
ARTICLE

Global mining footprint mapped from
high-resolution satellite imagery
Liang Tang 1 & Tim T. Werner 2✉

Mining is of major economic, environmental and societal consequence, yet knowledge and

understanding of its global footprint is still limited. Here, we produce a global mining land use

dataset via remote sensing analysis of high-resolution, publicly available satellite imagery.

The dataset comprises 74,548 polygons, covering ~66,000 km2 of features like waste rock

dumps, pits, water ponds, tailings dams, heap leach pads and processing/milling infrastructure.

Our polygons finely contour the edges of mine features and do not include the space between

them. This distinguishes our dataset from others that employ broader definitions of mining

lands. Hence, despite our database being the largest to date by number of polygons, com-

parisons show relatively lower global land use. Our database is made freely available to support

future studies of global mining impacts. A series of spatial analyses are also presented that

highlight global mine distribution patterns and broader environmental risks.
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Extractive industries can dramatically alter landscapes and
cause irreversible damage to surrounding environments and
communities. They simultaneously promise economic and

social development and are essential to many key supply
chains1,2. As mine areas continue their expansion across the
globe, there is an increasing need for research that identifies
impacts on surrounding landscapes. A subset of this research uses
GIS and remote sensing methods to map the extent of land
transformation due to mining activity3–9. These mapping exer-
cises foster a more sophisticated understanding of the scale and
location of risks posed by mining activity from local to global
scales. They can also permit more nuanced planning of future
developments in mining regions, for example, by informing the
likely scale of future mine developments when mineral dis-
coveries are made.

Research on the spatial patterns of mining can be mine- or
region-specific6,10, or may examine mining as a global geographic
phenomenon11,12. Global-scale studies have often relied on global
corporate mining databases such as the Standard & Poor’s SNL
metals and mining database13 and review studies in economic
geology (e.g.,14,15) that provide data on the coordinates of larger-
scale mines. However, delineating the complete area occupied by
mines at each coordinate is a comparatively more complex
endeavor. Typically, it requires visual inspection or machine
learning analysis of satellite imagery, followed by validation of
mapped areas using alternative satellite imagery, corporate data,
and/or field investigations. Studies like Yang et al.16 and Yu
et al.17 have sought to use image processing algorithms to auto-
matically identify and delineate mine areas, typically based on an
already known dataset of mine areas. However, such studies
typically focus on single regions, as the environments in which
mines operate can be so variable that applying a singular visual
approach or training dataset entails considerable uncertainty
between different mining regions. On a global scale, studies like
Tang et al.8, Werner et al.3, and Maus et al.7 have recently
employed manual visual inspection methods to delineate mines as
polygons. These studies have employed slightly different
approaches to classifying mine areas, yet collectively have
improved the global coverage of sites mapped and sought to
increase the precision of estimates for already mapped areas. The
most recent of these efforts by Maus et al.18 contributed around
44,929 polygons of global mining areas. Below, we outline an
update that builds on these efforts to provide a mine area polygon
dataset significantly larger (by the number of polygons) than any
previous study. It therefore offers an advanced spatial dataset that
progresses toward comprehensive and refined mapping of global
mining land use. In the following sections, we explain our
approach to updating global mine area data and provide a series
of spatial analyses. We also compare to other global mining land
use studies to illustrate differences in methodology and under-
standings of what comprises the global mining footprint. These
comparisons allow for methodological refinement and replic-
ability in future mapping endeavors. Our analyses indicate hot-
and cold-spots of global mining activity, explain patterns occur-
ring at large- and small-scales of mining, and show the enormous
potential differences between areas occupied by mining itself,
versus the broader areas impacted by mining. The complete
polygon dataset is available for download via Zenodo, at https://
doi.org/10.5281/zenodo.6806817.

Results and discussion
Global mine areas and mine sites. 74,548 mine area polygons are
reported in the present study, with global coverage and example
delineated areas illustrated in Fig. 1. A total estimated mine area
of 65,585.4 km2 is mapped, with an arithmetic mean of 0.88 km2

(258,493.0 km total perimeter, 3.5 km/polygon). Figure 1 shows
that while mines are composed of common features including
(but not limited to) pits, waste rock dumps, water ponds, ore
stockpiles, processing infrastructure and tailings dams, they show
considerable variability in their spatial forms and scales. Table 1
summarizes areas from the most prominent mining nations. Our
dataset comprises mine area polygons from 135 countries and
regions, though these areas are highly clustered. Approx. 79% of
the polygons are situated within 13 countries: China, USA,
Russia, Australia, Indonesia, South Africa, Ukraine, Ghana,
Canada, India, Brazil, Kazakhstan, and Chile. Correspondingly,
122 countries and regions have ~21% of the total mine area
polygons, with fewer than 625 polygons each (<1%). Major
mining nations can broadly be divided into high mineral demand
countries (e.g., China, India, and USA) and high mineral export
countries (e.g., Australia, Canada, South Africa, and Russia).
Naturally, mine areas are situated in highly diverse geological,
socio-political and environmental contexts. For example, mine
areas in Ukraine arise from intensive coal exploration in the
Soviet period7, and Ghana’s mine areas largely arise from placer
gold resources in local riverine environments19.

An overlay analysis of mine polygons versus SNL database
coordinates showed that 58% of our polygons intersected with the
10 km buffers of 12,179 known mine operations. Of these, 9023
are “Active”, 1802 “Inactive”, and the remainder classified as
“Care and Maintenance”, “Rehabilitation”, “Under Litigation” or
“On Hold”. This compares to 6201 “Active” sites covered in Maus
et al.7, which was subsequently updated with approx. double the
count of polygons in Maus et al.18, but without updating the
specific number of sites represented. The extent of overlap with
SNL data on a per-commodity basis is presented in supplemen-
tary Table S1.

Spatial distribution characteristics. To further explore global
distribution patterns, we equally subdivided global land areas into
8,653 equal rectangular cells (fishnets20), with an average area of
15,400 km2 per cell. Mine area polygons were mapped to 2021 of
these fishnets, revealing that mine area densities range from 0 to
16.1% per fishnet, at an average of 0.028%. Colder regions (e.g.,
northern Canada, Russia, and Greenland), high altitude areas
(e.g., Qinghai-Tibet Plateau, China), and arid regions with limited
resource demands (e.g., Afghanistan, Arabian Peninsula, Sahara
Desert) exhibited lower mine area density. The former is poten-
tially explained by hazardous climatic conditions that inhibit
large-scale mining and exploration, and the latter is correlated
with limited population. Reduced mine density in inland Africa is
potentially an artefact of limited public reporting that inhibits the
identification of small-scale mining. With rare exceptions,
intensive mining is conducted ~4000 m above the sea level in
Andes Belt, South America, which features a barbell vertical
distribution8. By contrast, more mine areas are situated in mid-
latitude regions, which corroborates increasing concerns linking
mining to deforestation and environmental degradation5,21,22.
Ultimately, the global distribution of mines is bound by the dis-
tribution of geological phenomena that concentrate minerals (e.g.,
geological fault zones, orogenic belts, great igneous provinces, and
stable sedimentary basins) and the varying capacity for localities
and companies to economically develop such sites, which is in
turn influenced by a number of factors, including the depth of
mineralization, and proximity to populations, roads and rail
links23.

In statistical terms, the Moran’s I analysis of clustering
behavior shows high index values both in global and local terms,
indicating strong spatial autocorrelation behavior24. The Global
Moran’s I index of 0.115 is notably higher than Tang et al.8
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(Global Moran’s I index= 0.081). This is expected, as our study
has increased global coverage and our method involved
identification of additional mine areas adjacent to previously
known features.

A map of local spatial autocorrelation patterns (Fig. 2) shows
that NS clustering behavior was observed for 67.8% of land areas.
LL clusters occupied 23.8% of the global land surface, followed by
LH outliers (6.1%), HH clusters (1.2%), and HL outlier areas
(1.1%, Fig. 2, see methodological descriptions for these cluster
types below).

Assessing scales of mining activity. There is high variability in
mine area scales, with a global standard deviation of 7.64 km2. The
sum of polygons presents a lognormal probability graph distribution
and approximately straight lines25. This demonstrates that the data
frequency distribution conforms to the lognormal distribution. The
geometric mean (~0.123 km2) may therefore best represent the
average land occupied per mining feature (polygon).

Collectively, the quantity of mine sites varies substantially
across scales (Fig. 3). An exponential decline is evident up to
~0.15 km2, such that areas <0.15 km2 account for 54.6% of all
polygons. Mine areas from 1350 m2 to 7200 m2 are the most
frequent, and the mode mine polygon size of 1800 m2 accounts
for ~0.54% of all mapped mine areas. Beyond 0.15 km2, Fig. 3
shows a slight linear decrease. Mine areas also feature an S-curve
accumulative tendency (logarithmic scale for the abscissa). The K

2

Fig. 1 Global mine area coverage, with cases of delineation of representative mine sites shown. A Larger open pit operations (Escondida mine, copper
porphyry deposit, Chile, 24°16’15 S, 69°4’14W); B Formal/artisanal placer gold mining, Ankobra River, Ghana, where all mining sites are along the
riversides or in the riverbed, forming a dendritic configuration (5°43’ N, 2°6’ W). C Coal mine sites and gangue heaps in Donetsk, Ukraine (48°12’ N,
38°39’ E); D Coal mine areas surrounding Samarinda in East Kalimantan, Indonesia (0°29’48 S 117°08’10 E). Imagery credit: Esri, Maxar, and Earthstar
Geographics.

Table 1 Summary of per-country mine areas mapped in
this study.

Countries Polygons Occupied
land (km2)

Average
(km2/
polygon)

Standard
deviation
(km2/
polygon)

China 29348 7887.85 0.27 1.59
USA 6053 8499.04 1.4 5.45
Russia 4659 8675.45 1.86 5.72
Australia 4046 5319.70 1.31 4.74
Indonesia 2117 3689.83 1.74 10.22
South Africa 1984 3021.75 1.52 4.45
Ukraine 1931 1348.92 0.7 7.56
Ghana 1894 998.01 0.53 2.46
Canada 1890 3318.95 1.76 8.09
India 1795 2067.70 1.15 4.78
Brazil 1303 1395.33 1.07 3.08
Kazakhstan 1089 1722.26 1.58 3.53
Chile 839 2842.49 3.39 47.1
Other
countries
(N= 122)

15600 14798.10 0.99 4.65
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index of abscissa is equal to ~6.35 km2, revealing those areas of
around 6.35 km2 account for the majority of total mine land use.
Despite larger-scale mine sites remaining notably fewer in
number, the scale of such mines still strongly influences total
land occupation among the 74,548 mine polygons. By comparing
with a smooth increasing curve in small-scale mine areas (e.g.,
<6.35 km2 per mine site), the largest mine areas (>40 km2 per
mine site) show relatively jagged growth. In summary, while
global mineral supply chains are dominated by the largest mines3,
minor-scale mining still contributes comparable areas to global
mine land use.

Larger-scale mine areas may be characterized as including
more than ~12.3 km2 per polygon (per Fig. 3), and such sites
represent the dominant share of global metals production3. On
this basis, ~761 of the mine polygons mapped may be considered
larger scale, corresponding to a total land use of 23,334.3 km2

(35.6% of the total database area, averaging ~30.7 km2 per
polygon). These larger-scale mine areas are situated in 61 of the
135 countries mapped. By number of large-scale mine polygons,
the national-level sequence is Russia (n= 114) > USA (n= 97) >
Australia (n= 67) > China (n= 58) > Indonesia (n= 51) >
Canada (n= 50) > Chile (n= 35) > South Africa (n= 30) >
Colombia (n= 22) > Kazakhstan (n= 22) > Brazil (n= 18) >
India (17) > other countries (180). Approx. 34 metals and
nonmetals are produced from such sites (portions are poly-
metallic deposits). The largest mine area is the Salar de Atacama

in Chile, as this site uniquely incorporates the broader salt flat
from which lithium brines are pumped. In terms of the polygons
by commodity, coal mining is the most prominent (n= 304,
7282.0 km2), followed by gold (n= 152, 4623.1 km2), copper
(n= 80, 1722.6 km2), iron (n= 68, 1339.0 km2), phosphate
(n= 44, 883.1 km2), salt (n= 21, 2877.7 km2), diamond
(n= 18, 431.7 km2), oil sands (n= 16, 738.1 km2), bauxite
(n= 15, 473.0 km2), sand (n= 11, 249.6 km2), uranium (n= 7,
123.3 km2), and others (n= 18, 2591.1 km2). As would be
expected, the average polygon size (as opposed to total area)
can also differ substantially between commodities. The largest
mine type per polygon is a salt field (mean 137.03 km2), which is
typically situated in arid and inland regions. Other large types (on
a per-polygon basis) include oil sands areas (46.13 km2), which
are mainly located in the Alberta province, Canada, and the large-
scale bauxite mines (31.5 km2), notably in northeast Australia, the
Amazon Plain, and Kazakhstan.

ASM refers to mining by individuals, groups, families, or
cooperatives, often in the market’s informal (potentially illegal)
sector26. While characteristically small on a per mine site or per
polygon basis, the global ASM footprint is thought to be
substantial. As such sites often do not comply with environmental
regulations, the broader risks of these sites can be magnified27.
ASM production has been estimated to account for 15–20% of the
world’s non-fuel minerals, 20% of gold, 40% of diamonds, and
almost all colored gemstones28,29. However, the coverage of ASM

Fig. 2 Spatial heterogeneity of global mine areas. Global Moran’s I index= 0.115, z-score= 240, p value < 0.001. Mine areas are aggregated to 8653
fishnet cells (15,400 km2 per cell, with some cells bisected due to irregular coastal borders) projected to Interrupted Goode Homolosine. A The global
distribution density of mapped mining areas; B Anselin Local Moran’s I55.
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in past global mapping endeavors has been limited. It is therefore
recognized that developing an understanding of the global ASM
footprint is an important advancement. Table 2 presents the
results of known ASM areas that were mapped in this study on a
case study basis. We note that there is incomplete global coverage
of ASM in our database. Some ASM areas require particularly
high-resolution imagery and occasionally access to paid satellite
services to appropriately analyze. Such sites can be difficult to
include in a global-scale study due to their high dispersion. It is
noted that national- and regional-scale studies have also mapped
specific ASM areas, which we examine in the following section.

In this study, on a case study basis, we mapped 4058 polygons
of ASM to examine the spatial characteristics of known small-
scale, informal, and artisanal mining activity worldwide. These
areas totaled 1071.2 km2, constituting 1.63% of the total mine
areas mapped (Table 3), yet are noted as representing only a
portion of global ASM activity. For example, Asner et al.10

estimate an additional 500 km2 of small-scale gold mining in the
Madre de Dios region of Peru alone.

ASM polygons in this study were highly variable in size,
ranging from 0.0004 to 31.33 km2, with arithmetic and geometric
means of 0.264 km2 and 0.062 km2 per polygon respectively
(Table 3). As the polygons fall approximately on a straight line in
a lognormal probability graph, the geometric mean can represent
the average scale of ASM25. ASM is ubiquitous in some of the
developing countries assessed, including China, Ghana, Burkina
Faso, Malawi, Mali, Mozambique, South Africa, Tanzania,
Zambia, Zimbabwe, India, Indonesia, Papua New Guinea,

Philippines, Bolivia, Brazil, Ecuador, and Peru26. As large-scale
mines are more likely to feature controlled mine waste site
selection, comprehensive management, and post-mining rehabi-
litation works, elevated risks or environmental damage have
emerged from ASM activities30. ASM areas are often associated
with severe environmental, health, and safety risks31–34, and the
mapped land and riverbed areas subject to ASM did not exhibit
apparent ecological protection measures. Thus, while the global
large-scale metal mines covered substantially more land per
polygon (≥12.3 km2), the proportional impacts of ASM cannot be
disregarded at any scale3. In some countries, ASM activity centers
on the production of gold, bauxite, gemstones, iron ore, marble,
and limestone26, where related geological enrichment zones can
lead to both formal and informal activity coexisting. Among the
countries where ASM was prevalent, most activity was informal
and considered illegal.

It should be noted, however, that it can be challenging to
classify mine sites as ASM based on visual inspection alone, and
indeed the proper definitions of such areas can also be unclear. As
such, for the purposes of this study, we discuss areas based on a
characteristic polygon size cutoff (~<0.062 km2), visual appear-
ance, and review of existing classifications of otherwise previously
described ASM activity. Globally, a considerable portion of the
formal mining areas appeared to host small-scale mining in
surrounding areas. Yet some of these areas may incorporate the
beginnings of new mineral excavation and construction of
affiliated facilities. The land coverage of tailings ponds depends
on the lifecycle of mining and may cover less land during early

Fig. 3 Distribution of global mine area polygons by size. A Overall frequency distribution of mine area scales, noting that there may be under
representation of polygons at the smallest scales due to limitations in ASM coverage; B Inset of small-scale mine areas; C S-curve of increasing total mine
area versus the scale of mine polygons; D Inset of S-the curve of the largest-scale mine areas.

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00805-6 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:134 | https://doi.org/10.1038/s43247-023-00805-6 |www.nature.com/commsenv 5

www.nature.com/commsenv
www.nature.com/commsenv


stages such that they appear as small-scale operations. Geographic
restrictions that inhibit the expansion of mining, such as steep
terrain and dense population35, as well as minor ore bodies that
limit larger-scale operations can also have an influence on the
appearance of mine areas. Small coal-waste dumps in Ukraine are
evidence of this36. Applying a marker of 0.062 km2 per mine area
(as the geometric mean of smaller scales), 27,410 polygons
(36.8%) may be considered small scale (but not necessarily ASM),
with the mean value of 0.024 km2 accumulating only 665.3 km2 in
total (~1.0% of global mapped mining land use). Collectively,
except for Guinea-Bissau with a limited mine sample size, North
Korea exhibited the greatest proportion of small-scale mining in
the world (74.4% of mine polygons). The majority of the smallest
polygons are distributed in developing nations, including Sierra
Leone, Albania, Algeria, Pakistan, and Angola. However, this is
not a constant trait of all such countries. China hosts substantial
small-scale mining, with ~16,676 small-scale mining polygons
(53.5%) identified (Fig. 4).

Agricultural poverty, the potential to generate extensive
distributional benefits, and customary land tenure practices may
also be influential in encouraging informal mine operations37,38.
Yet the average mine polygon size positively correlates with

human development8. More developed countries with ample
mineral resources exhibit lower percentages of small-scale
mining, with an average percentage of 18.8% among countries
like New Zealand, Canada, Australia, USA, and South Africa.
This is likely attributable to planning and management practices
that encourage larger scale operations, alongside access to
technologies and equipment employed at larger scales39. The
regulatory environment of developed countries can add to the
cost of mining, creating conditions more favorable to larger
scales8. In Russia, where only 13.4% of polygons may be
considered small scale, larger reserves of mineral resources, or
deposits otherwise classified as high grade are often prioritized for
larger-scale developments (Fig. 4).

Comparisons, uncertainties and replicability. Comparing to
previous studies mapping mine areas at national or global scales can
help to identify what consistency or replicability has been achieved.
A comparison of results from a sample of recent literature is pre-
sented in Table 3. Our current dataset represents 165% of the
polygons of Maus et al.18, while only indicating 65% of the total area.
This is likely explained by Maus et al.18 including spaces between
adjacent mine features within an overall polygon shape, a difference

Table 2 Extent of ASM regions mapped (km2).

Study areas Minerals Polygons Total area Min Max Standard
deviation

Median Arithmetic mean Geometric mean External source
(if relevant)

Manica,
Mozambique

Gold 60 15.50 0.0045 2.58 0.408 0.114 0.258 0.100 31

Serra
Pelada, Brazil

Gold 164 21.20 0.0025 1.46 0.177 0.073 0.129 0.069

Jialingjiang
basin, China

Pb-
Zn, Cu

328 29.30 0.0004 1.99 0.198 0.029 0.089 0.030 58

Chengde, China Iron 1719 240.49 0.0006 12.31 0.381 0.055 0.140 0.052
Bonsa
River, Ghana

Gold 1787 764.71 0.0008 31.33 1.638 0.072 0.428 0.082

Summary of
known ASM

4058 1071.2 0.0004 31.33 1.127 0.059 0.264 0.062

Global small-
scale minesa

27,410 665.3 0.0002 0.062 0.017 0.021 0.024 0.016

aBased on mine polygons that are <0.062 km2.

Fig. 4 Global distribution of small-scale mining polygons. Percentage of mine polygons <0.062 km2 per country, signaling and validating an increased
prevalence of ASM.

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00805-6

6 COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:134 | https://doi.org/10.1038/s43247-023-00805-6 | www.nature.com/commsenv

www.nature.com/commsenv


in methodology explored in Tang et al.8. Tang et al.8 employ the
same delineation methodology as this study, yet our study produces
a 303% comparative polygon count for a 208% increase in total area.
Our higher count of polygons per unit area may be explained by our
increased coverage of small-scale mining (which often exhibit more
numerous, smaller and dispersed features). ASM areas mapped in
this study are subject to different land-use change dynamics, and can
cumulatively represent a considerable land area, albeit representing a
relatively smaller proportion of global mineral production. Within
this subset, we also observe some differences to other studies. For
example in Ghana, ~470 km2 of vegetation has been reported as lost
to mining, along with the expansion of artisanal mining19. In our
study, we mapped 1003.8 km2 of mine polygons in Ghana, sup-
ported by past studies identifying the location of 394 artisanal
mining and 104 industrial mining sites for gold extraction in Gha-
na’s southwestern forests189.

Other studies also exhibit apparent dissimilarities to each
other, albeit with different stated scopes. For example, Werner
et al.3, mapped 295 global metal mine sites (at ~28.2 km2/site),
specifically focusing on delineating large-scale mines in a similar
fashion to the present study. Sonter et al.5 mapped 62,381 mine
sites (as points) with 50 km buffers leading to 49.9 million km2 of
land potentially impacted (at ~799 km2 per site). These
comparisons show that variability in sampling and mapping
methodology may lead to considerably different understandings
of mine land use and impacts on landscapes. Each approach has
benefits and drawbacks, e.g., it can be quite practical to use buffer
tools to assign equal land area per site, as manual delineation
efforts are considerably reduced6,7. However, this approach does
not allow the complex boundaries of mines sites to be assessed.

The results of the MapBiomas initiative in Brazil40 also
highlight the effects of different mapping methodologies. Their
inclusion of areas that might be termed mine “lands” (areas
wherein mining activity is the primary land use) situated between
and surrounding mine “features” (e.g., pits, waste rock disposal
areas, tailings dams, etc) leads MapBiomas to report a total area
of 2061 km2 (lands) for Brazil (Table 3), versus 1395 km2

(features) mapped in our study (Table 1). Additional visual
comparisons between our data and that of MapBiomas are
provided in supplementary Fig. S1, highlighting these differences.

Collectively, these comparisons highlight that definitions of
mining as mine features, or as broader areas wherein mining
activity takes place, or yet even broader areas of impact can lead
to considerable differences in total calculated area. These
comparisons also highlight that our capacity to evaluate the
accuracy of mapped mine areas will vary between countries,
depending on the local availability of corroborating sources.

A further source of uncertainty is that mine areas are highly
dynamic. A mine lifecycle may involve periods of expansion
followed by periods of reclamation or revegetation. Considering
the many challenges faced in restoring ecological function at
former mine sites41–43, areas with vegetation cover may still be
heavily impacted, raising questions as to whether such areas
ought to still be classified as mining. Our visual inspection
methods cannot detect such aspects. We are restricted to
representing mine features to the extent that they are, or at least
have recently been, visible in satellite imagery. Compounding
these challenges, satellite imagery itself can have high temporal
variability, such that the available imagery for a single mine can
only be represented by a mosaic of multiple years. Depending on
image availability at the time of analysis, this factor alone can lead
to substantial differences between studies.

Under these caveats, our validation steps show that when a
uniform mine area definition and delineation method are applied
to the same image, 92% consistency in mapping of mine areas is
achievable. This level of internal accuracy is consistent with past
work7,18.

Broader environmental impact potential. Examining the inter-
section of mines with protected areas, we identified 2558
boundary violations, totaling ~6232 km2, or ~9.5% of all mine
polygons. The potential impacts of these intersections is variable.
For example, the largest intersection is a single 1355 km2 area of
the Atacama Desert designated as Ramsar wetland overlapping
lithium brine operations. Such brine operations may encompass
entire salt flats, but the direct influence of mining on wetlands can
be unclear44. In other zones, such as in protected forests in
Venezuela, visible traces of mine-associated deforestation indicate
a much clearer attribution of impacts. Intersecting mine areas

Table 3 Comparison of results with a sample of prior mine area studies.

Regions/scale Mines/
Polygons

Occupied
land (km2)

Average areaa

(km2)
Delineation for mine areas Source

Global 62,381 (points
with uniform
buffers)

“Impacted
land” 49.9
million

799 Impacted land is defined as extending up to 50 km from
mine sites

6

Global 295 mines, with
3736 polygons

3633 12.3 Detailed manual delineation, classifying by mine feature type.
Focuses explicitly on largest-scale operations.

3

Global 21,060 polygons 57,277 2.7 Manual delineation of mine areas utilizing a 10 km buffer from
SNL coordinates, broadly encompassing mine areas, adjacent
features

7

Global 24,605
polygons

31,396.3 1.3 Manual delineation. Draws tighter boundaries around mine
features to explore variability in mine polygon shapes.

8

Global 44,929
polygons

101,583 1.8 Visual interpretation, per methods consistent with ref. 7 18

China 5189 polygons 1884.0 0.36 Manual delineation. 9

Brazilian Amazon – “Impacted
land” 11,670

– 70 km beyond mining lease boundaries 5

Brazil 182 mines 2061 11.3 Data are presented in both raster format and as points with 5,
10, and 20 km buffers. Point data were used to

40

Brazil – 101.7 – New deforestation due to wildcat gold mining in 2020 only 27

Global 74,548
polygons

65,585.4 0.88 (0.123
geometric mean)

Visual interpretation, per methods consistent with ref. 8 Present study

aArithmetic means of occupied mine land.
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spanned 147 different types of protected area categories, includ-
ing state and national parks, Ramsar wetlands, and World
Heritage areas. A global map of these intersections is shown in
supplementary Fig. S2. These intersections raise concerns about
the global environmental footprint of mining, yet they are com-
pounded by the fact that mine areas can expand over time.
Globally, about 58.1% of mine areas in our dataset are located in
flat terrain areas8.

Mines also exert influence well beyond the boundaries
delineated in this study. This distinction between direct land
use, and broader areas of induced impact (particularly environ-
mental impact) is an important one45,46. It has been found, for
instance, that in the open-cut pit Grasberg gold/copper mine in
West New Guinea, forest losses can be >42 times larger than the
mine itself47. Artisanal gold mining in the Peruvian Amazon was
identified to cause nearly 1000 km2 of deforestation46. A recent
study on mining-induced deforestation in tropical regions also
finds 3264 km2 of directly induced forest loss22.

To further illustrate the broader areas of impact arising from
mining, we use the index R to express a ratio of an area of impact
or influence to a mine area:

R ¼ 100 ´
Buffer zone
Mine area

ð1Þ

A Buffer zone refers to an extended region outside the mine
area. By one measure, a 1 km buffer zone can broadly illustrate
zones where the effects of a tailings pond collapse, the
transportation of toxic elements, and/or immediate impacts on
indigenous settlements, arable land, river quality, and transporta-
tion line are most notable48,49. Alternatively, a buffer zone of
50 km has also been argued as an appropriate measure of zones
affected by mining activity6,22. These zones are by no means
prescriptive, but can help to provide a sense of the scales of mine-
associated impacts. To illustrate the effect of these assumptions in
the context of our dataset, we adopted 1 and 50 km as the buffer
distance to model the buffer zone variation from mine sites. The
total (dissolved) buffer zone from 1 km is ~0.29 million km2, and
~24.5 million km2 from a 50 km buffer distance (see supplemen-
tary Fig. S3). The 50 km buffer area in our database is
approximately half that of the 49.9 million km2 footprint
estimated in Sonter et al.6. This is likely because our study does
not consider pre-operational deposits without current visible
footprints, and does not approximate results to 1 km2 grid cells.
This comparison highlights the considerable potential for
footprint estimates to increase as new deposits are developed,
and as existing sites expand.

Meanwhile, the R collectively decreases with the extent of the
mine area (decreasing ratio of land use to perimeter), revealing
that small-scale mining causes a comparatively larger zone of
influence per unit of mine area. It follows that large-scale mining
may achieve economies of scale that result in reduced overall
impacts on land. For ASM, a 1 km buffer distance yields R= 7.80/
km2 mine area (8352.3 km2 buffer area, 1071.2 km2 mine area,
4058 mine polygons). Large-scale mining yields R= 1.09/km2

mine area (25,491.7 km2 buffer area, 23,334.3 km2 mine area,
761 mine polygons).

Contributions and further work. This study has sought to
consolidate our understanding of the global extent of mining
activity through extensive mapping and analysis of recent satellite
imagery. By incorporating additional areas and types of mining
activity, we have substantially updated previous global mine land-
use datasets that focus on the specific contour of mine features.
However, despite these efforts, it is evident that additional mining
activity still remains to be assessed. This is likely because (1)
production is ongoing at many of the sites mapped, leading to an

expected increase in the footprints of sites in our database, (2)
exploration success will lead to the development of new sites, and
(3) continued effort may yield further identification of uni-
dentified sites. This is particularly so for mine areas operating
under informal conditions, which we have primarily assessed on a
case study basis, due to no complete global inventory of such sites
available to guide our mapping. It was noted during validation
that characteristically small aggregate quarry sites, particularly
those operating in urban contexts, may also be underrepresented
in our dataset. Given these challenges, a necessary future
advancement will be to automate mapping processes through the
development of advanced machine learning technology that can
recognize mine features and appropriately classify them in
satellite imagery, despite their visual and spectral heterogeneity.
The database provided here may be an invaluable training dataset
toward such an endeavor.

Materials and methods
This study demonstrates a replication of previously established methods for
identifying and delineating mine areas in satellite imagery. These methods are
described at length in refs. 3,7,8, but are also expanded upon here.

Identification of mine sites. To identify the location of mine sites, we conducted
an online literature review comprising published literature, government and
industry publications, and corporate and national mining databases. In cases where
coordinates of a mine or minefield were not provided (e.g., from sources such as
mindat.org, or the SNL database), but qualitative descriptors were available (e.g.,
proximity to known landmarks), then visual inspection of satellite imagery was
used to support site identification. As this study expands upon previous global
mine area research, we also re-examined previously mapped mining regions to
determine if global coverage could be improved or updated. Specifically, we
identified additional sites by (1) using navigation tools in Google Earth Pro to scan
imagery of likely locations adjacent to existing known features, and (2) expanding
the analysis of countries previously underrepresented in past studies. This process
was further aided by considering factors like potential adjacent coal mines for coke
supply of iron smelters, or areas within surrounding zones of mineralization, such
as faults (e.g., quartz-vein-type gold ore), orogenic belts (e.g., porphyry copper
deposit), and sedimentary basins (e.g., coal mines), including a small proportion of
unidentified waste disposal and dumping sites, deposits of surficial mines, cessation
tailings ponds, and affiliated mineral processing facilities (see supplementary
Fig. S4 for examples).

Prior studies have been limited in their spatial coverage by focusing primarily
on regulated/formal mining activity, yet ~40–100 million people are estimated to
depend on small-scale mining for their livelihoods28,29, indicating a potential for
cumulatively large mine areas that require mapping. The recent update from Maus
et al.18 has also sought to address this. More ASM sites were identified in this study
using high-resolution remote sensing images visible in Google Earth Pro and
Sentinel II, particularly in Africa and Latin America (see ref. 50). A challenge of
including such areas is that formal documentation of these sites is seldom available,
adding uncertainty to the identification of such mine sites and limiting
opportunities for verification/validation. We nonetheless identified sites where
ASM features were highly recognizable, considering aspects like the structure,
location, color, texture, composition, topography, mine type, local industry type,
and evidence of pollutants. For example, for placer gold mining in Ofin River,
Ghana, the turbid river water and the highly reflective areas along the river render
mining activity in this region quite distinctive (see Fig. 1).

Delineation of mine feature polygons. Once mine site locations were known,
polygons outlining mine features were drawn where recent and adequately well-
defined Google Earth imagery was available, such that mine areas were possible to
distinguish from their surrounds.

To delineate mine areas, the authors drew upon extensive experience in
recognizing mine features in satellite imagery3,4,8,9. Although it is noted that a mine
site can be composed of a diverse range of features, we focused primarily on
delineating features that relate primarily to the core functioning of the sites, such as
open cut pits, tunnel entrances, ore stockpiles, heap leach pads, waste rock disposal
areas, infrastructure areas, tailings storage facilities and water ponds. This excludes
downstream processing facilities such as smelters, refineries, unless they were also
co-located with on-site milling/beneficiation infrastructure. We did not seek to
delineate areas of impact arising from such features, for example gaseous of liquid
wastes arising from such features, or secondary/tertiary land use changes emerging
from the presence of a mine. Revegetated areas, backfilled pits, or pits subsequently
employed for water storage were identified using historical imagery as well as
public reports, such as news articles or company publications. We only delineated
infrastructure areas that were clearly related to mineral production, therefore
generally excluding features like roads and railways. In cases where mines operated
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close to built-up areas, this process entailed distinguishing milling infrastructure
from surrounding buildings. Areas were delineated manually using polygon tools
and publicly available imagery in Google Earth Pro. Depending on the location,
this imagery varied in resolution. For example, some rural areas only receive
coverage from SPOT satellites where resolution from 1.5 to 10 m is achieved.
Ikonos imagery may cover other zones at 1 m resolution. Other services, including
WorldView-1 to 3 and GeoEye-1 achieve a resolution of 0.5 m, and in some parts
of Japan, North America and Europe, imagery is available from localized sources
(e.g., aerial imagery) that achieve 0.15 m resolution. Assessing these images, we
considered aspects like texture, color (e.g., reflectance of exposed rock versus
surrounding vegetation), composition (positioning within the landscape),
topography (determining whether the presence of such a feature makes sense given
the surrounding terrain), light (e.g., identifying shadows cast from pits of rack of
dumps) and overall form (recognizing familiar features as a whole) to manually
draw boundaries. We aimed to maintain polygon boundaries that closely
contoured the form of specific mine features, as seen in Fig. 1A. The location and
global coverage of sites mapped in this study are shown in Fig. 1. It includes both
currently active mines and abandoned and historic mine sites35.

Historical satellite imagery available in Google Earth Pro was also assessed to
cross-check areas, particularly if newer imagery was obscured by low resolution or
cloud cover. This also enabled the identification and verification of some closed
mine sites and closed tailings ponds in Japan, the United States, and Europe, where
substantial mining activity is known to have taken place in the early- and mid-20th
century. Many of these areas, notably some coal extraction areas in Germany,
Poland, Belgium, and lead-zinc areas in Ireland, exhibited characteristics of

processes of ecological restoration (Fig. 1, supplementary Fig. S4). Some coal
disposal areas in China are notable for their transition to agricultural land uses,
presenting an increased risk of classification uncertainty (see ref. 3).

Where available, additional literature or imagery (e.g., company websites, aerial
photographs, technical reports, or Landsat imagery) were examined to verify
features that remained unclear to authors after initial cross-checking.
Notwithstanding these efforts, the process of delineating mine areas is subject to
inherent uncertainties such as incorrect interpretation/classification, temporal
variation in the landscapes mapped, and precision of the satellite images (see ref. 3).
The imagery assessed via Google Earth has an overall positional root mean squared
error (RMSE) of 39.7 m related to the reality on the ground51,52, which has been
considered for past global scale mine area analyses8. All polygons were converted to
a projected coordinate system (WGS 1984 EASE Grid Global). Post-processing
checks were conducted to identify invalid polygons (e.g., empty mine areas or
distorted boundaries) and repair geometry to ensure polygons are accurate.

Additional data validation. To verify that mine areas were correctly delineated, we
used ground photography and GPS coordinates obtained from recent and past field
excursions in China (Panzhihua, and Ordos), Germany (Harz Mountain), and
Australia (North-west Tasmania), and utilized an external reviewer to replicate and
compare output maps.

The most recent available remote sensing imagery for mapping was used as a
first preference, recognizing the potential for sites to grow over time (Fig. 5A). The
effects of a dynamically changing landscape, and hence issues of changing

Fig. 5 The changing spatiotemporal characteristics of mine areas. A Spatiotemporal variation of ASM areas (placer gold mining, Ofin River, Ghana
6°1’00” N, 1°52’27” W). Image © 2023 CNES/Airbus and Maxar Technologies, visualized in Google Earth Pro. B Cessation mine tailings in the Lisheen
Mine, Ireland. This mine was operational in 2012 and increasing vegetation cover is evident in 2023 (lead-zinc-silver mine; 52°45’01” N, 7°40’35” W).
Images © 2023 CNES/Airbus, visualized in Google Earth Pro.
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vegetation cover (either naturally or as part of concerted restoration efforts)
obscuring operational boundaries are shown in (Fig. 5B).

We validated and updated mine area datasets of 24,605 polygons (33%) from
Tang et al.8 to match more recent imagery where available, and newly delineated
49,943 additional mine area polygons (66%) for the present study. The
independent delineation of mine areas from an volunteer reviewer sought to
represent different countries, climate divisions, and topography. The reviewer, Dr.
Yang Jingsong, is familiar with the application of mine delineation methods as
described here, and as used in the previous iteration of our database8. Their outputs
are summarized in Table 4 and a visualization of their polygons in provided in
supplementary Fig. S5. We found that there was ~92% agreement between mapped
areas, suggesting that our global estimates could vary in the order of ±8% through
the propagation of human error. This also highlights that even the application of
consistent delineation criteria cannot guarantee full replicability in total areas,
however the overall location and magnitude of impacted areas remains broadly
consistent.

Spatial analysis. Following delineation, ArcGIS 10.8 and ArcGIS Pro 2.4.0 pro-
grams were used to assess spatial attributes of the mine areas dataset and the
concurrence of human and environmental overlays. Using the SNL database, we
applied 10 km buffers (consistent with Maus et al.7,18) to point locations of mine
operations. We then performed a spatial overlay (intersection) analysis to identify
the area of polygons that sit within these buffers, and hence determine the number
and type of mine operations potentially represented by our dataset. The World
Database on Protected Areas53,54 was also downloaded to ArcGIS Pro 2.4.0, and a
spatial overlay analysis was performed using a the spatial join and intersect tools to
identify the extent of overlap between protected areas and mine polygons. This
allowed us to determine the extent that mining may induce impacts on envir-
onmentally sensitive regions.

The Global and Local Moran’s I indices were employed to examine the spatial
distribution characteristics of the mine areas. The Anselin Moran’s I is a commonly
used indicator of spatial autocorrelation (clustering behavior) based on the Pearson
correlation coefficient. The Global Moran’s I index is used to study the degree of
autocorrelation for the dataset as a whole, while the local indicators of the spatial
association are applied to identify specific locations that exhibit different clustering
behaviors55. Such areas may then be visualized via GIS56. The test employed 9999
permutations in this study, with p < 0.05. A strong positive Local Moran’s I value
indicates that the location under study has similarly high or low values to its
neighbors. Conversely, a strong negative Local Moran’s I value implies that the sites
under investigation are significantly different from the values of their surrounding
locations, indicating areas of unusually high or low clustering of mine areas relative
to their surrounds. The global spread of mining activity can be distinguished
according to statistically significant clusters of: high density (HH), low density (LL),
outliers of high density surrounded by low density (HL), and outliers of low density
surrounded by high density (LH). Further explanations of these categories are
provided by55 and57. A ‘Not Significant’ (NS) classification represents highly
isolated or completely absent mining, and is evident across many high altitude,
alpine, and arid regions (e.g., Central Asian Orogenic Belt, Andes Belt, Northern
Europe). LL regions are often associated with higher population density, hence
minimizing land available for extraction. Agricultural land, transportation lines,
and topographical restrictions may also artificially subdivide a minefield into
multiple, lower-density mine sections. Such regions include parts of Eastern China
(e.g., polymetallic metal mining), Western USA (e.g., with some coal mining in the
Appalachian Mountains), India (e.g., iron ore mining), and the east coast of Brazil
(e.g., iron ore mining). HL zones are situated within the LL pattern boundaries or
NS areas. They represent high density mining activity with statistically low-density
surrounds. Zones of significant mine area density, surrounded by yet more
significant mining activity constitute a HH cluster. These regions were
characteristically lower population density. Examples of such areas included
Western Australia (e.g., Tropicana gold mine), Queensland, Australia (e.g., Mount
Isa copper, lead, zinc, and silver mine), Magadanskaya Oblast, Russia (gold),
Chukotskiy Avtonomnyy Okrug, Russia (gold, diamond) and Bolivia (San

Cristóbal silver, lead and zinc mine). Within HH areas, we may identify some LH
regions of notably low mine site density. Such areas may feature within highly
mineralized belts, such as the Andes, where mine areas appear in relative
abundance, yet geographical factors like steep mountain ridges prevent parts of
these belts from being developed.

Data availability
The spatial data that support the findings of this study are available from https://doi.org/
10.5281/zenodo.6806817.
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