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A framework to assess multi-hazard physical
climate risk for power generation projects from
publicly-accessible sources
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Demand for information about physical climate risk is growing, particularly for the power

generation sector, given its size and pronounced exposure to climate hazards. However,

quantifying physical climate risks for a large number of assets remains challenging. Here we

introduce a scalable and transparent methodology that enables multi-hazard physical climate

risk assessments for any thermal or hydro power generation project. The methodology relies

on basic power plant type and geolocation data inputs, publicly-available climate datasets,

and hazard- and technology-specific vulnerability factors, to translate hazard severity into

generation losses. We apply the methodology to the European Bank for Reconstruction and

Development’s early 2021 thermal and hydro power generation portfolios of 80 assets. We

show that under the Representative Concentration Pathway 4.5 scenario, those 80 power

plants could experience a 4.0-10.9 TWh loss in annual generation (or 1.87-5.07% of total

annual maximum generation) by 2030 compared to its baseline losses of 0.70–0.87 TWh (or

0.33–0.41%). One of the largest drivers of the increased risk is rising water temperatures,

which is currently overlooked by mainstream climate risk disclosure guidelines.
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Physical climate risk has become a major concern for gov-
ernments, companies, and civil societies1,2. There are both
proprietary (e.g., Moody’s ESG360, BlackRock Aladdin,

Swiss Re CatNet) and publicly available tools (e.g., the World
Bank Climate Change Knowledge Portal, the World Resources
Institute Aqueduct Water Risk Atlas) that aim to help their users
understand and assess physical climate risks. However, many of
those tools can only provide analyses and estimates on physical
climate hazard exposure rather than physical climate risks, which
is typically defined as a function of hazard, exposure, and
vulnerability;3 Some commercial tools do provide risk estimates,
but with fixed vulnerability factors hidden behind proprietary
methodologies4. As such, their results are useful for basic risk
exposure screening, but are of limited usefulness when assessing
impact.

Physical risks of climate change are especially relevant for the
power sector. The power sector is strongly exposed to physical
climate risks5–8. Several studies demonstrate the vulnerability of
the power sector. Studies have investigated generation losses (one
of the most relevant metrics required for financial modeling) due
to water scarcity9–14, extreme weather events15,16, outages for
nuclear power plants17, as well as entire energy systems18. Yet
these prior approaches mostly focus on a specific hazard and
often require local input data (e.g., observed weather data, river
gauge discharge records, actual power-generation records) that is
hard to access or proprietary. Inconsistent or unavailable input
data is a key impediment for comparing and integrating empirical
assessments of physical risk6. Without quantifying physical cli-
mate risks in metrics such as generation losses, we cannot
properly include climate impact in our decision-making.

We introduce a methodology to quantify multi-hazard physical
climate risks in generation losses for any given thermal and
hydropower plant, leveraging publicly-available global datasets.

Our model takes plant-specific type and geolocation data based
on which relevant local climate and water time-series data are
extracted from gridded global datasets, and assesses potential
generation losses due to climate hazards for both present day and
the future. We pilot-test the model on the European Bank for
Reconstruction and Development’s (EBRD) early 2021 thermal
(including gas, coal, nuclear, oil, and geothermal) and hydro-
power generation portfolios (excluding solar and wind). We
contribute a versatile risk assessment model that is both gen-
eralizable and scalable. The data requirements on power plants
are minimal, and the hazard modules and vulnerability factors
are fully transparent, allowing for customization and further
development.

Modeling approach. We follow the Intergovernmental Panel on
Climate Change’s climate risk function19 which determines risks
with exposure and vulnerability levels if specific hazards occur,
and develop our methodology with the aim to allow for trans-
parent power plant physical climate risk assessments using pub-
licly available gridded global data on climate and water baselines
and future projections with minimal data required on plants or
locally sourced information. The only required power plant data
inputs are its geolocation, generation technology, cooling type (if
applicable), and installed capacity, all of which are basic infor-
mation and usually available in power plant databases (e.g.,
Global Power Plant Database20).

Our model considers seven different hazards in five mutually
exclusive modules as shown in Table 1 and Supplementary Fig. 1.
The selection of hazards is based on existing mainstream climate
disclosure guidelines21,22, materiality, sectoral relevance, and data
availability. The five modules include air temperature, water
temperature, water stress, floods, and droughts for modeling.

Table 1 Physical climate risk assessment modules in the power sector.

Modules Physical climate hazards covered Main impact mechanisms Key thresholds

Water
temperature

Sustained water temperature
rise;29,42,53 Extreme temperature
(water)29,42,53

Water temperature primarily affects a power
plant’s cooling efficiency and/or its ability to meet
local regulatory discharge temperature standards.
It has no impact on gas turbines or air-
cooled units.

Regulatory discharge temperature limits;
design cooling water temperature;
baseline p99 web-bulb air temperature

Air temperature Sustained air temperature rise;29,54

Extreme temperature (air)29,54
Air temperature primarily affects the generation
efficiency of gas turbines and cooling efficiency of
air-cooling systems. Additionally, wet-bulb air
temperature (determined by the combined
conditions of air temperature and relative
humidity) affects cooling efficiency of
recirculating cooling towers. Air temperature also
affects water releases from glaciers impacting
downstream water available to dams.

Design operating air temperature

Water stress Water stress55,56 In high water-stress areas, decreased water
availability - whether caused by reduced runoff or
increased demand/competition - can result in
reduction in permitted water withdrawals and/or
more stringent water efficiency regulations in the
future. Upstream water consumption affects
downstream water available to dams.

Regulatory water use limits

Floods Riverine and coastal floods;33

Sea-level change33
When flood water inundated a power plant,
operations are disrupted due to infrastructure
damage and/or mechanical failure.

Depth-damage function

Droughts Droughts (temperature effects
excluded)29,54,57

Water levels in rivers and/or reservoirs are low
during droughts; wet-cooled plants might lose
access to cooling water or not have sufficient flow
rates for cooling effect. Low river flow can also
affect hydro generation.

SPEI-disruption function
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Due to the inconsistencies between the climate forcings (see the
Limitations section for more detail) of current climate and water
datasets, the spatial and temporal correlations between hazards
are not explicitly studied.

Exposure is based on the plant’s geolocation (e.g., latitude and
longitude), generation technology, and cooling type (when
applicable). Plant geolocation data are used to extract baseline
and projected climate and water data from global gridded datasets
with spatial resolution ranging from 1 to 25 km. Generation
technology and cooling-type data are used for selecting the
correct vulnerability factors for each hazard.

Vulnerability factors (or damage functions/curves) for translat-
ing hazard severity into generation losses are collected from the
literature or developed based on expert consultation. Vulner-
ability factors are specific to the hazard and the power production
technology, i.e., combinations of generation technology (e.g., gas
turbines) and cooling type (e.g., natural draft tower wet cooling).
Detailed factors are provided in Supplementary Table 1.

The baseline period used in our model runs from 1965 through
2004, and the future 2030 period is from 2010 through 2049, a 40-
year window centered around 2030. The end year of the baseline
period is determined due to the fact that in the Coupled Model
Intercomparison Project Phase 5 (CMIP5), the historical scenario
ends in 2005, and rcp45 and rcp85 projection scenarios start in
2006. Climate backcast data in the historical scenario are used to
bias-correct the reanalysis data in the baseline period as needed.
We conduct assessments under two climate scenarios, Represen-
tative Concentration Pathway (RCP) 4.5 and 8.5, representing
potential climate impact from moderate to the most extreme.

The climate models used in our assessment are from CMIP5. We
use an ensemble approach for all risk modules. In this study,
unless otherwise stated, all generation loss estimates are reported
as ranges using the p10 and p90 values of the ensemble. These
thresholds are commonly used in risk analysis, but for robustness
we perform a sensitivity analysis in the "Methods”.

As illustrated in Fig. 1, our modeling process starts by taking
four data points as inputs for a given power plant when assessing
its physical climate risks. First, based on the plant’s latitude and
longitude, our model pinpoints the location in the gridded global
climate and water datasets, and extracts and processes the
baseline and future projection time series data for each climate
hazard and for each climate scenario and each Global Climate
Model (GCM). Second, based on the generation technology and
cooling type (when applicable) combination, our model identifies
for each hazard the vulnerability curves for that particular
generation-cooling combination from the vulnerability factors
database the authors developed. Third, the model runs the hazard
time series data and corresponding vulnerability curves through
each of five modules, and generates for each of seven hazards its
annual average generation loss percentage. Finally, annual
average generation losses are estimated based on the plant’s
installed capacity and hazard-specific loss percentages. Detailed
step-by-step descriptions on model and methodologies can be
found in “Methods”.

EBRD’s portfolio and its exposure to climate change. EBRD’s
current (a snapshot from early 2021) thermal portfolio consists of

Fig. 1 Schematic representation of the power generation sector-specific physical climate risk assessment model. Details on threshold setting,
vulnerability factors, and modules can be found in “Methods”.
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80 power plants (24 thermal and 56 hydropower) with a variety of
fuel types including natural gas, coal, nuclear, oil, and geothermal,
spanning across Eastern Europe, southern Mediterranean, and
Central Asia. Thermal power plant generation units range from
an installed capacity of 25MW to 1000MW using different types
of cooling systems, and account for over 74% of the total installed
capacity (22.6 GW) of the thermal and hydro portfolios. The
EBRD portfolio exhibits a higher number of smaller generation
units, and 87% of units have an installed capacity below 300MW.
Cooling systems used in thermal power plants include once-
through, recirculating, and air-cooling. Over half of the thermal
capacity in EBRD’s portfolio uses once-through cooling systems.
Recirculating and dry cooling systems each represent about a
quarter of EBRD’s thermal portfolio. In EBRD’s current hydro
portfolio, most hydro plants are small or mini hydro projects.

The regions EBRD operates in are among the most vulnerable
to climate change. Figure 2 illustrates the locations of all 80 power
plants in EBRD’s current thermal and hydropower generation
portfolio. Figure 3a, b shows that a typical (the median value of
the climate model ensemble) power plant in EBRD’s portfolio is
likely to see a monthly average air temperature increase by 11.3%
and precipitation increase by 2.3% between the baseline and 2030
under RCP4.5, and 12.7% and 3.2% under RCP8.5. In addition,
extreme weather events are expected to become more intense in
all areas of EBRD’s portfolio. Figure 3c, d illustrates that for a
typical power plant, the 12-month low precipitation is expected to
decrease by 5%, and the maximum air temperature is expected to
increase by 8.5% by 2030 under RCP4.5, and 8% and 9.7% under
RCP8.5. As a result of global warming, the majority of EBRD’s

power plants equipped with wet-cooling technologies are
projected to experience a substantial water temperature rise at
their cooling water intake points. Figure 3e suggests that the water
temperature could increase by 10.7–13.5% (1.4–1.9 °C) by 2030
under RCP4.5 and RCP8.5, respectively.

Results
We estimate that, for EBRD’s current thermal and hydropower
generation sector portfolio, its physical climate risk-driven annual
average generation losses are about 0.70–0.87 TWh (or
0.33–0.41% of total maximum annual generation) for the baseline
period. As shown in Fig. 4 and Table 2, that could grow to
4.0–10.9 TWh (1.87–5.07%) by 2030 under RCP4.5, and to
4.5–11.4 TWh (2.08–5.32%) under RCP8.5. The thermal power
plants in EBRD’s portfolio account for 97–98% of the increase in
physical climate risk-driven generation losses, while the rest is
driven by hydro plants. A previous study23 also suggests a
reduced usable capacity of thermal and hydropower plants
globally under the same climate scenarios, and concludes that
hydro plants are generally less vulnerable to future climate change
than thermal plants at the global scale. Figure 4 and Table 2
illustrate the breakdown of potential generation losses by driver,
by time period, and by scenario. Uncertainties of climate models
are also presented, with the 90th percentile (p90) of the ensemble
being the upper bound and 10th percentile (p10) the lower
bound.

Water temperature is one of the primary drivers of generation
losses, accounting for 0.6 TWh for the baseline, and 1.9–4.6 TWh
by 2030 under RCP4.5, and 2.3–5.3 TWh under RCP8.5. For the

Fig. 2 Spatial distribution of power plants in EBRD’s current thermal and hydropower-generation portfolios. The thermal power plants are denoted with
orange circles while the hydropower plants are denoted with blue circles.
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baseline, about 85% of the total water temperature-driven gen-
eration losses is driven by reduced production required for
compliance with cooling water discharge regulations, and the rest
by reduced cooling efficiency. Cooling water discharge tempera-
ture regulations affect only power plants with once-through
cooling systems. Recirculating cooling systems are typically
designed to operate with optimal performance when the wet-bulb
temperature is below the p99 value of its historical records24.

With temperatures rising at most EBRD power plants’ cooling
water intakes, once-through systems could expect more frequent
shutdowns if discharge regulations are enforced, and the perfor-
mance of recirculating towers and condensers is set to reduce as
the baseline p99 values have a much higher probability of
occurring in the future. Water stress is also a major driver that
could potentially cause EBRD’s portfolio an annual average
generation loss of 2.0–3.8 TWh by 2030 under RCP4.5 and

Fig. 3 Precipitation, air temperature, and water temperature trends from baseline to the 2030 projection period. a shows precipitation, b average air
temperature, c minimum precipitation, d maximum air temperature, and e water temperature. Gray lines represent simulations by a climate model, by
scenario, and by power plant. Black and blue lines are the ensemble medians of historical values and projections under RCP4.5 and RCP8.5.

Fig. 4 EBRD’s estimated portfolio-level physical climate risk-induced generation losses for the baseline period and by 2030 under RCP4.5 and
RCP8.5. Generation loss estimates reported in the text in the figure are ensemble medians. The vertical line on each total bar indicates the climate model-
induced uncertainties, i.e., the lower bound is the 10th percentile (p10), and the upper bound is the 90th percentile (p90). For thermal plants, the physical
climate risks are categorized according to the climatic variables, i.e., air temperature (AT), droughts (DT), floods (FL), water stress (WS), and water
temperature (WT). Water temperature bars are divided into two parts with a black horizontal line. The lower part represents the cooling efficiency
reduction-caused generation losses, and the upper is generation losses driven by curtailment from cooling water discharge regulation enforcement. There
are 80 power plants.
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RCP8.5, if more stringent water use limits were introduced due to
increased stress levels and no mitigation efforts made at the plant
level. Water stress levels increase because of either the growing
local water demand or reduction of water supplies, or both, which
is the case for many plants in EBRD’s portfolio. High water stress
levels very often lead to greater uncertainties in water regulations.
Power plants with water-inefficient systems or practices are
particularly vulnerable to higher environmental standards and
strengthened regulations on water withdrawal and consumption
limits. Air temperature increase could cause EBRD’s current
portfolio 0.03–0.04 TWh in generation losses on average every
year for the baseline period, and 0.09–0.17 TWh by 2030 under
RCP4.5 and 0.12–0.19 TWh under RCP8.5, since air temperature
affects gas turbine and dry cooling system efficiencies. Generation
losses associated with wet-bulb temperature for recirculating
plants are accounted for in the water temperature assessment
module. Drought is estimated to account for 0.03–0.19 TWh in
generation losses for the baseline period, and 0.05–0.52 TWh by
2030 under RCP4.5, and 0.04–0.59 TWh under RCP8.5. In our
drought assessments, we focus on generation losses caused by
reduced cooling water accessibility. The impact of extreme water
temperatures associated with drought events is accounted for in
the water temperature assessment module.

As precipitation decreases and water consumption increases in
most upstream watersheds of the hydro plants in EBRD’s portfolio,
we estimate a −7 to 1674 GWh change in annual average genera-
tion by 2030 under RCP4.5, and−4 to 1495 GWh under RCP8.5, at
the portfolio level. Air temperature rises also negatively affect water
availability in most cases, as higher temperature typically leads to
more evaporation thus reduced water supply. However, for hydro
plants located in watersheds where glaciers exist, rising air tem-
perature could contribute to more glacier melt which leads to more
water supply and potentially additional generation in the short
term. For most hydro plants in EBRD’s portfolio, we use plant-
specific upstream precipitation and water consumption changes
between now and 2030 to estimate their potential generation
changes due to water availability shifts. Air temperature is not
included because the climate and water datasets we use do not
account for glacier impact. For six hydro plants, actual historical
generation and operations data were made available by EBRD to
the authors, and deep-dive analyses were conducted leveraging a
machine learning-based regression model. Detailed descriptions of
the methodology can be found in “Methods”.

Certain power plant specifications can be custom designed to
adjust for local climate conditions to achieve better performance in
places with less-than-desirable conditions. However, those custo-
mizations are designed using historical climate records, and are
anticipated to experience increases in their exceedance prob-
abilities. In this study, we use the p90 value of the baseline daily
average air temperature of each power plant location as that plant’s
design air temperature. The same assumptions are made for
cooling water intake temperatures. As illustrated in Fig. 5a, for air-
cooled plants in EBRD’s portfolio, sustained air temperature rise
projected under RCP4.5 could increase the exceedance probability
of their design air temperature from 10% to 18–25%. Sustained
water temperature rise will lead to an increase in design water
temperature exceedance probability for most of the wet-cooled
plants in the portfolio, from 10% to up to 27%, as shown in Fig. 5b.

As shown in Fig. 6a and Table 3, a typical CCGT plant in
EBRD’s portfolio has roughly the same percentage loss in gen-
eration as that of a typical coal-fired power plant for the baseline
period. However, by 2030, coal-fired power plants are projected
to see the percentage loss increase to 1.7% under RCP4.5 and
2.1% under RCP8.5, more than twice as high as that of CCGT
plants. In other words, we believe that the CCGT plants in
EBRD’s portfolio are substantially more climate-resilient than theT
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coal-fired power plants. Previous study25 also found that CCGT
plants are expected to experience smaller annual generation
reductions than coal-fired plants in the United States. In terms of
cooling technology, as shown in Fig. 6b, a typical once-through
cooled power plant has a much higher percentage loss compared
to plants cooled with recirculating or dry systems, for both the
baseline and future periods, which agrees with the previous
research26. However, our analysis shows that advanced cooling
systems are also subject to increased physical climate risks. Per-
centage losses in the generation of plants equipped with recir-
culating systems jump from 0.1% to about 1% under both climate
scenarios. Dry-cooled plants are projected to see a slight increase

in percentage losses; however, it remains very low in absolute
terms at roughly 0.3%.

Validation at the portfolio and plant level
Plant-level actual generation data are typically considered strictly
confidential, particularly in countries where EBRD invests, and the
authors were not able to obtain that information for any of the
thermal plants or most of the hydro plants in EBRD’s portfolio.
Given the lack of generation data available for the thermal power
plants in EBRD’s portfolio, we aim to validate our thermal
assessment models in the following two ways. One is to compare

Fig. 5 Exceedance probability of design air and water temperatures in baseline and future periods by power plants. a represents designed air
temperatures. b represents designed water temperatures. The direction of the arrow at the end of each vertical line indicates the changing trend for each
plant. The vertical lines in both plots are sorted in descending order of the probability under RCP4.5.

Fig. 6 Plant-level physical climate risk-induced generation losses. a shows the generation losses grouped by generation type; b by cooling technology.
The red line inside each box is the median. The black crosses are the mean values. The box shows the 25th (Q1) and 75th (Q3) percentile, and the upper
whisker extend to Q3+ 1.5 * (Q3–Q1) and the lower to Q1–1.5 * (Q3–Q1). The plant counts are in Table 3.

Table 3 Ensemble statistics of plant-level physical climate risk-induced generation losses by generation type and by cooling
technology.

Plant type Plant count Baseline 2030 RCP4.5 2030 RCP8.5

Median p5 p95 Median p5 p95 Median p5 p95

Fuel-Turbine
Coal-Steam 13 0.11% 0.07% 1.60% 1.73% 0.13% 11.76% 2.10% 0.14% 11.93%
CCGT 6 0.10% 0.07% 0.17% 0.76% 0.30% 3.65% 0.72% 0.32% 3.75%

Cooling
Once-through 9 0.67% 0.45% 1.66% 2.53% 1.17% 8.16% 2.78% 1.16% 8.83%
Recirculating 11 0.10% 0.05% 0.15% 1.09% 0.13% 11.79% 0.95% 0.14% 11.97%
Dry 4 0.07% 0.04% 0.16% 0.31% 0.14% 0.41% 0.34% 0.14% 0.48%
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our baseline portfolio-level, percentage losses with another port-
folio (with a similar power mix) for which we have actual disrup-
tion data which can be used in calculating actual physical climate
hazard-induced generation losses. The other is to apply our mod-
ules over power plants which we have actual daily generation data
for, and compare model-estimated generation losses against actual
losses induced by climate. For validating with the two proposed
approaches, we use unit-level daily outage data for thermal power
plants in India from April 1, 2013 through March 31, 2017 as well
as unit-level daily generation data from January 1, 2013 through
December 31, 2016 of two Indian CCGT power plants from a
previous study27. The outage database has daily records of all
generating units that are shut down on each day, including their
installed capacity and the reason why they were taken offline.

For portfolio-level validation, we analyze the outage database,
and categorize outage reasons into two groups, physical climate
hazard-related and others. For units with physical climate hazard-
related outages, we calculate for each unit on each day how much
power it could have generated if it were working at full capacity.
Those generation losses are then compared with the maximum
annual generation of India’s entire thermal (including nuclear)
and hydropower fleet28, resulting in a percentage annual gen-
eration losses ranging from 0.239 to 0.801% between the fiscal
year 2014 and 2017, with the average being 0.496% and standard
deviation 0.238%. As shown in Supplementary Fig. 2a, our
baseline ensemble of generation losses estimated for EBRD’s
current portfolio has a median of 0.351%, and a p5 value of
0.326% and a p95 of 0.406%, which fall in the same ballpark as
the Indian portfolio estimates.

For plant-level validation, we assess the impact of high air
temperature on generation using daily generation data of the
Uran and Valuthur CCGT power plants. The two plants are
selected as they are the only CCGT plants that have generation
records for a few years overlapped with the period for which we
have climate data. The few other CCGT plants the Government of
India publishes data for have either very recent generation his-
tories or very patchy records of production, which made them
unfit for plant-level validation. Plant selection for validation in
this study has limitations, including the uncertainties in gas plant
operation schemes as well as the differences in local climate and
temperatures between Western and Southern India and EBRD
regions. The air temperature reanalysis for each power plant is
extracted from the ERA5 database29. As illustrated in Supple-
mentary Fig. 3, both Uran and Valuthur have two distinct
operation schemes. We classified two clusters using DBSCAN30

and applied an Ordinary Least Squares (OLS) linear regressions
to each cluster to model the correlation between power genera-
tion and air temperature. As Supplementary Fig. 2b shows, using
the fitted regressions, between 2013 and 2016, we estimate that
high air temperature-induced percentage generation losses for
Uran and Valuthur has an average of 0.031% and a standard
deviation of 0.019%. Using the air temperature module in our
proposed model, the average percentage generation loss is 0.055%
with a standard deviation of 0.004%, which has the same order of
magnitude as the regression-based results. Details on the calcu-
lations can be found in the Methods.

Discussion
There are several factors contributing to the potential wide
applicability of the methodology proposed by this study. First,
only four basic input data points are required by the model for
assessing any given power plant’s physical climate risks. Second,
with the latitude and longitude of a given power plant, location-
specific baseline and future projections of the climate- and
water-related hazard time series data required by the different

modules in the methodology can be extracted from publicly-
available, global climate and water datasets identified by the
authors. By leveraging global gridded datasets, the methodology
addresses typical climate data challenges such as global coverage
and comparability. Third, translating hazard severity to
decision-relevant risk metrics such as generation losses can
be achieved by leveraging the global average hazard- and
technology-specific vulnerability factors (or damage functions)
database developed by the authors from extensive literature
review and expert consultation. The vulnerability factor database
enables users to conduct assessments when local vulnerability
information is not available which is typically a reality faced by
financial institutions with a large portfolio and a global foot-
print. Finally, the transparent, modular approach also allows for
model customization, e.g., updating vulnerability factors and
hazard data and customizing key thresholds, so that users could
get more robust results if more accurate, locally calibrated or
observed data are available.

The scalability of our methodology is promising in our opinion
for three reasons. First, it takes about two hours for the model to
complete for one asset the entire risk assessment process from
climate data retrieval to hazard module processing, and it can
assess multiple assets without any interference required from
outside the model. Second, the average per-plant model runtime
could be reduced when assessing portfolios with clusters of power
plants located close by and in the same watersheds. The most time-
consuming part of the exercise is climate data retrieving and pro-
cessing. If multiple plants are located in the same pixel or water-
shed, climate data for that location can be retrieved and processed
just once and used for all plants. Finally, the total runtime required
for modeling a portfolio can be further reduced if fewer climate
scenarios and GCMs are required or if that portfolio can be divided
into smaller chunks which can be assessed in parallel.

The proposed methodology provides assessment results in
power-generation losses which is a key data point needed by
financial analysts for properly integrating physical climate risk in
project valuation. For example, a development bank investment
officer can adjust the loan structure of a power-generation project
to better account for and protect the bank’s investment from
climate impacts, if the project’s financial modeling shows that
physical climate risk-induced generation losses would affect the
project’s ability to generate revenue or to pay back loans in the
future. Further translating future plant generation losses to rev-
enue losses or to the probability of default requires project-level
financial models and information on the embedded assumptions
which are typically asset specific and in most cases strictly con-
fidential. The authors choose to focus on compiling publicly-
available data sources and developing a methodology that esti-
mates plant-level power-generation losses which in our opinion
brings more value to the subject than attempting to assign a
monetary value to risks without project-specific financial models
to which the authors have no access.

Power plants are particularly vulnerable to water-related phy-
sical climate hazards. In addition to acute, extreme weather events
such as heatwaves, droughts, and floods, we demonstrate chronic
physical hazards, e.g., water temperature and water stress, can
cause large impact on generation capabilities as climate changes.
Most power plants today are designed on the basis of historical
rather than future climate and our assessment shows that those
chronic hazards are very likely to emerge in the coming decades
and cause the largest disruptions. In particular, water temperature
is completely overlooked right now by mainstream climate dis-
closure guidelines. Additionally, these hazards are usually not
covered by insurance products, meaning exposed assets would
not be able to transfer these risks. It is crucial that chronic
physical climate risks are assessed and their impact quantified.
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Fossil fuel-based thermal power plants and hydropower
account for the majority of world’s power generation as well as a
large share of global carbon emissions. For the power sector as a
whole to become more resilient to climate change, understanding
how its largest share of power-generation sources could be
affected by climate change is an important first step. The meth-
odology developed and data compiled in this study could be
useful to many power utility asset managers and development
banks as the many assets in their portfolios are thermal and hydro
plants. However, as solar and wind projects become increasingly
large in their footprints, additional research that incorporates
solar and wind projects could help understand the magnitude of
physical climate risks to these technologies, providing a more
complete assessment of the portfolio’s physical risk.

Gaps in global climate and hydrology data still remain.
Researchers and data developers should continue to improve the
coverage, comparability, and granularity of climate hazard data,
particularly on future runoff, water temperature, flooding, and
wind, and make data available to the public. Open data coverage of
more climate hazard types can help fill some of the current gaps
and enhance the overall comprehensiveness of physical climate risk
assessment. Making climate data more comparable and granular
will reduce system uncertainty and improve accuracy. Ensuring
that data continue to be open and free to the public is also
important from a transparency perspective. Vulnerability data and
analyses are important areas for climate and energy researchers to
focus their efforts on. As our pilot has shown, different generation
and cooling technologies can have very different levels of vulner-
ability to climate change. The continued efforts by international
organizations and regulatory agencies to recommend or mandating
companies to disclose more on climate risks and vulnerabilities
present an opportunity for climate science and risk assessment to
achieve better robustness and comprehensiveness.

Methods
Here we present a brief description of the methodology. For more details on
methodology and data and threshold sources, please refer to the Methodology
section in the Supplementary Information document.

Droughts-induced thermal power-generation losses. We assessed drought risk
for thermal power plants using the 12-month Standardized Precipitation-
Evapotranspiration Index (SPEI) following a previous study31. (Supplementary
Fig. 4). SPEI was used as a proxy of water availability in this study. We converted
monthly SPEI into estimated disruption hours using the vulnerability factors table
(Supplementary Table 1) following Eq. (1).

DHannual xð Þ ¼ ∑n
1VFðxÞ
n

� c � ð365 � 24Þ ð1Þ

where DHannual is the total number of disruption hours in a calendar year, VFðxÞ is
the interpolated vulnerability factor for a given x, n is the number of records in a
time series, c is a constant converting the time step into a daily time step.

With the installed capacity of each unit, annual estimated generation losses
(EGL) caused by drought were calculated following Eq. (2).

GLannual ¼ P � DHannual ð2Þ

where GLannual is the estimated annual generation losses in MWh, DHannual is the
total number of disruption hours in a calendar year, P is the installed
capacity in MW.

Floods-induced thermal plant generation losses. We assessed direct flood risks
with a probabilistic approach derived following ref. 32, using globally modeled
riverine and coastal inundation datasets33,34 (Supplementary Fig. 5). For each
plant, period-RCP-GCM-specific loss-probability curves were derived from the
depth-probability curves by converting inundation depth to corresponding vul-
nerability factors (Supplementary Table 1). The annual total disruption days for
both the baseline and future period were calculated following Eq. (3). A default
250-year flood protection standard35 was applied to all plants (except for nuclear
plants which are protected against 10,000-year floods) in the calculation, meaning
floods smaller than a 250-year (10,000-year for nuclear plants) event would have

no impact on the unit/plant.

DHannual ¼
Z P

0
LP pi

� � � 24 ð3Þ

where DHannual is the total number of disruption hours in a calendar year, p refers
to probability or corresponding return period, P is the designed flood protection
level or corresponding return period, LP pi

� �
is the loss-probability function

derived from the depth-probability curve combined with vulnerability factors
(Supplementary Table 1).

With the installed capacity of each unit, annual EGL caused by floods for both
the baseline and future periods were calculated following Eq. (2).

Air temperature-induced thermal plant generation losses. We assessed air
temperature risks using an approach derived based on the principle of the analy-
tical framework developed by Ward et al. 33 (Supplementary Fig. 6). Two plant-
specific thresholds, i.e., desired air temperature (DAT) and shut down air tem-
perature (SAT), and pre-defined vulnerability factors (Supplementary Table 1)
following air temperature-efficiency relationships established by Şen et al. 36 were
used to quantify air temperature rise-induced power-generation losses. Days with
air temperature above SAT and below DAT were assigned 24 h and 0 h of dis-
ruption, respectively. When air temperatures fall in between DAT and SAT, their
differences from DAT were calculated and used to look up corresponding vul-
nerability factors from Supplementary Table 1. The interpolated vulnerability
factors were then converted into annual total disruption hours following Eq. (1).
With the installed capacity of each unit, the annual EGL caused by air temperature
rise was calculated following Eq. (2).

Water temperature-induced thermal plant generation losses. We assessed
water temperature risks based on pre-defined relationships between generation
efficiency reduction and cooling water temperature and/or wet-bulb temperature
(Supplementary Fig. 7). We assigned 32 °C24 as the default intake water tem-
perature limit, which corresponds to ~42 °C discharge water temperature according
to the linear relationship between intake and discharge water (Eq. 4). For areas
subject to discharge water regulations, when water temperature exceeds the limit,
once-through cooling plants are expected to be curtailed partially or completely.
For cases where the water temperature was lower than regulatory limits, they were
compared to desired water temperature (DWT). Differences in degrees Celsius
from DWT were calculated and used to look up corresponding vulnerability factors
(Supplementary Table 1). The interpolated vulnerability factors were then con-
verted into annual total disruption hours following Eq. (1).

to ¼ 1:0191 � ti þ 9:7951 ð4Þ

where to is the outlet (discharge) water temperature, ti is the intake water
temperature.

With the installed capacity of each unit, the annual EGL caused by air
temperature rise was calculated following Eq. (2).

Recirculating steam turbines become vulnerable to water temperature rise when
the WBT exceeds its design temperature, the 99th percentile (p99) of the local,
historical time series24. We calculated outlet water temperature as a function of
water temperature (Eq. (4)). If outlet water temperature exceeds the design
temperature, the degree differences were calculated and used to look up
vulnerability factors from Supplementary Table 1. The interpolated vulnerability
factors were then converted into annual total disruption hours following Eq. (1).

With the installed capacity of each unit, the annual EGL caused by air
temperature rise was calculated following Eq. (2).

Water stress-induced thermal plant generation losses. The water stress metric
in this assessment primarily accounts for reduced water availability caused by
increased upstream consumptive water uses (Supplementary Fig. 8), which is dif-
ferent from the drought metric (i.e., SPEI) as it merely reflects meteorological
conditions. The water stress ratio (WS) in a given catchment was calculated fol-
lowing Eq. (5). Generation losses are calculated when WS is high or extremely high
(or greater than 40%37).

WS ¼ WW
BA

ð5Þ

where WW is the total water withdrawal, BA is the total available blue water supply.
In areas with high or extremely high water stress, it is often likely that more

stringent water efficiency targets38 and water use limits39,40 would gradually take
place to cope with chronic issues or be introduced suddenly to address unexpected
disruptions caused by acute events. It is probable that a reduced water availability,
regardless of its driver (less supply or more demand), will lead to higher standards
on water use limit and a lower water budget for users. The supply reduction rate
(SRR, i.e., percent change of the future blue water availability from baseline) was
calculated following Eq. (6). The vulnerability factors which indicate the percent
capacity that is stranded due to a limited cooling water budget were then
interpolated from Supplementary Table 1. The interpolated vulnerability factors
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were then converted into annual total disruption hours following Eq. (1).

SRR ¼ BWproj � BWba

BWba
ð6Þ

where BWproj is the projected blue water availability, BWba is the historical blue
water availability.

With the installed capacity of each unit, the annual EGL caused by water
temperature rise was calculated following Eq. (2).

Ensemble analysis. We used an ensemble approach by aggregating GCM-
specific annual generation losses for each unit and each module. In brief, in each
run, six statistics, i.e., median, p10, p90, mean, minimum, and maximum, were
reported for historical annual generation losses and the future projections under
RCP4.5 and RCP8.5 for each unit. Medians demonstrate the result derived from
a typical GCM. The p10 and p90 values indicate GCM-induced uncertainties.
The unit-level statistics were added up to account for the plant-level impacts. To
quantify portfolio-level impacts, we further grouped plant-level generation losses
by risk types.

Sensitivity analysis. We conducted a sensitivity analysis to assess how generation
losses vary with different design thresholds of water temperature, air temperature,
and flood protection level. For the design thresholds of water temperature and air
temperature, we selected four commonly used percentiles in physical climate risk
assessment (i.e., p75, p90, p95, p99). Table 4 shows that the generation losses
related to water and air temperature will increase in the future under all design
thresholds, whereas flood-related generation losses will decrease. The summary
statistics excludes plants that are not impacted by specific hazard, which is why the
plant count of three hazards appear to be different in Table 4. For water tem-
perature, air temperature, and flood protection level, the generation losses in
baseline and projection periods are negatively related to the design threshold levels.

Validation for thermal power-generation losses. Given that Uran and Valuthur
are CCGT plants which are often used for providing additional supply when elec-
tricity demand is high during peak hours, we suspect the clusters represent two
distinct operating schemes intentionally planned and managed by local utility
companies, serving different schedules. We then applied clustering analyses using
DBSCAN with multiple hypotheses, e.g., 2, 3, and 4 clusters, and found that a two-
cluster segregation makes the most sense compared to others. Generation data points
outside the two clusters could be electricity generated on days when there was an
unusually high demand or RSD (Reserved Shutdowns) planned by local grids.

In the plant-level validation, high air temperature-induced generation losses are
calculated as the difference between maximum power generation under the ideal
operation condition (i.e., the 90th percentile of all air temperature observations)
and the modeled power generation as a function of air temperature relative to the
designed maximum power generation (Eq. (7)). Plant-level generation loss was
taken as the sum of generation loss for each cluster.

GLðT ≥T90Þ ¼
∑Tmax

T90
ððaT90 þ bÞ � ðaT þ bÞÞ
Cap � N � 24

ð7Þ

Where GL stands for generation losses in GWh, T refers to air temperature in
degree Celsius, T90 refers to the 90th percentile of air temperatures over the study
period, Tmax refers to the maximum air temperature over the study period, a and b
refer to the slope and intercept of the linear relationship between power generation
in MWh and air temperature in degrees Celsius, Cap refers to installed capacity in
MW, N refers to the number of days in records.

Hydroelectric power plant assessment. We first identified the watershed
(including all upstream areas) that the hydro plant is located in based on its geolo-
cation. We then calculated the mean air temperature and sum of total precipitation
and water consumption within the watershed boundaries for each month over three
different timeframes with corresponding datasets (and models when applicable). We
used ERA5 climate reanalysis for the historical period (1980–2014), and NEX-GDDP
climate projections for the backcast period (1980–2005) and projection period
(2010–2049). A quantile-mapping-based bias-correction was conducted on the NEX-
GDDP future projections against the ERA5 reanalysis. Water consumption data came
from the Aqueduct 3.0 Behind-the-Scenes dataset.

For the hydro plants of which historical generation data were not available, we
estimate plants’ potential generation changes in the future based on their upstream
precipitation and water consumption changes between now and 2030. We do not
attempt to model any dam structure damage-related disruptions that may or may
not be caused by climate hazards, as that requires detailed dam-specific design
information and is not a viable approach for this type of exercise. For hydro plants
which we have historical monthly generation data, we explore and apply a
machine-learning regression model that estimates generation using precipitation,
air temperature, upstream water use, and operation disruption data.

A variety of regression models including support vector regression models, fixed
effect models, and machine-learning regression models such as LSTM, were tested
in this study. A LSTM regression model was chosen based on its higher T
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performance in estimating generation compared to other methods tested. Previous
hydrology-focused studies41 have also argued for higher effectiveness of LSTM
models over that of traditional statistical methods.

There are three features used in our model including, adjusted precipitation, air
temperature, and disruption. Adjusted precipitation is calculated as the total
precipitation in the watershed minus total water consumption. Disruption is
historical plant shut down records or operations log data shared by EBRD. The
target data of our model is the power plant’s historical actual monthly generations
shared by EBRD.

As shown in Supplementary Fig. 9, we created our base model using the
Keras–Tensorflow LSTMmodule with 100 neurons, 300 epochs, a dropout rate of 0.1,
and a recurrent dropout rate of 0.2. Four model parameters were made adjustable,
including look-back, batch size, optimizer, and loss function. For model tuning, we
tested 180 combinations of those four parameters, and ran the training process 50
times independently for each combination. We diagnosed if the model was under or
over-fitting by running the same combination 400 times and evaluating the epoch-
loss curves of training and testing sets. Only models with two converging trends
(indicating good fit) epoch-loss curves are selected as valid candidates. We then
selected the one trained model with the best performance (e.g., highest r-squared
value) as the final generation estimation model for the power plant.

Once the plant-specific model is selected, we then feed it with the model- and
scenario-specific GDDP projections, and projected future monthly generation for
the future period.

For developing the machine-learning model, the actual historical generation
time series dataset is split into a training set (the first 70% of data of the time series)
and a testing one (the remaining 30%). Data from the testing set were never seen by
the models during their training processes. We achieve unseen testing set validation
with a R-squared value at about 0.62, as shown in Supplementary Fig. 10.

Key limitations. Current climate science, available global datasets, and unit-
specific information on assets all have their limitations, and there is room to
improve our modeling approach.

Solar and wind projects were excluded from this study, as several earlier project-
level assessments commissioned by EBRD suggested that those technologies are
less sensitive to physical climate hazards than thermal and hydro generation.
Thermal and hydro generation represents ~58% of EBRD’s financial exposure
amongst power-generation technologies.

The Aqueduct global flood inundation maps used for assessing flood risks have
a one square kilometer spatial resolution, and cover only large-scale riverine flood
and coastal storm surge with sea-level rise taken into account. The spatial
resolution is relatively coarse for risk assessment at the facility level. Flash and
groundwater floods are not included, because no such data are available at the
global scale in the public domain.

Some global climate and hydrology datasets adopted in our assessment use
different forcing data. For example, the water temperature data from ref. 42 is
forced with ERA-40 and ERA-Interim, but air and dew point temperatures used for
calculating wet-bulb temperatures are from ERA5, which introduces potential
comparability limitations to our assessment process. However, quantile-mapping-
based bias corrections are conducted, aiming to minimize limitations in comparing
indicators with different forcing data.

We use the 12-month Standardized Precipitation-Evapotranspiration Index
(SPEI) drought index to model water levels in rivers and/or reservoirs; however, it
may not accurately reflect water availability in these water bodies. Twelve-month
SPEI drought index uses meteorological data, including precipitation, temperature,
and evapotranspiration to approximate changes in streamflow, a hydrological
variable. The correlation between SPEI and streamflow is generally very high, but
can vary in different river basins43. In addition, we calculate 12-month SPEI using
outputs from seven CMIP5 climate models. The grid resolution of these models can
be as large as 2.0225° by 2.5°, or about 224 km by 278 km at the equator44. We may
not simulate precise local conditions using coarse resolutions.

Indirect impacts, e.g., grid and fuel storage and transportation exposure to
wildfire, cold snaps, and floods, and disruptions to fuel transportation and staff
commuting due to floods and other factors are not accounted for. The indirect
impact can be severe and sometimes detrimental to power-generating assets45.
Impact on electricity demand was not studied either. Due to limitations on the
necessary data needed for conducting indirect impact assessment at a global scale,
we decided to focus on assessing direct impact.

Spatial and temporal correlations between hazards as well as grid effects on
power-generation volatility are not explicitly included in our modeling efforts.
Climate-related physical hazards are correlated both spatially and temporally.
Power plants in a large geographical area could be exposed to multiple hazards and
lose generation capacity simultaneously. We analyze impacts from these hazards
individually but these impacts could aggregate and result in larger generation loss.
There is also a systemic risk if all power plants in a large area lose power, a scenario
we do not analyze in this paper.

Although we collect and use hazard- and technology-specific vulnerability
factors to determine how hazards affect power plant generation, the vulnerability of
one power plant could be different from another power plant even if they are using
the same technology. For example, we use the same water temperature threshold
for thermal power plants using wet-cooled power plants, but these power plants

could be designed or optimized to operate at different tower dimensions, water
consumption rates, exit air temperature, etc.46,47. The design and optimization
differences could result in varying vulnerabilities to hazards.

2030 is selected as the assessment horizon for our study based on consultations
with EBRD, as ten years into the future is the most relevant timeframe for the bank
in terms of internal strategy-making and external communications with its clients for
practical reasons. However, there are benefits of extending the horizon beyond 2030.
For example, portfolio-level physical climate risks could really increase exponentially
in decades after 2030 under high emission scenarios, as effects of climate change
scenarios on hazard severity start to kick in around 2030. The climate and water
projection data we used in our method allow for extending horizons to 2100.

Data availability
All data used in this manuscript are made available. Plant-specific climate and hazard
time series (i.e., air temperature, wet-bulb temperature, precipitation, drought, floods,
and water temperature) that support the findings of this study are available in ref. 48,
which are also the source data for Fig. 3. Source data for Fig. 4 are in Table 2 in the main
text. Source data for Figs. 5 and 6 and Supplementary Figs. 2 and 3 can be found in
Supplementary Data 149. Unit-level daily outage data for thermal power plants in India
from April 1, 2013 through March 31, 2017 which was used for validation can be found
in Supplementary Data 250. Vulnerability factors are available in Supplementary Table 1.
An anonymized version of the power plants in EBRD’s early 2021 portfolio can be found
in Supplementary Data 351. The actual generation data used in the machine-learning-
based hydropower plant assessment as shown in Supplementary Fig 10 can be found in
Supplementary Data 452.

Code availability
Scripts that support the assessment are available from the corresponding author upon
reasonable request for non-commercial purposes.
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