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Electric vehicle fleet penetration helps address
inequalities in air quality and improves
environmental justice
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Anondo D. Mukherjee 1, Garnet B. Erdakos1, Marcus Alexander2 & Eladio Knipping2

Accelerated penetration of on-road electric vehicles offers regional and community-scale air

quality benefits; however, such benefits have not been previously quantified regarding

environmental justice communities near major roads. This study evaluated six 2040 electric

vehicle scenarios and quantified concentration reductions of nitrogen dioxide and fine par-

ticulate matter (diameter less than 2.5 µm) for southern California environmental justice

communities near Interstate 710. Findings showed that aggressive electric vehicle penetra-

tion (85% electric vehicle share) reduced nitrogen dioxide and fine particulate matter con-

centrations more in communities with more people of color (1.9 ppb and 1.1 μg m−3) than in

communities with more White residents (1.6 ppb and 0.94 μgm−3). Aggressive electric

vehicle penetration reduced pollution exposure disparity by 30% for nitrogen dioxide and

14% for fine particulate matter. Disparity reductions were also found based on educational

attainment. Results suggest policies that encourage accelerated electric vehicle penetration

will address inequalities in air pollution and help achieve environmental justice.
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There is recognition that U.S. environmental management
programs and air pollution control in particular have not
produced equitable outcomes. A growing literature shows

communities more heavily populated by people of color (POC)
and those with lower incomes are disproportionately located near
major roads and other pollution sources. The location of such
communities reflects development patterns set in place decades
ago through discriminatory policies such as those involving home
ownership and mortgage financing. Historic and ongoing out-
comes in these settings include greater exposure to environmental
hazards such as air pollution1–7.

In response, agencies are addressing disparities to improve
environmental justice (EJ), defined by the U.S. Environmental
Protection Agency (EPA) as, “the fair treatment and meaningful
involvement of all people regardless of race, color, national origin,
or income, with respect to the development, implementation, and
enforcement of environmental laws, regulations, and policies”8.
An important contributor to exposure disparities is traffic-related
air pollutants (TRAPs). Studies show TRAP concentrations
within a few hundred meters of a major road can be two to four
times higher than regional background concentrations9,10.
Moreover, U.S. near-road communities are populated more
heavily by POC and those with lower incomes11. As on-road
vehicle emissions have dropped over time12, pollution exposure
has declined, but disparities persist. For example, one land use
study showed, from 2000 to 2010, that nitrogen dioxide (NO2)
concentrations, an indicator of on-road vehicle emissions,
declined more for communities with non-White (non-Hispanic)
populations (−6.9 ppb) than communities with White (non-
Hispanic) populations (−4.7 ppb). However, resulting 2010 NO2

exposures were still higher for non-White communities1. A
separate study used 2017 data from 20 U.S. cities to document
that concentrations of particulate matter with diameter less than
2.5 µm (PM2.5) continue to be higher adjacent to major roads
than in surrounding communities13. Therefore, continued on-
road vehicle emissions reductions are needed to reduce exposure
disparities and address EJ.

Vehicle electrification is considered a central component of
plans to reduce on-road vehicle emissions, improve urban-scale
air quality, and reduce greenhouse gas (GHG) emissions14–17.
Previous studies document that electric vehicle (EV) penetration
in the light duty vehicle (LDV) and medium- and heavy-duty
vehicle (MHDV) fleets reduces on-road emissions. Although EVs
contribute road dust and brake and tire wear emissions, they lack
exhaust emissions18–24.

Erdakos et al.25 reported the most important factor to accel-
erate EV adoption is achieving cost parity between EVs and
internal combustion engine (ICE) vehicles; this can be achieved
via lower EV manufacturing costs and higher gasoline prices.
Their study showed a reduction of 3% to 15% in emissions of
urban-scale air pollutants in the LDV fleet by 2040 across a range
of accelerated cost parity scenarios. Raju et al.18 showed achieving
California’s GHG emissions goals requires aggressive EV pene-
tration in the MHDV fleet. U.S. federal and state actions therefore
seek to accelerate EV penetration. For example, in August 2021,
the Biden administration announced a goal to achieve a 40% to
50% new-vehicle EV sales share in 203026. In California,
Advanced Clean Car (ACC), Advanced Clean Truck (ACT), and
Advanced Clean Fleet (ACF) regulations seek to reduce GHG and
Nitrogen Oxide (NOx) emissions via EV sales mandates for the
LDV and MHDV fleets. Under the U.S. Clean Air Act, other
states can adopt California vehicle requirements, and studies have
documented the emission reduction benefits for states increasing
EV penetration by adopting California rules27.

Studies from the U.S.28–32, Europe33–35, and Asia36 have also
assessed regional air quality impacts from EV penetration from

on-road emissions reductions and resulting changes in electricity
generation emissions. In general, EV penetration is forecast to
reduce regional PM2.5, ozone (O3), and NOx concentrations.
However, in some situations, EV penetration and resulting NOx

emissions reductions have been simulated to increase O3 con-
centrations in areas such as Colorado, Houston, and Los Angeles,
since vehicular NOx emissions would have otherwise chemically
reacted with and titrated O3

28,31,32. For example, Skipper et al.32

found that by fully electrifying on-road vehicles in California, the
statewide population-weighted annual PM2.5 concentration
would decrease 0.5 μg m−3 in both 2016 and 2028, and the fourth
highest 8-h maximum daily O3 concentration would decrease
6.6 ppb in 2016 and 4.3 ppb in 2028, although reduced on-road
NOx emissions led to O3 increases in some areas. Modeling by
Skipper et al. showed that the O3 disbenefit however, was reduced
by 2028 compared to 2016 (increased O3 levels were up to 3 ppb
in 2016 versus 0.5 ppb in 2028), and they concluded PM2.5 and
O3 concentration reductions scale approximately linearly with
increasing EVs. In a different study, Pan et al.28 modeled EV
penetration leading to O3 increases along highways and reduc-
tions further downwind. Additional research has shown that even
in regions where fossil-fuel based power generation is important
to regional air quality, the net regional impact of increased
penetration of EVs will be a benefit (reduced concentrations) for
regional pollutants such as O3 and total PM2.5

37,38. Schnell et al.
found that U.S. O3 levels generally decreased with EV penetra-
tion, regardless of the source of electricity used to charge the
vehicles, except in locations where marginal power generation
increased NOx emissions, or where O3 production was likely
VOC-limited (e.g., Los Angeles)23. The same study found EV-
related PM2.5 concentration changes depended on electricity
source, but had a lesser impact on O3. See Supplementary Note S1
for additional research examples.

In summary, previous studies assessed EV-related changes in
electricity generation and transportation emissions. Prior work
supported regional-scale air quality analyses, including changes in
PM2.5 (direct emissions and atmospheric formation) and ozone
concentrations using regional-scale (photochemical) air quality
models to assess metropolitan-area exposure changes. However,
most prior studies did not investigate the impact of EV pene-
tration for near-road settings where primary vehicular pollutants
contribute to exposure disparities39.

This study quantified air quality benefits of EV penetration
with respect to EJ by differentiating EV-related air pollution
changes between communities with and without EJ concerns. The
analysis focused on southern California communities adjacent to
and heavily impacted by traffic on Interstate 710 (Fig. 1), one of
California’s busiest roadways and a travel corridor serving the
largest port complex in the United States. The study region has
long been characterized by poor air quality; for example, air
quality monitoring adjacent to Interstate 710 measured the
highest near-road PM2.5 levels in the U.S. in 201713, and earlier
work documented air pollution exposure concerns in commu-
nities near the Ports of Los Angeles and Long Beach40. The work
described here builds on prior studies forecasting EV use18,25 and
California Air Resources Board (CARB) policies to reduce vehicle
emissions, including the Advanced Clean Cars II rule, adopted
August 25, 2022. This rule requires that by 2035, 100% of new
cars and light trucks sold in California will be zero-emission
vehicles, including plug-in hybrid electric vehicles41. Six calendar
year (CY) 2040 EV penetration scenarios were evaluated
(Table 1). Analyses focused on transportation-related NOx, NO2,
and PM2.5 direct (primary) emissions since those pollutants are
important contributors to adverse health outcomes.

Although they also contribute to adverse health outcomes,
photochemically formed pollutants such as O3 and secondary

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00799-1

2 COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:135 | https://doi.org/10.1038/s43247-023-00799-1 | www.nature.com/commsenv

www.nature.com/commsenv


PM2.5 were not considered in this study. We focused on near-
road settings, where studies show higher-than-average con-
centrations of directly emitted vehicular pollutants9,42. The
impact from power generation was not considered because (a)
California law requires phase-out of fossil-fueled electric power
generation by 2045;43 and (b) impacts from power plants are
likely to be more regional in nature, especially for O3 and sec-
ondary PM2.5, and this work focused on neighborhood-scale
impacts, including EJ communities near major roads. As noted
above, some studies find that as EVs change on-road and electric
power generation emissions, there can be cases of increased
secondary pollutant formation. Secondary pollutant impacts from
EV-related power generation will likely decrease over time,
however. The U.S. Energy Information Administration forecasts
that by 2050, the supply of renewably-generated electricity (solar,
wind, hydro) will increase more rapidly than overall power
demand44.

For all scenarios, regional pollutant background concentrations
and the contribution from on-road vehicles were assessed sepa-
rately at a census block group level. We investigated the change in
concentrations due to EV penetration considering different
population characteristics depicted in CalEnviroScreen45, a

California mapping tool that ranks locations by EJ parameters,
including population characteristics such as White population
percentage, and education level. We tested the hypothesis that as
EVs penetrate the vehicle fleet, communities with EJ concerns
located near major roads would gain greater incremental air
quality benefits than the population as a whole. We also used a
health-based metric to quantify outcomes as fleet electrification
reduced NO2 and PM2.5 concentrations across population groups.
We concluded that EV penetration can reduce exposure disparity
more for NO2 and less for PM2.5. Policies that encourage accel-
erated EV penetration will address inequalities in air pollution
exposure and help achieve environmental justice.

Results
EV penetration and impacts on emissions. Among the six EV
penetration scenarios, we modeled a reference case and five
alternative futures. The reference case assumed no additional
policies to accelerate EV penetration. The CARB EMission
FACtor (EMFAC) model was used to model vehicle population
and emissions. Based on EMFAC defaults, reference case results
for CY 2040 EV fleet shares were 10.6% for the LDV fleet, 0% for

Fig. 1 The modeling domain. Image source https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-40. On this figure, the I-710 freeway runs north
to south just west of the Lakewood, Signal Hill, and Long Beach communities; it then joins Highway 47 and turns west (towards the area marked Rolling
Hills). Permission to use this map was granted by the Office of California Environmental Health and Hazard Assessment.

Table 1 EV penetration scenarios.

Scenario Policies that impact light-duty fleet Policies that impact medium- and heavy-duty fleet

Reference Case
0. Reference case No further policies to accelerate EV penetration No further policies to accelerate EV penetration
Policy Cases
1. High emissions reduction The cost to manufacture light-duty EVs is comparable to

internal combustion conventional vehicles starting in 2030
Advanced Clean Truck (ACT) and Advanced Clean
Fleet (ACF) regulations

2. Medium emissions reduction Medium gasoline price increases $0.07 per gallon per year
beginning in 2019

ACT regulation

3. Emission reduction for
MHDVs only

No further policies to accelerate EV penetration ACT and ACF regulations

Idealized Bounding Cases
4. Customized EV-phase in
schedule

Advanced clean car regulation phase II (ACC II) Customized EV phase-in schedule starting in 2025 to
achieve 56% EV on the road in 2040 (Ref.18)

5. Maximum bounding
scenario

100% new-vehicle EV market share starting from 2023 100% new-vehicle EV market share starting
from 2023

ACT Advanced Clean Truck, ACF Advanced Clean Fleet, ACC II Advanced Clean Car Regulation Phase II.
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the MHDV fleet, and 9.2% for the total vehicle fleet (Supple-
mentary Table S1).

Scenarios 1–3 were policy cases that included assumed actions
to accelerate EV penetration in both the LDV and the MHDV
fleets. Scenarios were built on policies developed by CARB and
prior work published for the U.S. National Cooperative Highway
Research Program (NCHRP)25. Supplementary Table S1 sum-
marizes the EV share for each scenario and vehicle fleet. In
Scenario 1, we combined CARB-forecasted policy outcomes with
NCHRP projections of how EV penetration would be affected by
LDV fleet cost parity between EV and ICE vehicles. Scenario 1
increased the LDV EV share from 10.6% to 19%; also in Scenario
1, implementation of the CARB ACT46 and ACF47 regulations
increased the EV share in the MHDV fleet from 0% to 30.1%. In
total, the Scenario 1 fleetwide EV share increased from 9.2% to
17.5%. Scenario 2, based on the NCHRP work, showed that a
gasoline price increase of $0.07 per gallon per year resulted in a
0.1% increase in the EV share for the LDV fleet compared to the
reference case (10.7% vs. 10.6%); the ACT regulation increased
the EV share in the MHDV fleet by 27.8%. By comparing
Scenarios 1 and 2, we found the ACF regulation, added to
assumed ACT implementation, increased the MHDV fleet EV
share an additional 2.3%. Scenario 3 assumed no additional policy
regarding the LDV fleet, and ACT and ACF regulations for the
MHDV fleet, resulting in 10.8% total EV share - a 1.6% increase
compared to the reference case (10.8% vs. 9.2%). Because of the
limited incremental EV share from gasoline price increases and
ACF, Scenario 2 and 3’s total FY 2040 fleetwide EV share was
almost identical (10.8%).

Scenarios 4 and 5 served as idealized bounding cases with
assumed rapid EV penetration. Scenario 4’s LDV fleet assumed
implementation of Phase 2 of the CARB Advanced Clean Car rule
(ACC II, adopted August 25, 2022)48. For ACC II, modeling
assumed a phase-in of zero emission vehicle (ZEV) and plug-in
hybrid electric vehicle (PHEV) new-vehicle sales starting in 2026,
gradually increasing to 100% of sales by 2035 and beyond (see
Methods). More information on the final ACC II rule is available
at https://ww2.arb.ca.gov/news/california-moves-accelerate-100-
new-zero-emission-vehicle-sales-203539. In this study, we
assumed the requirement applied only to ZEVs and also assumed
all ZEVs were EVs. This assumption resulted in 69.7% EVs in the
LDV fleet by 2040. Scenario 4’s MHDV fleet followed a scenario
in Raju et al.18 (their Scenario 3) that assumed accelerated ZEV
deployment with a focus on battery electric vehicles to assess the
feasibility of achieving 80% GHG emissions reductions from
trucks by 2050 in the California. Our modeling resulted in a
56.4% EV share for the MHDV fleet (for comparison, Raju et al.18

modeled a CY 2040 HD vehicle EV share of 56.9%). Scenario 5
assumed that, starting from CY 2023, all new-vehicle sales were
EVs, resulting by CY 2040 in an 89% EV share in the LDV fleet,
76.7% EV share in the MHDV fleet, and 85% EV share fleetwide.
This case (Scenario 5) served as a what if scenario to bound the
maximum EV share by 2040. The analysis approach used to
estimate the EV share for these scenarios is detailed in the
Methods section.

NOx and PM2.5 emissions reductions for each EV penetration
scenario were modeled by combining EMFAC emissions
estimates for the reference case and the EV market share for
each scenario (see Methods section). The six EV penetration
scenarios resulted in varying emissions reductions for NOx and
PM2.5 (Fig. 2c, d). Note that PM2.5 emissions modeled here
include exhaust, tire wear, and brake wear. Our analysis used
EMFAC2021 assumptions that EVs have half the brake wear
emissions of ICE vehicles49. For this analysis, we assumed that
emissions from re-suspended road dust, which are not estimated
by EMFAC, are not affected by EV penetration, and therefore we

did not vary or include those emissions as part of our scenario
analyses. The analysis presented here, which focuses on year 2040,
embeds a long-term assumption there is no material difference in
weight, and therefore road dust emissions, for electric vs.
conventional light-duty vehicles. For example, Argonne National
Laboratory found battery electric vehicles, “…are significantly
heavier than the conventional baseline vehicles in 2021 and 2027…
however, battery technology improvements are expected to reduce
the vehicle weight penalty as we get closer to 2050”50.
Supplementary Table S2 shows the relative importance of exhaust,
tire wear, brake wear, and road dust emissions to total PM2.5. For
the LDV fleet, Scenario 1 reduced 8% of NOx emissions and 5% of
PM2.5 emissions compared to the reference case (8.4% EV increase
compared to the reference case: 19% vs. 10.6%). Scenario 2 showed
almost no NOx or PM2.5 emissions reductions, due to the limited
EV share increase in the LDV fleet (a 0.1% increase). In Scenarios 4
and 5, EV penetrations in the LDV fleet resulted in 60% and 82%
reductions of NOx concentrations, and 32% and 40% reductions of
PM2.5 concentrations. For the MHDV fleet, the ACT and ACF
regulations (Scenarios 1 and 3) reduced NOx emissions by 32% and
PM2.5 emissions by 18%. The ACT regulation alone reduced NOx

emissions by 17% and PM2.5 emissions by 14% for Scenario 2 in the
MHDV fleet. This indicates that, although the ACF regulation only
increased the MHDV fleet EV share by 2.3% in addition to the
ACT regulation, the impact on exhaust NOx emissions was
substantial. In Scenarios 4 and 5, EV penetration in the MHDV
fleet resulted in 47% and 65% reductions of NOx concentrations,
and 31% and 41% reductions of PM2.5 concentrations.

Figure 2 showed the estimated EV and ICE vehicle populations
and the NOx and PM2.5 emissions for each scenario. The major
contributor for fleetwide NOx emissions are MHDVs (Fig. 2c);
therefore, total NOx emissions reductions were largely controlled
by the rate of EV penetration into the MHDV fleet. NOx

emissions reductions were 27% for Scenario 1, 14% for Scenario
2, 26% for Scenario 3, 44% for Scenario 4, and 62% for Scenario 5.
The major contributor for 2040 modeled fleetwide PM2.5

emissions, on the other hand, were LDVs. Policy cases had
limited LDV fleet EV share changes compared to the Reference
case (Supplementary Table S1) and thus did not substantially
reduce PM2.5 emissions (Reductions in PM2.5 emissions were 8%
for Scenario 1, 4% for Scenario 2, and 4% for Scenario 3; Fig. 2d).
Idealized bounding cases (Scenarios 4 and 5) showed much
greater PM2.5 emissions reductions (29% and 40%).

Air quality impacts and EJ implications. Our analysis translated
EV penetration scenarios and emissions changes into resulting air
pollutant concentrations (air quality). Air pollutant concentra-
tions were separated into two components: regional background
concentrations based on monitored air quality and then fore-
casted to the year 2040, and modeled concentrations resulting
solely from year 2040 on-road vehicle operations forecasted
within the study area (the on-road contribution). The regional
background concentrations were estimated based on hourly air
quality data collected from ambient monitoring sites reported to
U.S. EPA’s Air Quality System51. These air quality data were
projected to 2040 based on the 2000 to 2020 trend in monitored
NOx and interpolated to census block group centroids (see details
in the Methods section). Concentration contributions from on-
road vehicles were modeled with U.S. EPA’s Research LINE (R-
LINE)52,53 source model; our R-LINE modeling employed
scenario-specific emissions estimates for on-road vehicles and
spatially resolved meteorological data (see Methods).

The modeled concentrations and the relative concentration
change compared to the reference case are summarized in Table 2.
In the reference case, the on-road contribution and total regional
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background concentrations are 0.51 ± 1.12 ppb and 8.08 ± 9.89 ppb
for NO2, and 1.88 ± 3.61 µgm−3 and 12.49 ± 7.93 µgm−3 for
PM2.5. On average, within the entire modeled area (Fig. 1), domain-
wide NO2 and PM2.5 concentrations were dominated by regional
background. However, on-road vehicles contributed to above-
average pollutant concentrations for census block groups near
major roadways – areas of particular concern from an EJ
perspective (Fig. 3a, b). Concentration reductions in on-road
emissions for each EV penetration scenario are approximately
proportional to the emissions change for each scenario. The total
concentration reductions ranged from −0.4 ppb to −1.75 ppb

(−4.7% to −20.4%) for NO2, and −0.08 µgm−3 to −0.98 µgm−3

(−0.6% to −6.8%) for PM2.5. The reduction for PM2.5 is higher
than the values reported in Skipper et al. 202332, likely because the
finer spatial resolution in this study (census block group level in
this study vs. 12 km grids in Skipper et al., 2023) is able to better
assess concentration hotspots near roadways40. Although domain-
wide absolute concentration reductions were limited (less than
2 ppb for NO2 and 1 µgm−3 for PM2.5), greater reductions in NO2

concentration were observed at census block groups near major
roadways (Fig. 3c). For PM2.5, the concentration reductions
occurred at census block groups that spread farther away from

Fig. 2 Estimated vehicle population and emissions for each scenario in the South Coast region in 2040. a Electric vehicle (EV) population, b internal
combustion engine (ICE) vehicle population, c NOx emissions, and d PM2.5 emissions. PM2.5 emissions shown here represent the combination of exhaust,
tire wear, and brake wear; road dust is not included. LDV light duty vehicles, MHDV medium- and heavy-duty vehicles. All= LDV+MHDV+ all remaining
vehicles (such as motor homes and motorcycles) not covered by policies to accelerate EV penetration among LDV and MHDV vehicles in Scenarios 1–4.

Table 2 Mean and standard deviation of modeled concentrations for CY 2040 at census block group centroids in the domain.

Scenario NO2 PM2.5

On-road contribution
(mean ± std ppb)

Regional background
(mean ± std ppb)

Total reduction
compared to
Reference (ppb
[%])a

On-road
contribution
(mean ± std µg
m−3)

Regional
background
(mean ± std µg
m−3)

Total reduction
compared to
Reference (µg m−3

[%])a

Reference 0.51 ± 1.12 8.08 ± 9.89 NA 1.88 ± 3.61 12.49 ± 7.93 NA
Scenario 1 0.38 ± 0.81 7.46 ± 9.12 −0.75 (−8.7%) 1.84 ± 3.54 12.33 ± 7.83 −0.2 (−1.4%)
Scenario 2 0.43 ± 0.92 7.76 ± 9.49 −0.40 (−4.7%) 1.87 ± 3.59 12.42 ± 7.89 −0.08 (−0.6%)
Scenario 3 0.39 ± 0.83 7.48 ± 9.15 −0.72 (−8.4%) 1.87 ± 3.58 12.42 ± 7.89 −0.08 (−0.6%)
Scenario 4 0.28 ± 0.62 7.06 ± 8.64 −1.25 (−14.6%) 1.70 ± 3.27 11.96 ± 7.60 −0.71 (−4.9%)
Scenario 5 0.20 ± 0.44 6.64 ± 8.13 −1.75 (−20.4%) 1.63 ± 3.13 11.76 ± 7.47 −0.98 (−6.8%)

aThe total reduction represents the sum of reductions combining on-road contribution and regional background.
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major roadways (Fig. 3d). Compared to the reference case,
maximum reductions in NO2 and PM2.5 for Scenario 5 at the
near-road census block groups were above 3 ppb and 2 µgm−3,
respectively. Scenarios with smaller emissions reductions (policy
cases, Scenarios 1–3) showed the same trend: greater concentration
reductions were observed near major roadways compared to the
modeling domain as a whole, but the modeled concentration
reductions were smaller than in the idealized bounding cases (see
Supplementary Figs. S1 and S2 for concentrations, and see Fig. 3 for
concentration reductions). The concentration reduction maps for
scenarios 1–4 can be found in Supplementary Figs. S3 and S4.

For each census block group in the modeling domain, we
retrieved CalEnviroScreen (ver. 3.0) parameters used to identify
communities with EJ concerns; we then summarized concentra-
tion distributions by EJ parameter. These parameters included
race, White population percentage, education level, and the
composite EJ score calculated in CalEnviroScreen. Reference case
findings showed PM2.5 and NO2 concentrations were higher in
communities with a greater percent of non-White population and
with a greater percent of members over age 25 with less than a
high school education (Figs. 4 and 5). For example, the average
reference case NO2 concentration for communities with more

Latino members was 12% higher than communities with more
White members (9.2 vs. 8.2 ppb, Fig. 4a). Similar trends were
observed for PM2.5, although the concentration disparity was
smaller. For example, the average PM2.5 concentration for
communities with more Asian members was 8% higher than
communities with more White members (15.2 vs. 14.2 µg m−3,
Fig. 5a). Findings were consistent with prior work evaluating
demographics and pollutant concentrations at the census block
scale1.

EV penetration reduced air pollutant concentrations across the
entire domain (Fig. 3), thus benefiting the whole population.
Greater pollutant concentration reductions were observed for
communities with more non-White members, as well as those
with more members over the age of 25 with less than high school
education. Figures 6 and 7 show the NO2 and PM2.5 concentra-
tion distributions for Scenario 5 (maximum bounding) and the
mean concentration for the reference case. The NO2 concentra-
tion reduction for communities with more White members was
less than that of the communities with more Latino members (1.6
vs. 1.9 ppb, Fig. 6a). The PM2.5 concentration reduction showed a
similar trend although reductions were smaller. For example, the
PM2.5 reduction is 0.94 µg m−3 for communities with more White

Fig. 3 Modeled NO2 and PM2.5 concentrations and concentrations differences. a NO2 concentrations in the Reference Case, b PM2.5 concentrations in
the reference case, c NO2 concentration differences between Scenario 5 and Reference Case, d PM2.5 concentration differences between Scenario 5 and
Reference. The circles represent census block group centroids, and the gray lines represent roadways.
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members and 1.1 µg m−3 for communities with more Asian
members (Fig. 7a). The same analyses for Scenarios 1–4 can be
found in Supplementary Figs. S5–S12.

An important question is whether the differences modeled here
would be expected to have observable real-world outcomes. One
way to answer that question is to assess whether the findings are
statistically significant. The differences in NO2 and PM2.5

concentration reductions between racial groups were statically
significant based on one-way Analysis of Variance (ANOVA)
testing for all scenarios (p-value < 0.05; see Supplementary
Table S3). A post-hoc Tukey–Kramer test also showed that the
NO2 and PM2.5 concentrations reductions in the communities with
more White members were significantly lower than other racial
groups (see Supplementary Table S4). However, another way to
address this question is to consider past work on near-road air
quality. The literature clearly shows an incremental contribution of
roadway emissions to air pollutant concentrations adjacent to

major roadways9,13. Electrification of the vehicle fleet, with
commensurate reductions in on-road emissions, would logically
reduce the incremental roadway contribution to observed con-
centrations. Prior work by Karner et al., 2010, for example, showed
NO2 concentrations 0–80m from the road edge were approxi-
mately two to six times above background concentrations, and
more recent analysis of TRAPs noted consistent near-road
enhancements of concentrations of NO2 and other pollutants54.
Therefore, substantial reductions through electrification are
expected to have measurable near-road outcomes.

Overall, the findings of this study showed that as EV penetration
increased, disparities in community-scale air pollutant concentra-
tions were reduced. Figure 8 shows the maximum disparity for each
EV penetration scenario by CalEnviroScreen EJ parameters. The
maximum disparity for a given scenario and EJ parameter was
calculated as the concentration difference between the census block
groups with the highest and lowest concentrations. Racial

Fig. 4 NO2 concentrations grouped by CalEnviroScreen EJ parameters for the Reference Case. EJ parameters include (a) race, (b) white population
percentage, (c) percent of population with a degree lower than high school, and (d) the final score in CalEnviroScreen. Diamonds represent mean
concentrations, and the horizontal lines represent the median. Boxes are bound by 25% and 75% ranges. The whiskers extend to 1.5 times of the inter
quartile range (IQR) from the boxes.
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disparities were evaluated based on the racial grouping with the
highest population percentage within a given census block (the
main race). For NO2, the scenario with the most aggressive EV
penetration (Scenario 5) reduced the disparity by 30%. For
example, the disparity in NO2 census block concentrations between
racial groups for the reference case was 0.95 ppb; in Scenario 5 the
disparity was reduced to 0.67 ppb. Similar findings were observed
for PM2.5, but disparity reductions were smaller since, in future
years, the on-road contribution to PM2.5 concentrations is
dominated by non-exhaust processes (e.g., brake and tire wear)
and background concentrations. The disparity in PM2.5 exposure
between racial groups for the reference case was 1.06 µgm−3 and
was reduced by 14% to 0.91 µgm−3 for Scenario 5. Scenario 4 in
this study is largely structured on the California ACC II policy
adopted August 25, 2022, requiring that by 2035, 100% of new cars
and light trucks sold in California will be zero-emission vehicles,
including plug-in hybrid electric vehicles. Scenario 4 also included

an assumed EV phase-in schedule for battery electric vehicles in the
medium- and heavy-duty vehicle (MHDV) fleet that resulted in
approximately 56% of all on-road MHDVs being electric by 2040.
This scenario results in disparity reductions of 22% for NO2 and
10% for PM2.5.

Discussion
In this study, we used a chain of modeling tools to quantify the
outcomes of accelerated EV penetration on emissions, air quality,
and EJ. Findings showed that greater rates of EV fleet penetration
can further reduce on-road vehicle emissions by 2040. These results
also suggest that while EV penetration is beneficial to all commu-
nities in terms of reducing exposure to air pollution, EJ commu-
nities near major roads stand to gain greater incremental air quality
benefits than the population as a whole. Thus, policies that
encourage accelerated EV penetration will work to address
inequality in exposure to air pollution and help achieve

Fig. 5 PM2.5 concentrations grouped by CalEnviroScreen EJ parameters for the Reference Case. The EJ parameters include (a) race, (b) white population
percentage, (c) percent of population with a degree lower than high school, and (d) the final score in CalEnviroScreen. Diamonds represent mean
concentrations, and the horizontal lines represent the median. Boxes are bound by 25% and 75% ranges. The whiskers extend to 1.5 times of the IQR from
the boxes.
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environmental justice. Previous work has shown that 19% of the
U.S. population lives close to major roadways and that the per-
centage could be higher in urban areas11. The same study also
documented that in near-road settings, the fraction of lower-
income and minority residents increases with traffic volumes and
road proximity. Results shown here, therefore, are expected to have
applicability across many, if not most, U.S. near-road communities.
In addition, prior work has shown that near-road air quality pro-
blems are observed throughout the world, with consistent findings
regarding the rate at which pollutant concentrations decay as dis-
tance from the road increases9. Therefore, findings from this work
should provide insights of international interest.

An important consideration is potential health outcomes and
whether EVs can reduce disparities across population groups
exposed to vehicle-related NO2 and PM2.5. Although a full health
risk assessment was not completed, modeled air pollutant con-
centration differences allowed for health-related comparisons in a
relative sense between communities with and without EJ con-
cerns. To complete these relative comparisons, we used a metric

from the health literature referred to as the attributable fraction
(AF) of disease burden due to exposure to air pollutants (see
Methods). Concentration reduction results in Scenario 5 provide
an example where NO2 reductions were 1.6 and 1.9 ppb, and
PM2.5 reductions were 0.94 and 1.1 μg m−3 for communities with
more White and more Asian members respectively. The resulting
AF for avoided mortality was 19% (White versus Latino) and 16%
(White versus Asian) higher for NO2 and PM2.5 for communities
with more POC than with more White members. A complete
health impact assessment would consider in greater depth issues
such as population characteristics and baseline mortality. How-
ever, AF comparisons used here help place modeled air pollution
concentration changes into a health framework and illustrate that
the EV scenarios likely produce greater health benefits for the EJ
communities studied (see Supplementary Note S2).

This study also reinforces prior work about the importance of
early actions to encourage EV adoption25. Policies that take effect
early replace older vehicles and yield greater emissions reduc-
tions, since older vehicles generate higher emissions per mile

Fig. 6 NO2 concentrations grouped by CalEnviroScreen EJ parameters for Scenario 5. The EJ parameters include (a) race, (b) white population
percentage, (c) percent of population with a degree lower than high school, and (d) the final score in CalEnviroScreen. Blue diamonds represent mean
concentrations, and the horizontal lines represent the median. Boxes are bound by the scenario’s 25% and 75% ranges. Reference Case means shown as
red diamonds for comparison. The whiskers extend to 1.5 times of the IQR from the boxes.
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driven than newer vehicles. The idealized bounding cases (Sce-
narios 4 and 5) benefited from their early (2023, 2025) starting
points, as well as their substantial (60–85%) on-road EV share
by 2040.

EV policies targeting the LDV fleet will have only modest
impacts on reducing NOx emissions, since MHDVs are the major
on-road NOx emissions source. Scenario 3, which focused solely
on MHDVs, achieved virtually the same NOx emissions reduc-
tions (26%) as Scenario 1 (27% reductions), even though Scenario
1 included an additional 9% share of LDV EV penetration (see
Fig. 2c). Therefore, truck-focused polices such as ACT and ACF
accelerate EV penetration in the MHDV fleet and reduce the
disparity for exposure to NO2. This finding is especially impor-
tant for EJ communities adjacent to major roads with substantial
truck traffic, such as the communities studied here along the
I-710 goods movement corridor serving the Ports of Los Angeles
and Long Beach.

On the other hand, by 2040, LDVs are the major contributor to
PM2.5 (Fig. 2d), due largely to brake wear emissions (e.g., see

Supplementary Table S2). These findings are consistent with prior
work that emphasized the growing importance of brake wear to
California on-road vehicle PM2.5 emissions in years 2015 and
beyond55. CARB estimates that EV brake wear emissions are
half that of ICE vehicles due to regenerative braking:49 this
implies that LDV EVs offer important PM2.5 emission reduction
benefits that extend beyond tailpipe exhaust. However, as illu-
strated by Supplementary Table S2, resuspended road dust con-
tributes substantially to vehicular PM2.5 emissions, assumed in
this study to be unchanged with EV penetration50. Given the
importance of non-exhaust emissions to PM2.5, the implication is
that the emission reduction and EJ benefits of EV adoption are
more limited for PM2.5 compared to NOx. These findings are
consistent with past work by Mehlig et al.35, which found that EV
penetration resulted in greater NOx exposure reduction than
PM2.5 due to EV non-exhaust emissions.

The policy cases with actions to accelerate LDV fleet EV pene-
tration (Scenarios 1 and 2) showed a limited EV share increase
compared to the reference case. This finding is unique to California

Fig. 7 PM2.5 concentrations grouped by CalEnviroScreen EJ parameters for Scenario 5. The EJ parameters include (a) race, (b) white population
percentage, (c) percent of population with a degree lower than high school, and (d) the final score in CalEnviroScreen. Blue diamonds represent mean
concentrations. Boxes are bound by the scenario’s 25% and 75% range. Reference Case means shown as red diamonds for comparison. The whiskers
extend to 1.5 times of the IQR from the boxes.
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and states adopting California fleet requirements. These outcomes
reflect that in California, LDV EV policies embedded in the
reference case were more effective in early years (2030–2035)
compared to (non-California) NCHRP-based assumptions inclu-
ded in Scenarios 1 and 2 (see Supplementary Note S3).

There are opportunities for additional research to address
uncertainties in this study. First, work could further explore how
changes in future background concentrations affect the findings
presented here. Our approach extrapolated 2016 concentrations
to 2040, but did not consider whether new regulations will further
control emissions. Second, research is needed to examine how
non-exhaust emissions affect PM2.5 disparities. For example,
research shows U.S. EPA road dust estimation methods may
over-predict emissions56. Also, EV brake wear emissions could
change as regenerative braking systems, brake pad materials, and
vehicle weights evolve49. Third, work should examine how EVs
change vehicle weights and tire wear emissions57,58. Fourth,
exposure assessments using advanced models59,60 could better
consider human activities, time indoors61–63, and demographic

relationships to indoor exposure to outdoor pollutants64. Lastly,
analyses could build on existing work to assess how national-scale
electrification affects CO2 emissions and other pollutants65,66,
actual vs. forecasted decarbonization of fuel sources to generate
electricity16, and effectiveness of efforts to promote energy justice
in concert with fleet electrification and electricity generation
decarbonization (e.g., see work by the U.S. Department of
Energy)67. The Supplementary Note S4 expands on these points.

Methods
Future year EV population modeling. A Python-based tool was developed to
estimate the future-year EV population based on vehicle model-year-specific EV
market shares and a baseline vehicle population retrieved from EMFAC. EV
penetrations in the LDV and MHDV fleets were modeled separately. In the policy
cases, the EV market shares (Supplementary Table S3) in the LDV fleet for Sce-
narios 1 and 2 were estimated with Oak Ridge National Laboratory’s Market
Acceptance of Advanced Automotive Technologies model68. For the MHDV fleet
in the policy cases, the ACT and ACF regulations’ EV phase-in schedules (see
Supplementary Tables S6 and S7) were used to estimate EV market share. Note that
for the ACT and ACF scenarios, the EV phase-in schedules are only applied to

Fig. 8 The modeled maximum disparity in concentration. a Maximum disparity for NOx and b maximum disparity for PM2.5. The maximum disparity is
defined as the average concentration difference between the group that is exposed to the highest concentration of a pollutant and the group that is
exposed to the lowest concentration. Lower disparity represents a lower degree of disproportional exposure to air pollutants. Main race means the racial
grouping with the highest population percentage within a given census block.
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vehicles that were first sold in California (Supplementary Table S9). In the idealized
bounding cases, more rapid EV penetration was assumed. In Scenario 4, the
Advanced Clean Car regulation Phase II48 EV market share requirement was used
to represent market share for the LDV fleet (Supplementary Table S5, Scenario 4).
Modeling was completed prior to the August 25, 2022, CARB adoption of final
ACC II requirements. The modeling analyses are generally consistent with the
adopted rule, including a 100% zero emissions sales requirement beginning in
2035; however, modeling included early phase-in assumptions that are somewhat
different from the final rule. The modeling assumed 30% ZEVs and plug-in hybrid
electric vehicles for new-vehicle sales starting in 2026, as opposed to the 35%
requirement included in the ACC II final rule. Given that the analysis focused on
2040 outcomes, these discrepancies do not introduce substantial differences
between expected and modeled 2040 outcomes. For the Scenario 4’s MHDV fleet,
we customized an EV phase-in schedule that resulted in 56% of on-road MHDVs
being EVs (Supplementary Table S8). This followed a scenario in Raju et al.18 (their
Scenario 3 assumed accelerated ZEV deployment with a focus on battery electric
vehicles), which was developed based on the technology status of battery electric
vehicles to assess if GHG emission reduction goals were met. For Scenario 5, the
EV market share was assumed to be 100% starting in 2023 for both the LDV and
MHDV fleets. The EV market shares for each scenario were then combined with
the reference case’s vehicle population retrieved from EMFAC to update the EV
population. The number of EVs that were added to the fleet were removed from
their ICE counterparts to ensure the total vehicle population across all scenarios
stayed constant. To be conservative with the EV population estimates, we assumed
additional EV penetration only occurred if the estimated scenario-specific EV
market share was higher than the EV market share in the reference case. If the
scenario-specific EV market share was lower than the reference case EV share, no
additional EV penetration was assumed.

Emissions modeling. The emissions from on-road vehicles for six EV penetration
scenarios were estimated using EMFAC model version 2017. EMFAC is the
California regulatory on-road emissions model developed by CARB. It is used by
government agencies to support California’s regulatory and air quality planning
efforts for on-road mobile sources and to meet U.S. federal transportation and air
quality planning requirements. EMFAC combines vehicular emission factors and
vehicle activity data to calculate emissions for a given region in California. The
emission factors used in EMFAC were based on measurement data collected from
U.S. EPA’s In-Use Vehicle Program and CARB’s Vehicle Surveillance Program.
EMFAC vehicle activity data are based on California travel surveys. These surveys
collected information such as mileage accrual rates, travel speeds, vehicle starts
per day, and temporal distribution of vehicle miles traveled and trips. More
information on EMFAC is available from CARB69.

Emissions were modeled combining the EMFAC-predicted emissions for the
reference case and the EV market share described in the future year EV population
modeling section. In this study, EMFAC’s South Coast California region emissions
were used to develop emission factors and then link-based emissions for use in the
air quality model. The emissions for the EV penetration cases were modeled as
follows:

1. For running exhaust for NOx and PM2.5 (i.e., total PM2.5, which typically
includes elemental carbon, organic carbon, sulfate particles, and other trace
elements), the emissions from the portion of ICE vehicles that were replaced
with EV were zeroed out.

2. For brake wear PM2.5, EV emissions were assumed to be half of ICE vehicle
emissions following assumptions embedded in the EMFAC2021 model70.
Vehicles with regenerative braking may be 50% or less than those of
conventional vehicles.

3. For tire wear PM2.5, EV emissions were assumed to be the same as that of
their ICE counterpart following assumptions embedded in the
EMFAC2021 model.

The calculated emissions were combined with vehicle miles traveled and
aggregated to create an emission rate (in gram/mile) look-up table by vehicle speed
and heavy duty-truck percentage. Here, we assumed that the EV penetration into
the on-road fleet does not impact the traffic flow; thus, the vehicle miles traveled
and vehicle speed remains constant across the six scenarios. For road dust PM2.5

emissions (see Supplementary Table S2), U.S. EPA methods71 were used to develop
the emission rate based on silt loading and average vehicle weight. The road dust
PM2.5 emission rates were developed for varying heavy duty-truck percentage and
merged with running exhaust, brake wear, and tire wear emission rates to generate
the total vehicular emission rates for the region. No change in vehicle weight was
assumed for EVs compared to ICE vehicles.

To develop link-level emission rates for all roadways in the modeling
domain, link-based activity data including vehicle speed and traffic volume in
2016 from StreetlyticsTM data by Bentley Systems, Inc.72, and heavy-duty truck
volume from the California Transportation Department73 were extracted. The
roadway geometry was based on spatially detailed 2019 HERE Technologies
roadway network data74. The 2016 traffic volume was projected to 2040 with a
projection factor assuming 7% traffic volume growth. This factor was developed
with EMFAC vehicle miles traveled estimates for 2016 and 2040 for the South
Coast California region. The emission rate for a roadway segment at a given

hour of a day was calculated as:

ERh ¼ TCh ´ EFs;Tpercent
ð1Þ

Where ER is the emission rate of a roadway segment in gram per mile, TC is the
traffic count, EF is the emission factor for one vehicle in gram per mile, h is the
given hour, s is the speed of the vehicles, and Tpercent is the heavy-duty truck
percentage.

Air quality modeling. Concentrations of traffic-related pollutants such as NOx can
drop by more than 50% within 150 meters from the edge of roadways9. To quantify
the impact of traffic-related pollutants in near-road settings, highly spatially
resolved pollutant concentration information is needed to characterize the sharp
concentration gradients near roadways. Here, we used an improved Gaussian
dispersion model called R-LINE, developed by the U.S. EPA, to model how on-
road emissions affect near-road air quality (information on R-LINE development
has been published previously; see, for example Venkatram et al., 201352). To
estimate total pollutant concentrations near roads, we paired R-LINE air quality
outputs with urban background concentrations estimated using data from mon-
itoring networks and geostatistical methods described previously in the literature75.

R-LINE was used at a census block group level to model how EV penetration
scenarios changed the NO2 and PM2.5 concentrations contributed from on-road
vehicles. Regional NOx, NO2, and PM2.5 levels were interpolated with Inverse
Distance Weighting to census block group centroids based on hourly air quality
data collected from ambient monitoring sites reported to EPA’s Air Quality
System. To avoid double counting the concentration contribution from local
roadways, the sites categorized as near-road sites were removed before the Inverse
Distance Weighting interpolation. The same approach has been used by others to
estimate regional air pollution levels35. To estimate the regional concentration for
2040, the monitored NOx trend between 2000 to 2020 was used to project 2016
concentrations to 2040. For NOx, a 4% reduction per year was assumed. Regional
PM2.5 concentration was assumed to be at the same level as 2019 because of the less
varying concentration level between 2010 to 2020 in the South Coast region.
Scenario-specific regional air pollution levels were adjusted for the reduced traffic
emissions due to EV penetration. Following the South Coast Air Quality
Management District’s Air Quality Management Plan76, we assumed 29% of
regional NOx and 15% of regional PM2.5 comes from non-local on-road sources.
The estimated emissions reductions for on-road vehicles were deducted from the
portion of regional concentrations that were from on-road sources. This approach
introduces a relatively small amount of uncertainty in the overall study findings,
since regional concentrations are not linearly correlated to emissions reductions.
However, regional background concentrations, compared to pollutants directly
emitted from on-road vehicles, tend to be spatially distributed more
homogenously75. Since benefits of reduced background concentrations would be
similar, if not identical, for both EJ and non-EJ communities, the analysis did not
involve a more refined assessment of expected reductions in urban background
concentrations.

As noted earlier, NOx and PM2.5 concentration contributions from on-road
vehicles were modeled with R-LINE. R-LINE is incorporated into the American
Meteorological Society/Environmental Protection Agency Regulatory Model
(AERMOD)77. The NO2 concentrations were calculated using the polynomial
approach in the version of R-LINE with NOx chemistry78. R-LINE’s model
performance was previously evaluated against measurement data10,52,79. Besides
emission data, R-LINE requires meteorological data as input to simulate downwind
concentrations. Due to the modeling domain’s off-shore and on-shore winds and
resulting diverging and converging wind fields, meteorological data needed to be
spatially resolved to improve R-LINE prediction accuracy. The U.S. National
Weather Service’s Real-Time Mesoscale Analysis80 data provides meteorological
information at a 2.5-km resolution. We used the hourly wind speed, wind
direction, temperature, dew point, and cloud cover from RTMA as input to run the
U.S. EPA’s AERMOD meteorological processor, AERMET81, to provide necessary
inputs for R-LINE dispersion calculations used to estimate the concentration
contribution from on-road vehicles. To adjust for the concentration overprediction
by R-LINE under low wind speed conditions82, lateral turbulent wind component,
σv , was increased to allow more contribution from the meandering component for
a Gaussian plume83.

The modeling domain contains approximately 113,000 roadway segments. To
reduce the computational burden, we grouped the roadway segments into 5 km by
5 km grids; each grid contained about 5000 roadway segments. The roadway
segments in each grid were used as the emission sources to model the
concentrations at the census block groups in the same grid. To account for the
impact from roadways from adjacent grids, each grid included larger roadways
within a 2-km buffer and smaller roadways within a 1-km buffer outwards. The
same approach was used in previous health studies84,85.

Heath related analysis. The health analysis used attributable fraction of disease
burden due to exposure to air pollutants. The AF is based on a log-linear con-
centration-response function for mortality due to exposure to air pollutants40,86,87.
The log-linear relationship between ambient air pollutant concentration and health
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outcome is defined as:

AF ¼ 1� exp�βΔX ð2Þ
where AF is the attributable fraction, β is the concentration-response coefficient
(the slope of the log-linear relationship between concentration and relative risk
(RR) reported in epidemiological studies), and ΔX is the change in concentration
for PM2.5 or NO2. Here, β was calculated using a value for RR equal to 1.04 (95%
confidence interval [CI] 1.02–1.06) for all-cause mortality associated with a 5.32
ppb (converted from the 10 μg m−3 in the literature) increase in annual NO2

concentration88 and 1.03 (95% CI 1.01–1.05) for all-cause mortality associated with
a 5 μg m−3 increase in annual PM2.5 concentration89. Also, ΔX is the change in
concentrations of NO2 and PM2.5 for each racial group between the reference case
and each sensitivity case.

Data availability
The modeled ambient (i.e., the sum of background concentrations modeled with Inverse
Distance Weighting and on-road contributions modeled with R-LINE) NO2 and PM2.5

concentrations for each scenario are available to download from https://figshare.com/
articles/dataset/Environmental_Justice_Implications_of_Accelerated_Electric_Vehicle_
Penetration/2167509290.

Code availability
R-Line is available through the American Meteorological Society/Environmental
Protection Agency Regulatory Model’s (AERMOD) beta option. It can be downloaded
through EPA (https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-
and-recommended-models#aermod). The meteorological data preprocessor, AERMET,
is also available to download through EPA (https://www.epa.gov/scram/meteorological-
processors-and-accessory-programs#aermet).
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