distributed across China
Fubo Zhao1, Xi Wang1, Yiping Wu 1✉ & Shailesh Kumar Singh 2

Water scarcity has become a significant constraint to sustainable development. While the

water scarcity has been widely assessed, its social impacts are infrequently evaluated. Here,

we developed a framework to integrate the water scarcity and climate sensitivity to examine

social vulnerability at the prefecture level across China. Results showed that 41% of the 301

prefectures were highly water stressed and 30% were highly sensitive to changing climate.

We identified 44 hotspot prefectures using a combination of high water scarcity and climate

sensitivity. We mapped the gradient in social vulnerability to water stress and climate sen-

sitivity in these 44 prefectures and found that prefectures with ‘very high’ social vulnerability

were primarily distributed in Central and Southwest China. These ‘very high’ vulnerable

prefectures are home to more than 58 million people. The consideration of both water

scarcity and climate sensitivity across management units has potential to formulate policies

regarding water resources management.
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The availability of freshwater resources is key to both
environmental and socio-economic health of any region1,2.
With rapidly growing population and increasing urbani-

zation, the gap between demand and supply of freshwater
resources is steadily increasing, leading to significant water
scarcity in many regions of the world3–7. Severe water scarcity
challenges food security8,9, power generation10, and ecological
restoration11,12, and will potentially compromise the achievement
of the United Nations Sustainable Development Goals (SDGs)
(e.g., SDG6—clean water and sanitation, and SDG14—life below
water). Therefore, understanding water scarcity is important for
formulating effective policy at a range of spatial scales (global,
regional, and local).

Since the late 1980s, when water scarcity was recognized as a
worldwide problem, many indices have been developed to facil-
itate the assessment of water scarcity across the world8. The most
used water scarcity index is the ratio of water demand to water
supply, which is also called blue water scarcity, where blue water
is usable freshwater that may be sourced from lakes, streams, and
groundwater8,13. Several studies have used this index to assess
water resources and identify severe water scarcity in many regions
of the world6,10,14–16. However, this simple index only considers
surface and groundwater availability, and ignores soil moisture
(so-called green water)17. To overcome this shortcoming, some
sophisticated indicators have been developed more recently, and
these include the physical water scarcity index that integrated
root zone water availability to reflect agricultural drought18 and
the more complex water scarcity index, which recognized both
freshwater availability, and quality constraints arising from pol-
lution of water resources19. Although these indices are valuable
for improving our understanding of water scarcity, they focus on
one aspect of water scarcity and do not reflect the sensitivity of
water conditions to climate change, now recognized as the most
important factor influencing water resources20,21. The uncertain
effects of climate change on water scarcity have also raised con-
cerns regarding the adequacy of current definitions of water
scarcity22,23. Moreover, freshwater scarcity assessments also
typically consider one-side classification schemes which do not
represent important variations in social sensitivities and
responses23. These approaches may have important limitations
that constrain their ability to drive policy implementation
regarding the actual and potential social impacts from the water-
related crisis.

A widely used approach used to predict future water scarcity
combines the output from hydrological models with climate
projections from global climate models16,24–26. The blue water
resources predicted from hydrological models are then used to
present water stress under future climate conditions. This
approach has been frequently used at the global and regional
scales under different water scenarios10,27. This traditional for-
ward approach is helpful to understand changes in water scarcity
under climate change. However, the projections are not always
helpful for formulating water policies because of various uncer-
tainties, for example the large uncertainties in precipitation
projections10,16,28. To improve consideration of uncertainties in
predictions of water resource availability, bottom-up approaches
become important29. Bottom-up approaches provide ways to
explore changes in water availability and sensitivity to climate
change without having to consider the specific (and uncertain)
future projection of climate1. Combining “bottom-up”scheme
and exploratory modeling framework can thus provide direct
information of how water availability will change, as well as
ranges of likely vulnerability under various climate combinations.

In this study, we focus on assessments of water scarcity and
sensitivity to climate change using a bottom-up framework. We
combine survey-based water use data and remotely-sensed data to

address the following objectives: (1) Assess water scarcity con-
ditions under the current climate and the sensitivity of water
availability to climate change. (2) Analyze the co-occurrence of
water scarcity and climate sensitivity and identify the hotspot
regions suffering both high water stress and climate sensitivity.
(3) Derive the gradient in social vulnerability to freshwater stress
and climate sensitivity by inclusion of social adaptability. All
analyses were performed at “small administrative unit scale”—in
this case at prefecture level (n= 301)) across China during
2000–2013.

Results
Water scarcity and sensitivity to changing climate. We mapped
water scarcity conditions (average conditions of 2000–2013) and
its sensitivity to climate change at the prefecture level (Fig. 1).
Details of district distributions are shown in Supplementary
Fig. 1. As shown in Fig. 1a, different levels of water scarcity occur
in different regions. Prefectures that experienced water scarcity
were mainly distributed in North China, with many prefectures in
Huadong (HD), Huabei (HB), Huazhong (HZ), and Dongbei
(DB) districts exhibiting high water scarcity (WS > 0.4). Statisti-
cally, 34, 23, 21, and 17 prefectures of HD, HZ, HB, and Dongbei
(DB) districts suffered severe water shortage. HD district had the
largest proportion (34 of total 76 prefectures, 45%) of high water
scarcity. Regions where medium water scarcity occurred were
largely in HD (20), Huanan (HN) (13), and HZ (12) districts
(Fig. 1c). The Xinan (XN) district had the largest proportion of
prefectures where low water stress occurred. At the national level,
41% (123), 24% (71), and 35% (107) prefectures were under high,
medium, and low water scarcity, respectively, during the study
period of 2000–2013.

Figure 1b shows the percentage of precipitation change (PC)
(i.e., precipitation reduction) that resulted in a 25% reduction of
WA with a fixed level of change in PE (15%). This framework can
be used to easily test out various other scenarios. Changes in P
and PE vs changes in WA were also shown in Supplementary
Fig. 2. A lower PC indicated a higher sensitivity of WA to
changing climate. In total, we found 30% of the selected 301
prefectures were highly sensitive to climate change according our
classification. A decrease of no more than 5% in precipitation in
these prefectures would cause water availability to decrease by a
substantial 25%. These prefectures were more likely to suffer
water stress under future climate, and they were mainly located in
XN (26), DB (16), HB (15), HZ (11), and Xibei (XB) (11).
Notably, in specific prefectures (Fig. 1b), a rise in P would cause a
decline in WA despite the increase, as significant enhancements
in PE within these dry and susceptible areas would counter-
balance the increase in P30,31, leading to a reduction in WA. 40%
of prefectures (119) were found to be medially sensitive to climate
change, with less than 10% (4.6–9.8%) decrease in precipitation
led to a 25% decrease in water availability. These prefectures were
widely distributed across China. The remaining 92 prefectures
showed low sensitivities to climate change, with less than 22%
(9.9–21.5%) decrease in precipitation led to a 25% decrease in
water availability. These prefectures were primarily located in the
lower reaches of the Yangtze River Basin, including large
proportions of HD and HZ districts (Fig. 1d). Similar spatial
patterns showing relatively higher climate sensitivity were also
found for other tested threshold criteria (Supplementary Figs. 3
and 4).

Co-occurrence of water scarcity and climate sensitivity. We
mapped the water scarcity conditions and climate sensitivities at
the prefecture level and analyzed the co-occurrence of these
phenomena (Fig. 2). We found that 30% (59) of 194 currently
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stressed prefectures (WS > 0.2) were simultaneously “highly sen-
sitive” to climate change (i.e., highly sensitive to climate change in
our classification). These prefectures were mainly located in HB,
HD, DB, XN, HZ, and XB districts. Among these prefectures, 44
prefectures were also classified as highly water-stressed, which
identified them as water-vulnerable hotspots—highly water-
stressed prefectures with high sensitivity to climate change. A
total of 170 million people were found within these prefectures
(Supplementary Fig. 5). The hotspot prefectures were found
across all districts of China, while the majority of these hotspot
prefectures were located in HB (11), DB (10), HZ (9), and XN (6).
41% (80), and 29% (55) of 194 currently stressed prefectures
exhibited “medium” and “low” sensitivity to climate change,
respectively. The remaining 107 non-stressed prefectures were
mainly located in the southern and northwestern portions of
China. Among these prefectures, 33 were at the highest level
(most) of climate sensitivity.

Social vulnerability to water scarcity and climate sensitivity. To
better characterize social vulnerability, we placed the water
scarcity and climate sensitivity in the context of social adaptability
of each hotspot prefecture following ref. 23 (Fig. 3). The aim of
mapping the social vulnerability gradient is to minimize the social
impacts of water stress and vulnerability to changing climate by
identifying what prefectures with limited social adaptability are
exposed to high water scarcity and climate sensitivity. The social
vulnerability gradients were generated using threshold concept
following ref. 32 and conducted across the 44 hotspot prefectures
identified previously. Seven prefectures had high social adapt-
ability and were identified as moderate vulnerable prefectures
(yellow) (Fig. 3). These prefectures were mainly located in
northern China, specifically the HB and DB districts. These

prefectures had a relatively higher adaptability to cope with actual
water scarcity and potential water stress under changing climate
and thus had a relatively lower risk suffering water crisis com-
pared with others. In total, 22% of prefectures were at a high level
of social vulnerability, and these were also concentrated in HB
and DB districts. The prefectures with “very high”vulnerability
level were concentrated in XN and HB districts (n= 15), which
had a population of over 58 million people (Supplementary
Fig. 5). These prefectures had lower capacities to adapt proac-
tively and reactively to climate disturbance and would more easily
suffer social harms (e.g., food shortages, social unrest, and others)
due to water scarcity in a changing climate.

Discussion
Identifying regions that are suffering or likely to suffer water
stress is important when making decisions regarding water
resources planning and management. The spatial distribution of
water scarcity conditions estimated in our study agreed with those
in previous studies, with scarcity hotspots concentrated in
northern China6,19,33–35. The higher level of water scarcity is a
consequence of both falling water supply and rising water
demand because of increasing demand created by population
growth and economic development in northern China34. The
decreasing surface water supply has led to the over-exploitation of
groundwater resources, which has further exacerbated water
scarcity, especially in the Huaihe River Basin of northern China35.
Previous studies were usually conducted at the grid or watershed
scales to provide political guidance23,34. However, many decisions
regarding water management in China are still dependent on
geophysical and economic conditions. For example, different
measures could be made toward water management across the
seven geophysical districts in China36. In this study, we

Fig. 1 Water scarcity and climate sensitivity of prefectures across China. a Water scarcity index (WS) derived from water demand to water availability
(WA) of each prefecture. The WS classes were defined based on the WS values following ref. 10 low (<0.2), medium (0.2–0.4), and high (≥0.4).
b Precipitation change (PC) (precipitation reduction) that caused a 25% reduction of WA. A lower PC indicates a higher sensitivity of WA to precipitation
change (climate change). Values plotted on the color scales are categorized into three groups following ref. 32 high (≤PC30, dark blue), medium (between
PC30 and PC70, blue), and low (≥PC70, shallow blue), in which PCi represents the ith percentile of PC values. Shaded prefectures are ones with positive
precipitation changes (negative precipitation reduction) that would still lead to WA reduction. c WS distribution and d PC distribution across districts of
China. DB, HB, HD, HN, HZ, XB, and XN are abbreviations of different districts and the full description are shown in Supplementary Fig. 1. Gray-shaded
prefectures are excluded from this study.
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conducted the analysis at the small administrative unit instead of
topographically defined watersheds. Thus, the information
derived from this study may be more suitable for guiding for-
mulation of policy for water management, because these policies
will better reflect or respond to the conditions likely to arise as a
consequence of climate change, coupled with existing water
scarcity.

Considering the uncertainties using traditional straightforward
method to derive the sensitivity of water availability to climate
change, we used a bottom-up approach in a Budyko framework.
This approach can be effective in addressing the challenges posed
by limited data and uncertainties associated with future pre-
cipitation change16. To further understand which are the main
determinants of climate sensitivity of WA (represented as the PC
magnitude in Fig. 1) in each prefecture, we conducted an
importance analysis using a random forest machine learning
algorithm from a total 24 physioclimatic (Supplementary Table 1)
and socioeconomic characteristics for the selected 301 pre-
fectures. As shown in Supplementary Fig. 6, the five most
important factors were precipitation (factor importance of
39.2%), followed by elevation (DEM, 25.8%), air temperature
(19.4%), potential evapotranspiration (PET, 17.1%), and eco-
nomic development (denoted as GDP, 16.7%). Other variables
related to vegetation, soil, and human activities were less
important (less than 15.0%). In this sense, the background climate
conditions are still primarily responsible for the WA sensitivity to
changing climate for each prefecture of China, with elevation and

economic development playing secondary roles in determining
climate sensitivity. These findings are consistent with those of
previous studies. For example, the long-term climate and vege-
tation variables are key to water partitioning across India and
Australia37,38. Similarly, at the watershed scales, several studies
also reported a more important role of climate change in driving
runoff changes39,40.

Our calculation procedure identified that 44 prefectures
(representing 15% of the total) were hotspots—highly water-
scarce prefectures were also most sensitive to changing climate.
These 44 prefectures were representative because of their actual
significant water scarcity and potential water stress under climate
change. In other words, these originally water-stressed prefectures
were also susceptible to changing climate. These hotspot pre-
fectures can more easily suffer water shortage in a changing cli-
mate, which may exert potential negative impacts on the social
system in these regions. For example, these regions may be linked
with increased drought frequency when facing climate
warming41, which are likely to exert large, undesirable influences
on natural ecosystems and society. We further derived a social
vulnerability gradient for each prefecture by including factors
related to social adaptability. In general, vulnerability is core to
generate risk42,43. A higher vulnerability indicates that a system is
more susceptible to potential hazards. Whereas vulnerability must
be seen as situation-specific, interacting with a hazard event to
generate risk44. Vulnerability to actual and potential water
stresses in our study, for example, does not infer vulnerability to

Fig. 2 Co-occurrence of water scarcity and climate sensitivity at the prefecture level. The dark red prefectures are identified as the vulnerable hotpot
prefectures–high water-stressed and high sensitive to climate change according to our definition. Tables are the distributions of the 44 hotspots. DB, HB,
HD, HN, HZ, XB, and XN are abbreviations of different districts and the full description are shown in Supplementary Fig. 1. Gray-shaded prefectures are
excluded from this study.
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other crisis (e.g., financial, hurricanes, earthquake, foods, and
others). The identification of social vulnerability is of great
importance for risk prevention and response related to freshwater
variations. Lower social adaptability is usually linked with lower
technological and economic capacity to cope with increasing
water stress arising from climate change. Prefectures with very
high vulnerability (n= 15) were mainly found in Southwest and
North China, which are also the hotspot areas of drought30,45–47.
These prefectures should be used as pilot regions when imple-
menting political actions (e.g., commissioning water resources
projects) arising from water resources planning and management
in response to climate change. The majority of moderately and
highly vulnerable prefectures were found in North and Northeast
China. However, these prefectures have relatively higher capacity
to respond and adapt to freshwater stress under climate change.

It is worth mentioning that this study has some limitations. First,
we only considered water stress across prefectures of China from
the perspective of water quantity. In reality, water pollution is also
exacerbating China’s water scarcity19. Pending data availability,
water quality should also be considered in future water assess-
ments. Second, we calculated water scarcity index values using
freshwater stress and vulnerability to climate change due to data
availability, ignoring indirect and non-local impacts such as the
virtual water trade, which is increasingly likely to have an impor-
tant impact on water and food security48. This study only focused
on natural water supply (P) and demand (AE) at the prefecture
level to analyze climate sensitivity and vulnerability. It did not take
into account human activities, such as garden and park construc-
tion, cropland irrigation, city green space construction, and artifi-
cial storage in reservoirs and dams. Taking into account these

additional elements to estimate WA and climate sensitivity would
require a holistic approach, which was beyond the scope of this
study. Third, this analysis was conducted at the mean annual level
and therefore did not reflect inter-annual and seasonal variability in
water stress and vulnerability. Future studies should consider the
annual or seasonal water status and its sensitivity to climate change
using such a framework. Finally, our calculation procedure (i.e., the
simple threshold classification approach) may have deficiencies in
identifying the hotspot prefectures. For example, numbers of pre-
fectures suffering high water scarcity and climate sensitivity might
be more or less if we use other classification methods23,32. Future
studies could consider more classification methods to gain a
comprehensive insight of vulnerable regimes. Furthermore, due to
the physical constraints of the Budyko method, we excluded 40
prefectures located primarily in the XB, HD, and HN districts from
our analysis. This exclusion may introduce some uncertainties in
identifying hotspot prefectures that are vulnerable to climate
change. Nonetheless, because we found multiple lines of climate
sensitivities of WA using different thresholds, we do not expect
these uncertainties to affect our key identifications of hotspot-
vulnerable prefectures among the selected 301 prefectures. Pending
fine-scale statistical data availability, one can conduct more com-
prehensive and holistic analysis using our integrated framework.
Despite these limitations, this study provides a first order estima-
tion of the spatial variability of social vulnerability to actual and
potential water stress of regions under changing climate.

Conclusions. In this study, we performed an explicit water
scarcity assessment by considering water stress condition and

Fig. 3 Gradient of social vulnerability derived from the combination of water scarcity, climate sensitivity, and social adaptability. The “very high”
vulnerability was derived by combining high water scarcity, high sensitivity, and low social adaptability; the “high” vulnerability was derived by combining
high water scarcity, high vulnerability, and moderate social adaptability; the “moderate” vulnerability was derived by combining high water scarcity, high
vulnerability, and high social adaptability. The vulnerable gradients were only conducted in the 44 hotspot prefectures. Hotspot prefectures (hotspots) are
the ones with both high water scarcity and high climate sensitivity. Table shows the distribution of differeμnt vulnerability gradients among the seven
districts in China.
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climate sensitivity at the small administrative unit–prefecture
level in China. The climate sensitivity of WA was quantified using
a Budyko-based bottom-up approach. Results showed that 41%
prefectures (123 of the selected total 301 prefectures) were highly
water-stressed and these were primarily distributed in North,
Northeast, and Southwest China under current climate condition
(2000–2013). Twenty-four percent (71) of prefectures were at the
moderate levels of water scarcity. Sensitivity analysis showed that
30% (90) of prefectures were likely to be highly sensitive to
changing climate. In total, 40% (119) and 30% (92) of prefectures
were at the moderate and least levels of climate sensitivity,
respectively. By analyzing the co-occurrence of water scarcity
conditions and climate sensitivities, we identified 44 water-
vulnerable hotspot prefectures–ones that are currently highly
water-stressed and most sensitive to climate change. We further
derived social vulnerability gradients by combining social
adaptability among these 44 hotspot prefectures and found the
prefectures with “very high” social vulnerability were primarily
located in Southwest and Central China, while the prefectures
with “high” and “moderate” social vulnerabilities were located in
North and Northeast China. The ability to identify vulnerable
hotspot prefectures and rank these along a vulnerability gradient
has implications when formulating water policies regarding water
resource management under climate change. The framework
developed in this study can be applied in any regions where data
are available to provide a first order estimation of the social
vulnerability to actual and potential water stresses of a region,
which information may be used in turn to develop appropriate
policy.

Methods
We follow a three-step procedure to conduct the water scarcity, climate sensitivity,
and social vulnerability analysis across all prefectures of China (Supplementary
Fig. 7). In step 1, we used the historical records of meteorological information to
verify the Fu’s Budyko function and estimate the water availability (represented by
long-term P minus AE) across all prefectures of China. We then applied the
statistic water abstraction data of each prefecture collected from ref. 49 to evaluate
the water scarcity conditions. In step 2, a Budyko-based bottom-up approach was
applied to estimate the critical climate thresholds for a selected change in water
availability across China. In this step, the sensitivity of water availability to
changing climate was identified according to changes in water availability and
climate. The hotspot prefectures were also identified through analyzing the co-
occurrence of water scarcity and climate sensitivity. In step 3, we conducted the
social vulnerability analysis by integrating social adaptability across the hotspot
prefectures identified in step 2. In this study, vulnerability represents the likelihood
of society to experience harms due to exposure to actual and potential freshwater
stresses under climate change. Identifying the gradient of social vulnerability to
water stress and climate sensitivity is critical for adapting proactively and reactively
to actual and potential water tresses to alleviate the water-related crisis under
climate change. This initiative would help protect the weak part of the society,
especially the one in developing countries such as China, when facing water-related
hazards. We begin our methodological description with the Budyko framework.
Following this, we describe the water scarcity assessment and climate sensitivity
analysis. Finally, we derive the social vulnerability gradient for related prefectures
to provide guidance for water resources management under climate change. For
easily understanding of the terminologies used in our study, we provided a list of
related definitions in Supplementary Table 2.

A Budyko-based framework for water availability estimation. We estimate
long-term water availability (WA), defined as long-term precipitation (P) minus
actual evapotranspiration (AE)50 (ignoring long-term changes in water storage),
across all prefectures using the Budyko water balance framework51,52. The Budyko
curve was developed on the basis of the water balance principle at the watershed
scale. Specifically, the function depicts the relationship between long-term water
availability (AE/P) and long-term climatic condition (long-term potential evapo-
transpiration (PE) to long-term P). Note that the original non-parametric Budyko
relationship has been found to be applicable only over large temporal and spatial
scales (>1 year; >10,000 km2), whereas the parametric function can be potentially
applied to a wide range of spatial and temporal scales, provided that the curve’s
parameters are appropriately calibrated and validated53. Actually, the hydrology-
climate relationship of a region can be regarded as a steady state when the study
period is longer than 5–10 years and the Budyko water balance framework can be
applied for water availability estimation54. Despite the simple and “lumped

parameter” structure, the Budyko functions have proven effective in explaining and
predicting changes in the terrestrial hydrological cycle across various spatial and
temporal scales16,37,55–59 (Supplementary Table 3). Here, we employ a form of the
Budyko curve of Fu51 with one parameter (ω) estimate the water availability using
the input long-term P minus E through the water balance principle, assuming long-
term variations of water storage do not change significantly between years (or
different study periods):

AE
P

¼ 1þ PE
P

� 1þ PE
P

� �ω� �1=ω

ð1Þ

The long-term climatic condition is represented by PE/P and the water
availability is represented by AE/P. Water availability (WA) is thus defined as
P-AE. Parameter ω, which modifies the steady-state hydrology-climate relationship
at the mean annual scale, integrates the effects of biogeophysical features on water
availability, such as the terrain, vegetation, and soil information37. We derived the
parameter ω using relevant datasets for the period 2000–2013, which was validated
for applicability in estimating water availability using datasets from 1982–1999. To
validate the estimation of WA during 2000–2013, we further collected runoff data
from CNRD60 and GRUN61 and compared them against the predictions. Also, we
conducted cross-validations at the different spatial scales over China. The full
validation process is shown in Supplementary Note 1 and Supplementary
Figs. 8–11.

Water scarcity assessment. Following previous studies6,10,23, we defined the
water scarcity as the ratio of water abstraction to WA:

WS ¼ WD
WA

ð2Þ

where WS is water scarcity index and WD is total water abstraction. Data of water
abstraction for each prefecture were collected from ref. 49. The water abstraction
includes irrigation, industrial, urban, and rural water uses, which together account
for more than 93% of total blue water abstraction49. WA is estimated by the
probabilistic Budyko function. Water scarcity is classed into three levels based on
values of WS following previous studies2,4,10: low water scarcity (<0.2) (or no water
scarcity), medium water scarcity (0.2–0.4), and high water scarcity (≥0.4).

Climate-sensitivity analysis. We used a bottom-up approach based on a previous
study16 to undertake a climate sensitivity analysis. The bottom-up approach was
developed to confront the challenges arising from the unpredictable variations in
precipitation patterns that may occur in the future. Applying the bottom-up
approach offers an approach to investigate alterations in water availability
regardless of future climate projections. This study utilizes exploratory modeling
analysis with the bottom-up approach to evaluate a diverse spectrum of potential
future climates and recognize combinations that may result in vulnerable water
availability regimes62. The bottom-up approach begins with identification of ranges
of water availability that represent vulnerability, followed by identification of cli-
mate conditions that are likely to cause this vulnerability16,29, which differs from
the traditional simple approach. First, we identified potential future climate sce-
narios by analyzing variations in precipitation and temperature (represented by
PE) across all prefectures in China. The different climate combinations were
generated according to the latest Intergovernmental Panel on Climate Change
report in East Asia and Tibetan Plateau regions63. The 5%–95% range of pre-
cipitation and air temperature changes in East Asian and Tibetan Plateau region
was between −20 to 40% and 0 to 9 °C64, respectively. We thus varied the P and PE
(a proxy of temperature) from −40 to 75% and 0 to 30% to provide a wider climate
space that covered the one predicted by global climate models. We obtained 10,000
potential climate combinations for each prefecture by sampling 100 equidistant
values of P and PE, offering a comprehensive representation of possible future
climate changes. Finally, the 10,000 possible climate combinations were used to
estimate WA based on Budyko function. Then, we used above-mentioned Budyko
function to project the WA change under various climate combinations. Finally, we
identified the critical climate thresholds that led to a decrease of water availability
below a selected level (i.e., 25% reductions in WA in this study and other scenarios
can be tested with this framework). Note that we fixed PE at a 15% increase while
vary P from −40 to 75% when estimating WA. We fixed PE by assuming that
climate warming would certainly occur while the changes in precipitation would be
uncertain according to the IPCC report64. In this way, we derived the gradient of
WA sensitivity to changing precipitation of all prefectures by comparing magni-
tudes of P reductions across all prefectures. For example, the smaller the decrease
in P, the more sensitive the WA to changing climate (higher sensitivity). This
approach thus helped identify the regions which were more likely to suffer water
stress under future climate. Following a previous study65, we used the 30th and
70th percentiles of relative reductions of P (%) to derive three sensitivity levels:
least, moderate, and most. The simple use of the 30th and 70th percentiles is based
upon the wet and dry identification according to precipitation changing regimes
adopted by Allan et al.66 and subsequently applied by Liu and Allan67. A similar
threshold-based classification of precipitation change has used elsewhere with
success68,69. We then investigated the co-occurrence of WS and climate sensitivity
across all prefectures to identify the hotspot prefectures that were suffering high
water stress and climate sensitivity.
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Dominant factors for climate sensitivity. Understanding the mechanism of the
sensitivity of WA to changing climate is critical for formulating appropriate measures
for water resources management across different prefectures. For example, measures
such as seawater desalination or virtual water trade could be applied for coastal pre-
fectures (e.g., prefectures in HD, DB, and HN districts in our study), while other
measures such as water transfer project, groundwater exploitation, or reservoir con-
struction could be made for inland prefectures (e.g., prefectures in HB, HZ, XN, and
XB districts in our study) to alleviate water crisis in terms of the different driving forces
of water availability70. Therefore, to better understand the dominant factors of sensi-
tivity of WA to changing climate, we applied a random forest machine learning
algorithm to conduct the importance analysis from a total 24 physioclimatic and
socioeconomic factors for each prefecture (Supplementary Table 1). Random forest is a
popular machine learning model based on an ensemble of regression trees for clas-
sification or regression and produce an assessment of variable importance71,72. This
approach has been widely used in hydrological prediction and variable importance
identification73–76. The independent variables used in our study were selected based on
previous studies37,54,77–84 and they are closely related to variations in water
availability37. Among the 24 variables, seven are related to climate, five are related to
topography, five are related to vegetation, three are related to soil, three are related to
human activities, and one is related to economic development (see Supplementary
Table 1).

Derivation of social vulnerability gradients. While there is considerable consensus
around the general principles of vulnerability85, we based on the vulnerability defi-
nition proposed by Turner et al.86 and Cardona and Carreño87. The concept of
vulnerability generated by Cardona and Carreño87 has been adopted also in the 2009
UNISDR terminology88. Our study follows a similar approach to that of refs. 89 and 23,
who conducted a global assessment of river basin resilience using social-ecological
principles. However, we focus specifically on the potential social impacts of freshwater
stress and climate sensitivities, rather than conducting a broad evaluation of prefecture
resistance to a wide range of vulnerabilities. Our study thus has a narrower, more
specific scope. In our study, we conceptualized social vulnerability as the combination
of (i) exposure to freshwater stress, (ii) climate sensitivity (potential water stress), and
(iii) social adaptive capability. Specifically, we first derived water scarcity and sensitivity
of available water resources to changing climate and then identified the hotspot pre-
fectures according to the co-occurrence of water scarcity and vulnerability. The hot-
spots were identified as the prefectures that were suffering both high water scarcity and
climate sensitivity (section “water scarcity assessment” and “climate-sensitivity
analysis”). On this basis, we subsequently incorporated social adaptability datasets
(from ref. 89), to derive social vulnerability gradients across the hotspot prefectures in
China. The social adaptability, or adaptive capacity, represents “the ability of the
system to respond to disturbances”. Varis et al.89 derived adaptive capacity using the
indicators of governance (government effectiveness), economic strength (Gross
Domestic Production per capita purchasing power parity)90, and human development
(human development index)90 by equal weight composite method. We note that this is
a relatively parsimonious conceptualization of adaptive capacity which may be chal-
lenged to represent critical dynamic properties of the social system, such as its
transformability. The dataset has been used to examine the social and ecological
impacts of freshwater stress across various global basins23. By considering social
adaptability, it is possible to obtain more accurate estimates of vulnerable social
activities that may be affected by the co-occurrence of freshwater stress and climate
sensitivity. A lower value of social adaptability index indicates lower ability of a vul-
nerable prefecture to adapt to disturbance arising from future climate change. We also
consistently used the 30th and 70th percentiles as thresholds to derive three adapt-
ability levels: low, moderate, and high. As we based our analysis on three regimes (i.e.,
water scarcity, climate sensitivity, and social adaptability), this threshold scheme
provided a necessary and rather simple configuration for the relative assessment of
social vulnerability for this study32. Following this, we derived three levels of social
vulnerability across the hotspot prefectures: very high, high, and moderate. The “very
high” vulnerability was derived by combining high water scarcity, high sensitivity, and
low social adaptability; the “high” vulnerability was derived by combining high water
scarcity, high vulnerability, and moderate social adaptability; the “moderate” vulner-
ability was derived by combining high water scarcity, high vulnerability, and high
social adaptability In terms of the classifications, a higher level of social vulnerability
indicate a social system of a prefecture is more susceptible to actual and potential water
stresses under climate change. It should be noted that the social vulnerability was only
applied in the identified hotspot prefectures instead of all related prefectures. We here
focused on the social vulnerability to water-related risk analysis and the water issues
(i.e., actual and potential water stresses) should be solved before defining social vul-
nerability. In our study, the identified hotspot prefectures according to water scarcity
and climate sensitivity conditions can be regarded as the ones with water problems.
The vulnerability analysis was thus applied in these prefectures regarding urgent and
efficient measures for water resources management in these regions. Social vulner-
ability, in our terminology, thus represents the capacity of a society to cope with critical
water issues to minimize the social impacts of actual and potential water stresses under
climate change.

Study area and data. The methodology was tested at the small political unit level
—prefectures—in mainland China. In total, there are 341 prefectures in mainland
China, whose areas range from 457 km2 to 471,450 km2. We first selected

prefectures according to the Budyko space following Singh and Kumar16. We
removed the prefectures where the physical constraints of atmospheric water
supply and demand laws did not apply (Supplementary Fig. 12). Based on this
principle, 301 prefectures were finally selected for analysis. The remaining pre-
fectures were then grouped into seven districts (higher-level political units)
according to geophysical and economic conditions of China. Finally, seven districts
were identified–HN, XN, HZ, DB, HZ, HB, and XB, which together cover the entire
land mass of China. Data of water abstraction, including irrigation, industrial,
urban, and rural water uses, were collected from ref. 49. The data were compiled at
the prefecture level and covered our study period of 2000–2013.

Data required to construct the Budyko framework include long-term P, PE, and
AE. The long-term P was obtained from the China Meteorological Forcing Dataset,
which was produced by the Institute of Tibetan Plateau Research, Chinese
Academy of Sciences91. The dataset was generated by combining remote sensing
products, reanalysis datasets, and in-situ observation data from weather stations. It
covers the period from 1982 to 2013, and has a spatial resolution of 0.1°. The long-
term PE was estimated using the Penman–Monteith equation92,93 (Eq. (3)) based
on the meteorological information from weather stations across China. This
equation is a standard version for PE calculation of the Food and Agriculture
Organization (FAO)94 and is adapted to be representative for a hypothetical crop
surface with assumed height of 0.12 m, surface resistance of 70 s m−1, and an
albedo of 0.23 as follows:

PE ¼ 0:4084 Rn � G
� �þ 900

Tþ273 γu2 es � ea
� �

4þ γ 1þ 0:34u2
� � ð3Þ

where Rn is net radiation at the crop surface (MJ m−2 day−1), G is the soil heat flux
density (MJ m−2 day−1), T is the daily air temperature at 2 m height (°C), u2 is the
wind speed at 2 m height (m s−1), es and ea is the saturation and actual vapor
pressure (kPa), γ is psychrometric constant (kPa °C−1), and 4 is slope vapor
pressure curve (kPa °C−1). A Kriging method was used to interpolate station-based
PE to a 0.1° resolution. The long-term AE (1982–2013) was collected from ref. 95,
with a spatial resolution of 0.073°. The AE products from ref. 95 have been widely
used in water availability analysis37,96–98. The social adaptability data were
obtained from ref. 89. All data were resampled to 0.1° spatial resolution before
analysis. We use the latest period of 2000–2013 as the reference period to conduct
the analysis. The long-term meteorological information and generated ω parameter
are listed in Table 1.

Data availability
The precipitation data were obtained from the National Tibetan Plateau Data Center
(http://data.tpdc.ac.cn). Other meteorological data that were used for potential
evapotranspiration estimation were collected from the China Meteorological Data Service
Center (http://data.cma.cn). Other datasets are available at Figshare (https://figshare.
com/articles/dataset/CityClass_RandomForest_FigShare/22323751).

Code availability
The codes used for the analyses are available from the corresponding author. All code is
developed in R.
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