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Rising water-use efficiency in European grasslands
is driven by increased primary production
Christian Poppe Terán 1✉, Bibi S. Naz1, Alexander Graf 1, Yuquan Qu 1, Harrie-Jan Hendricks Franssen 1,

Roland Baatz 2, Phillipe Ciais 3 & Harry Vereecken 1

Water-use efficiency is the amount of carbon assimilated per water used by an ecosystem

and a key indicator of ecosystem functioning, but its variability in response to climate change

and droughts is not thoroughly understood. Here, we investigated trends, drought response

and drivers of three water-use efficiency indices from 1995–2018 in Europe with remote

sensing data that considered long-term environmental effects. We show that inherent water-

use efficiency decreased by −4.2% in Central Europe, exhibiting threatened ecosystem

functioning. In European grasslands it increased by +24.2%, by regulated transpiration and

increased carbon assimilation. Further, we highlight modulation of water-use efficiency

drought response by hydro-climate and the importance of adaptive canopy conductance on

ecosystem function. Our results imply that decoupling carbon assimilation from canopy

conductance and efficient water management strategies could make the difference between

threatened and well-coping ecosystems with ongoing climate change, and provide important

insights for land surface model development.
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The exchange rate of carbon between the land surface and
the atmosphere determines the productivity of natural and
cultivated ecosystems and influences the concentration of

CO2 in the atmosphere1–5. Through photosynthesis, vegetation
drives the largest CO2 flux from the atmosphere to the earth
surface2,4, which is coupled to a simultaneous vapour outflux
though open stomata6,7. Combining those fluxes by relating
carbon assimilation flux to water loss, the water-use efficiency6,8,9

(WUE) is a commonly used indicator to examine changes of
ecosystem function3,10–18 and ecosystem performance and
fitness19. A recent study suggested that WUE constitutes one of
three major axes of ecosystem function variability20.

WUE increased due to stomatal closure11,12,14,21,22 in response
to increasing atmospheric CO2 since the beginning of the twen-
tieth century. This effect of CO2 on WUE is still not fully
quantified and there is no consensus on its magnitude21,23.
Moreover, changes of water supply and demand such as pre-
cipitation, soil moisture and vapour pressure deficit (VPD) have
been identified as key factors influencing ecosystem functioning
and WUE variability3,18,23–27. However, past large-scale spatio-
temporal WUE analyses from remote sensing (RS) derived data
rarely included long-term environmental effects23, such as rising
atmospheric CO2 and atmospheric dryness, and differ even in the
sign of detected WUE trends10,24,28. In addition, RS WUE studies
investigating effects of a deficit of water resources, i.e. droughts,
on WUE did not yet account for the plant physiological response
to increased VPD during droughts by use of an adequate WUE
index29–31. Hence, the spatiotemporal heterogeneity of WUE
trends and effects of droughts remains poorly understood25,30–32.
Their quantification from most recent RS data is important to
enhance the understanding of impacts and feedbacks of climate
change on ecosystem functioning across data sources and
scales23,33, as well as to provide insights to adequate functional
discretizations and related parameter in land surface models34,35.

Especially in Europe, where droughts were projected to increase
in frequency and severity36, a detailed assessment of the WUE
ecosystem function variability is required. Ranging from semi-arid
to very humid hydro-climates and from croplands and grasslands
to evergreen forests, the pan-European domain also enabled ana-
lyses regarding the modulations of hydro-climate and land cover to
the trends and drought response of WUE that have been found in
past studies18,23,27,31,37,38. Nevertheless, a clear picture of the
direction, magnitude and drivers of WUE trends and drought
response in European hydro-climates and land cover has not yet
been drawn. On top of that, the increasing availability of in-situ
data on the continent provides a unique opportunity to assess the
RS data quality and on the other hand the geographical, land-use
and hydro-climatic coverage of those in-situ station networks.

In this study, we defined three WUE indices. Two by dividing
carbon assimilation by ecosystem water-use, i.e. evapotranspira-
tion (ET) and transpiration (Tr), resulting in EWUE and TWUE,
respectively. Essentially, VPD has distinct effects on the carbon
assimilation and the water-use of an ecosystem and is expected to
increase during droughts. Therefore, the third WUE index relates
carbon assimilation to canopy conductance (Gc) (IWUE) with a
linear3,14,39 implementation of VPD and captures the physiolo-
gical response to drought by accounting for the regulation of
transpiration to atmospheric water demand through adaptive
stomatal opening. A more detailed description and their calcu-
lation is given in the Method section. Here we compared the
trends and drought response of these WUE indices across hydro-
climates and land cover to identify the adequate WUE index for
estimations of ecosystem health and performance, as well as land
surface model development.

The Global Land Surface Satellite (GLASS) photosynthesis
(here rather: gross primary production, GPP) RS data40,41,

includes the long-term effect of CO2, VPD and temperature by
use of the revised eddy covariance light-use efficiency model39.
So, we used the GLASS GPP and ET data (0.05° resolution, see
Methods for more information on the data) and reanalysis data
from the Global Land Evaporation Amsterdam Model42

(GLEAM, Tr, 25 km resolution), ERA5-Land43 (Tr, soil moisture,
leaf area index, 9 km resolution) and COSMO-REA644 (meteor-
ology, 6 km resolution) from 1995 until 2018 over Europe. We
aggregated the original data to 3 km spatial resolution (to match
future land surface model outputs) and 8-day temporal resolution
(the coarsest resolution from the original data from GLASS RS).
Relationships between ecosystem processes might vary with the
seasons, e.g. different effect of droughts on WUE between during
vegetation dormancy in winter and in summer, so we masked the
data to the meteorological summer (June, July, August) to capture
the most active period of the vegetation and to have a consistent
signal of WUE drought response.

Finally, we (1) identified trends of summer WUE and differ-
ences between WUE indices and land cover types, (2) detected the
response of WUE to precipitation and soil moisture in summer
drought conditions for hydro-climatic zones and (3) analyzed
drivers of summer WUE variability using a discovery method for
causal networks of ecosystem processes (Peter & Clark Momen-
tary Conditional Independence45, PCMCI+ 46). Consequently,
this work quantified regional variability of the summer WUE
ecosystem function along recent decades and during droughts
and identified distinct impacts of environment and ecosystem
processes for different hydro-climate zones and land cover types.
This work is important for the ongoing development of land
surface models that incorporate functional variability to envir-
onmental factors and the assessment of ecosystem health and
performance in the light of threatening changes in climate and
environment.

Results
All WUE indices decrease in Central Europe. Several aspects of
ongoing global change (e.g. anthropogenically driven increased
CO2 and resulting changes and temperature and VPD) were
found to affect the WUE3,10,14,26,47,48. To identify resulting long-
term changes we conducted pixel-wise seasonal Mann-Kendall
trend analyses that show spatially extensive, significant (p <0:05)
negative summer EWUE trends in Eastern and Central Europe
(Fig. 1a).

There was a radial gradient from these continental regions
outward towards significant increases in North and South Europe.
The median relative change of the whole domain was −5.2%. The
total relative changes here and later refer to the ratio of median of
slopes of corresponding pixels to the median of intercepts of the
same over the whole 24-year period 1995 – 2018. Therefore, the
continental WUE change was dominated by the extensive
negative trends in Eastern and Central Europe (Supplementary
Fig. S1 for the extents of the regions) which changed by −17.2%
and −8.8%. The negative median decreasing trend agrees with
MODIS products analyses by Tang et al. 201528 who found
decreasing global EWUE, although no resolved signal for Europe
was shown. Other studies using MODIS data29,49 outlined
decreases of a much smaller extent in Eastern Europe until
2014 than we found here, but showed positive trends over most
remaining parts of Europe. Importantly, the inclusion here of (1)
the long-term influences of CO2 and VPD to GPP and (2) recent
years, 2014 until 2018, might be reasons for differences to
mentioned studies. The decreasing trends in EWUE are also
evident in station scale and spatially upscaled EWUE estimates
from eddy-covariance (EC) measurements which show mostly
negative trends in Europe, and a small increase in the southern,

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00757-x

2 COMMUNICATIONS EARTH & ENVIRONMENT |            (2023) 4:95 | https://doi.org/10.1038/s43247-023-00757-x | www.nature.com/commsenv

www.nature.com/commsenv


more arid areas of the continent10,50 as well. However, site
network data was not able to confirm the decreases in Eastern
Europe due to the lack of stations in that area (Supplementary
Fig. S2 for the distribution of EC stations in used data in Europe).

In Fig. 1b, the summer TWUE trends show the same negative
sign and a similar magnitude in Central and Eastern Europe as
EWUE trends. The different trend slopes of Central and East as
compared to Northern and Southern Europe was evident again.
However, the extent of significant trends was not as coherent as
with EWUE trends: Patchiness of the sign of TWUE trend implies
higher spatiotemporal heterogeneity of Tr than of ET. Europe had
a median TWUE change of −3.0%. Regionally, Eastern and
Central Europe TWUE changed by −12.9% and −8.9%
respectively. Scandinavia experienced a TWUE change of
+10.7% during the whole study period. These TWUE trends
agree better than EWUE trends with previous modeling studies51.

In contrast, the median summer IWUE change across the
region was positive (+4.6%). Further, in contrast to EWUE and
TWUE, there were significant positive summer IWUE trends in
Eastern Europe (Fig. 1c). There, IWUE changed by a median of
+5.2% and on the Iberian Peninsula by +10.0%. However, as for
EWUE and TWUE, also IWUE shows a negative change in
Central Europe by −4.2% over the 24-year study period. We also
aggregated the trend slopes over areas of selected land cover types
(Supplementary Fig. S3 for a map of land cover types). We found
that IWUE of evergreen needleleaf and deciduous broadleaf
forests both changed by +3.0%. Further, in croplands IWUE
increased by +5.6% and grassland IWUE changed by a higher
margin of +24.2%.

An increase of forest IWUE was recorded in previous
studies11,12,14,21,23 and mostly explained by long-term elevated
CO2 concentration in the atmosphere. Nevertheless, the magnitude
of the forest IWUE increase from tree-ring studies is still debated52.
Our results agree with the directionality of trends from eddy
covariance towers of Keenan et al.14 and Mastrotheodoros et al.53,
but here we had a more extensive time period including more
recent years and state a substantially lower magnitude of IWUE
trends (0.12% year−1) in forests. Frank et al.12 also found IWUE
increases in broadleaf and needleleaf forests solely driven by CO2

based on tree ring isotope measurements. Here we did not find a
distinct magnitude of increasing trends between needleleaf and
evergreen forests, in contrast to tree-scale studies22,23.

Fig. 1 Albeit different directionality of trends elsewhere, all indices agree on decreasing summer WUE in Central Europe. In the summer seasons (June,
July and August) over the years 1995 – 2018, EWUE (a), TWUE (b) and IWUE (c) trends were calculated over monthly time series for each grid cell with
the seasonal Mann-Kendall analysis. The cross hatches mark areas where the trends are significant (p < 0.05).

Fig. 2 Contrasting drought response between WUE indices (rows) are
larger to soil moisture (SSI) droughts (right column) as compared to
precipitation (SPI) droughts (left column). We show the median WUE
drought response of the European domain as median EWUE (a, b), TWUE
(c, d) and IWUE (e, f) anomaly during precipitation (a, c, e) and soil
moisture (b, d, f) droughts.
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Contrasting drought response between WUE indices. We fur-
ther analysed the Europe-wide impacts of precipitation and soil
moisture summer droughts on WUE anomalies. We first calcu-
lated the standardized precipitation index (SPI) and the stan-
dardized soil moisture index (SSI) over the whole study period for
each grid cell on a monthly time scale (see Methods for more
details). Then, we determined monthly anomalies of each WUE
index when the drought index indicates drier than normal con-
ditions, i.e. when it is lower than −1. Finally, the summer WUE
drought response (Fig. 2) at each location is the median of its
drought anomalies over all summer seasons.

Generally, we found a larger response for SSI (Fig. 2b, d, f) than
for SPI droughts (Fig. 2a, c, e) with all WUE indices. EWUE and
TWUE both respond predominantly negative to drought, both on
on over 80% of Europe for SPI, and on over 78.9% and 66.3% for
SSI droughts, respectively. For each grid cell we estimated the
relative drought response by relating the median drought
response to the overall median WUE over the study period for
that same grid cell. The median relative SPI drought response of
EWUE and TWUE over the whole domain was −8.6% and
−8.5%, respectively, and the response to SSI droughts were
slightly larger for EWUE (−9.4%) and lower for TWUE (−7.6%).
Notably, largest regional response of both, EWUE and TWUE,
happened in Central Europe during SSI droughts, −15.3% and
−14.4%, respectively. The Mediterranean, however, was the only
region with a median positive TWUE response, which amounted
to +2.6% during SSI droughts. In contrast, IWUE responded
positively to drought virtually ubiquitous (over 90% of Europe for
both drought types), so that the median response to SPI droughts
was +17.3% and to SSI droughts was +23.6%. Same as with the
other WUE indices, the response of IWUE was larger during SSI
droughts. The highest regional response was in the Mediterra-
nean, accounting for +31.7% and +23.1% during SPI and SSI
droughts. Note a gradient from Northern humid regions with
lower drought response toward higher response in drier areas in
the South.

We found agreement on a generally negative EWUE drought
response with other past studies based on site scale FLUXNET
and spatial MODIS data17,29. In particular the study of Peters
et al.15 based on atmospheric carbon isotope data also found
increased IWUE during severe drought events for the Northern
hemisphere. Using remote sensing data of ET and Tr and site-
scale GPP, Gu et al.25 discovered discrepant EWUE (positive) and
TWUE (negative) drought response. However, our results
showing mostly negative EWUE drought response of forests
disagree with Huang et al.29, who used MODIS data and found
mostly increasing EWUE in Europe. The usage of data of
different scales (grid cell remote sensing water-use to site scale
GPP) as well as analysis exclusively at EC site locations in their
analysis could explain the different EWUE drought response
between their analysis and here.

Gradient of WUE drought response across hydro-climates. We
then analysed the WUE response to different summer drought
categories in hydro-climates (Fig. 3) to identify their relationship
as well as conditions with an optimal WUE3,17,54. For that, we
determined zones of hydro-climates based on annual
precipitation55 (Supplementary Fig. S1 and Table S1) and cal-
culated median WUE anomalies (defined here as drought
response) within the hydro-climate during occurrences of seven
categories of summer SPI and SSI indices ranging between ≤−2
and > 2 (Supplementary Table S2) on a monthly period.

In Fig. 3a we uncovered two gradients of EWUE response to
SPI categories: (1, along the x-axis) from negative response during
dry conditions to positive response during wet conditions with

larger response during more extreme conditions and (2, along the
y-axis) increasing negative drought response in dry conditions
across all hydro-climates. Here for EWUE, gradient (2) is
exhibited by low response in very humid and arid and the largest
response in semi-humid hydro-climates. Both these gradients
were more pronouncedly evident for SSI categories (Fig. 3b).
Zhao et al.17 also showed increasing negative EWUE drought
response with drought severity from FLUXNET data, but in
contrast to our study, they showed negative EWUE response
during wet conditions.

Similarly, TWUE response also followed both gradients (1) and
(2) in very humid to semi-humid regions along SPI (Fig. 3c) and
SSI (Fig. 3d) categories. But in semi-arid and arid hydro-climates,
we found generally smaller response of EWUE and TWUE along
SPI categories and a reversed gradient (1) for TWUE along SSI
categories, i.e. positive response during dry and negative during
wet conditions.

This reversed gradient (1) was again observed in IWUE
response but across all hydro-climates for both drought types
(Fig. 3e and f). Gradient (2) in the IWUE response to SPI
droughts was directed towards the largest positive response in
semi-humid and humid hydro-climates, while during SSI dry and
wet conditions it was towards semi-arid regions.

Drivers of WUE change and WUE drought response. We
conducted a causal network discovery analysis to understand the
relationships between meteorological, hydrological and biogeo-
chemical variables and how they interacted to cause WUE
variability for all summer months (Fig. 4) and how these inter-
actions differed during droughts (Supplementary Fig. S8). In
particular, we applied the PCMCI+method45,46 to create a
causal network (see Methods and Supplementary Fig. S11 and
S12) out of the input time series of considered variables for each
grid cell. We limited this analysis to the link strengths, i.e. partial
correlations, where PCMCI+ yielded directed, significant
(p < 0.01) causal links. It is clear that by definition, both, GPP and
ET cause WUE variability. However, their individual contribution
to WUE changes might differ depending on geography and
environment, so that either GPP or ET, or both similarly, are
responsible for those WUE changes. Furthermore, it is important
to understand that the resulting network does not directly yield
the drivers of long-term changes of a selected variable. Rather, the
network depicts the drivers of small-scale changes, identifying the
contribution of a certain variable at the link source (arrow
beginning) to the overall variability link destination (arrow head,
see examples Supplementary Fig. S11 and S12). The input time
series to the PCMCI+ analysis were detrended and anomalized.

First, we scrutinized the causal networks resulting from all
summer months (drought as well as nondrought months
included). GPP was significantly linked to EWUE variability on
a greater share of Europe than ET (Fig. 4d) but both correlated on
average and in absolute values almost equally strong with EWUE
(+0.66 ± 0.21 and −0.6 ± 0.36, Fig. 4e, uncertainty range refers to
the standard deviation). On the Iberian Peninsula, GPP variability
was the predominant cause of EWUE changes on 92.9% of its
area (where the correlations of the link GPP→ EWUE were
above +0.66). Around France GPP and ET did both control
EWUE. However, in Central and Eastern Europe 94.7% and
86.4% of the regions had rather ET caused EWUE changes, and a
much smaller area with strong links between GPP and EWUE.

Generally, PCMCI+ determined less grid cells with directed
links from GPP towards TWUE and IWUE than to EWUE
(compare totals of Fig. 4d, h, l). Further, the mean link strength
between GPP and TWUE as well as IWUE was lower than to
EWUE (compare Fig. 4e, i, m). While the zones where GPP and
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water-use influence were both strong around France and north of
the Black Sea remained when investigating TWUE (Fig. 4b), the
predominance of GPP influence in the Iberian Peninsula and the
Mediterranean on TWUE was not present. Rather, TWUE was
mostly transpiration controlled (Tr→TWUE <−0.66 on 76.8% of
Europe). Only in Scandinavia along the coast and on Iceland GPP
prevailed primal driver of TWUE. We found again less occasions
where GPP caused IWUE (Fig. 4l), and on at least 90% of the
total area Gc dominated over GPP in the control of IWUE
variability.

Then, we aggregated mean partial correlations from the
directed links of the PCMCI+ analysis towards WUE (Fig. 4f,
g, j, k, n, o) and towards GPP, Tr and Gc (Supplementary Fig. S6
and S7) over hydro-classes and land cover. In grasslands, the
GPP→ EWUE link was especially strong for all hydro-climates
(Fig. 4f), in exchange for a weak link between ET and EWUE
(Fig. 4g). Concurrently, also in grasslands, there was a weak
connection between temperature as well as soil moisture to GPP
(Supplementary Fig. S6a and b) as well as strong Tr dependent Gc

(Supplementary Fig. S7b). We found that besides the predomi-
nance of the Gc control on IWUE in other ecosystems, in

grasslands and evergreen needleleaf forests GPP still accounted
for a fair share of IWUE variability.

Just across hydro-climates, we discovered stronger links from
GPP to EWUE (Fig. 4f) and weaker links from ET to EWUE
(Fig. 4g) in semi-arid than in more humid areas. An influence of
hydro-climate on the GPP to TWUE link was only clearly visible for
deciduous broadleaf forests and grasslands (Fig. 4j, both towards
stronger GPP→ TWUE links in very humid areas), the strongest
Tr→ TWUE links, however, were in in semi-humid and humid
hydro-climates (Fig. 4k). Aside from the low average influence of
GPP on IWUE across the continent that we described before,
Fig. 4n also shows that this link still played a role for evergreen
needleleaf forests and grasslands and it was modulated by hydro-
climate, so that the weakest GPP→ IWUE links were in semi-arid
and the strongest in very humid areas. The Gc influence on IWUE
shows lower correlations generally in semi-arid zones throughout
all land cover and in grasslands across all hydro-climates.

The input for a second PCMCI+ analysis were only those
values in the time series of the considered variables that
concurred with a soil moisture drought (SSI <−1). We did the
same processing of the data to create the European interaction

Fig. 3 The magnitude of WUE response to droughts depends on the drought severity and the hydro-climate. Shown here are EWUE (a, b), TWUE (c, d)
and IWUE (e, f) median anomalies (color map) to indicate the drought response during instances of standardized precipitation (SPI) (a, c, e) and soil
moisture (SSI) (b, d, f) anomaly categories (x-axes) and hydro-climates (y-axes, Supplementary Fig. S1 and Tables S1 and S2).
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maps of GPP and ET links in Supplementary Fig. S8a, b and c as
we did in Fig. 4a, b, and c. For the bars of relative area covered by
significant links (Supplementary Fig. S8d, h and l), the mean link
strengths (Supplementary Fig. S8e, i and m) and the aggregations
of mean link strengths across hydro-climate and land cover
(Supplementary Fig. S8f, g, j, k, n and o), we rather show the

absolute difference of the corresponding values between the
drought and the non-drought PCMCI+ analyses, to highlight the
aggregated response of the links to droughts (see Methods for a
more detailed description).

The number of grid cells and therefore the relative area with
significant links between GPP, water-use or Gc have generally

Fig. 4 EWUE change is caused by gross primary production (GPP) on the Iberian Peninsula and evapotranspiration (ET) variability in Central and
Eastern Europe, while we determined less directed causal links to TWUE and IWUE. Here we show partial correlations of GPP versus ET to EWUE (a),
GPP versus transpiration (Tr) to TWUE (b) and GPP versus canopy conductance (Gc) to IWUE (c) from the PCMCI+ analysis. Green colors show a
stronger link between GPP and WUE variability, and pink colors a stronger link between water-use and WUE, while gray shows low correlations and dark
purple strong correlations of both. On the right side, we show for each map the relative area to the total land surface where PCMCI+ yielded directed links
from GPP and water-use WUE (d, h, l) and the respective mean partial correlations (circle) across the continent with the standard deviation (error range
marker) (e, i, m). Lastly, we aggregate the partial correlations of those links (f, g, j, k, n, o) over land cover (x-axes, ENF Evergreen Needleleaf Forest, DBF
Deciduous Broadleaf Forest, MF Mixed Forest, GR Grasslands, C Croplands) and hydro-climates (y-axes).
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decreased (Supplementary Fig. S8d, h and l), but by a rather small
magnitude (always less than 5%). Further, the influence of GPP
on EWUE increased and the influence of ET on EWUE decreased
during droughts (Supplementary Fig. S8e). Geographically, this
meant more extensive sole GPP control over EWUE in Southern
Europe, and more co-control of EWUE by GPP in Central and
Eastern Europe. This was noticeable through more green colors in
the South and shifts from pink and purple to dark purple in
Central and Eastern Europe between Fig. 4a and Supplementary
Fig. S8a. Similarly, GPP influence on drought TWUE increased
and Tr decreased (Supplementary Fig. S8i), mostly noticeable in
Central and Eastern Europe (compare Fig. 4b and Supplementary
Fig. 8b). However, droughts did not change the interactions of
IWUE drivers much. The already small GPP influence on IWUE
in general decreased during droughts (Supplementary Fig. S8m),
but the ubiquitous Gc influence persisted.

Furthermore, the aggregated drought response of GPP and
water-use links to WUE along hydro-climate and land cover were
more nuanced. We found a contrasting GPP→ EWUE drought
response between semi-arid (negative) and more humid hydro-
climates (positive), particularly in grasslands and croplands
(Supplementary Fig. S8f). The response of the ET→ EWUE link
to drought was also reversed (positive) in semi-arid grasslands
than in other ecosystems (negative). In deciduous broadleaf and
mixed forests, as well as in croplands, the drought-related link
strength reductions of ET to EWUE and Tr to TWUE, were most
dominant, while evergreen needleleaf and mixed forests experi-
enced the strongest increases in GPP influence on both EWUE
and TWUE. The semi-arid regions showed a contrasting response
of the Tr→ TWUE link in deciduous broadleaf forests, where Tr

influence increased. Again inverted drought response of GPP→
IWUE link in semiarid hydro-climates response was most
dominant in grasslands and croplands, and for Gc→ IWUE in
deciduous broadleaf and evergreen needleleaf forests. The
reduction of GPP influence on IWUE during droughts was most
accentuated in very humid evergreen needleleaf forests.

Discussion
To comprehensively describe the variability of the important
WUE ecosystem function along recent climate change, we con-
ducted analyses on the summer-time trends, drought response
and the causes of variability across the European continent using
novel RS and reanalysis data. Here we did not include investi-
gations on particular effects of the newly included influences of
CO2 and VPD in the RS GPP data on our WUE analysis. But
these developments are welcome because the missing influences
on GPP and resulting uncertainties on long-term WUE trends
were a main point of criticism on RS-based WUE studies23.
Nevertheless, the RS GPP model implementations and underlying
data uncertainty must still be scrutinized with respect to WUE.
Future works might therefore use control data without these
inclusions and test their incorporation to assess the effect on
WUE variability.

A Mann-Kendall seasonal trend analysis showed EWUE and
TWUE decreased in Central and Eastern Europe and increased
in Northern Europe and the Iberian Peninsula. IWUE on the
other hand mostly increased but aligns with the other indices
on decreases in Central Europe. The dominant increase of
IWUE was in accordance with previous studies from different
data sources and scales10–12,14,21–23,45,46. But here we also
showed highly resolved, spatially extensive, significant decreases
of all three WUE indices in Central Europe and of EWUE
and TWUE in Eastern Europe which could not yet be confirmed
in in-situ data yet, due to the lack of eddy covariance
measurements there.

As indicated by Kühn et al.19, increasing WUE is a trait that is
related to enhanced plant performance and fitness irrespective of
the WUE index at plant scale. We assumed the relationship of
WUE on ecosystem performance and fitness to persist on grid cell
scale, but found inconsistency of WUE trend direction between
indices (negative for EWUE and TWUE and positive for IWUE).
Therefore, we concluded that the IWUE index, which considers
the eco-physiological adaptation of Gc and hence compares better
with plant scale WUE, is best for inference of ecosystem perfor-
mance and fitness. Consequently, declining IWUE from our trend
analysis indicated ecosystems that potentially did not adapt well
to environmental changes and have weakened functionality and
performance: the Central European region, in the Central Alps,
Balkan and western Turkey as well as Southern Finland (Fig. 1c).
Irrespective of the hydro-climate, we observed increased IWUE
indicated enhanced ecosystem performance, particularly in
grasslands (Supplementary Fig. S4c), and decreased performance
in mixed forests. Other land cover have contrasting directionality
of IWUE trends and performance across hydro-climates. We note
that increased plant IWUE is also a response to stress, and
increased performance is not directly associated with increased
ecosystem health. Nevertheless, plants and ecosystems that can
efficiently adapt IWUE positively to changes in environmental
conditions have an advantage with ongoing climate change.
Future studies might verify the scaling and from plant to eco-
system and grid cell IWUE trends and the inference of ecosystem
performance, but for that more extensive in-situ ecosystem
observation data is needed. Because of the contradicting trends,
drought-response and drivers between WUE indices, analyses on
ecosystem performance from large-scale and spatiotemporal
continuous data such as remote sensing, reanalysis and land
surface model outputs might focus specifically on the IWUE
index. These results create concrete functional references for land
surface model developers as well as insights into relationships
between ecosystem functioning and performance.

We did not find distinct IWUE trends between needleleaf and
broadleaf forest land cover types, exhibiting the known dis-
crepancy between leaf-scale and ecosystem scale WUE23. We
hypothesized that the potential bias from representing spatial
homogeneity of ecosystems by aggregation of grid cells by
dominant land cover is not significant, because EC measurements
(which are based on single land cover ecosystems) also did not
show significantly different WUE trends between land cover
either23. The potential spatial aggregation bias also averaged off,
by use of an adequately high number of grid cells with corre-
sponding dominant land cover and might yield statistically more
sound conceptual conclusions on discrete ecosystems than EC
measurements from only a few dozen sites with short time series
and underrepresented geographical regions and hydro-climates.
Still, and importantly, the data used in our study was subject to
several uncertainties. Those include lack of representation of
vegetation and atmosphere interactions, e.g. the influence of
WUE changes on above-canopy VPD that was not present in the
meteorological data from COSMO-REA6 used here. Further, the
remote sensing and reanalysis models are forced with different
input data, so that drought response of leaf area index (and
further GPP, ET and WUE) might occasionally be shifted in time.
Though, we assessed this effect over an 8-daily time resolution to
be negligible. Furthermore, the vegetation response from long-
term environmental effects from rising CO2 and VPD in the used
GLASS GPP data might not be reflected in e.g. ERA5-Land and
GLEAM vegetation and soil moisture data, and may have caused
bias in the TWUE and IWUE trends. We found that the GPP and
ET data used in our study compared well with in-situ measure-
ments by validating time-series from corresponding grid cells
with time series from eddy covariance sites (See Methods and
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Supplementary Tables S3 and S4). The Tr data was compared to
plant sap flow measurements upscaled to forest stand (see
Methods and Supplementary Table S5) but did not yield satis-
factory results. This could be due to uncertainties in the scaling
process and the different ecosystem representation of the grid cell
data and upscaled sap flux data. However, large-scale spatial and
in-situ Tr data alternatives remain scarce. Further development of
in-situ and spatial Tr estimates will be appreciated, and in future
those should be evaluated on WUE ecosystem function estima-
tions. WUE calculations, trends and drought response then
depend on the combination of uncertainties for each variable,
amplifying the uncertainty range for the WUE indices. A future
study will compare WUE estimations from eddy covariance sites
with corresponding grid cells in our data and land surface model
output, to evaluate this uncertainty in more detail.

Further we found negative drought response of EWUE and
TWUE to both precipitation and soil moisture droughts, while
IWUE responded positively (Fig. 2). All WUE indices showed
larger response during more severe drought conditions, and a
gradient across hydro-climates (i.e. towards highest response at
semi-humid hydro-climates for EWUE, humid for TWUE and
semi-arid for IWUE). Despite a clear relationship between pre-
cipitation and soil moisture, we discovered more pronounced
WUE response gradients during soil moisture droughts. We
expected this higher sensitivity of WUE to soil moisture than to
precipitation due to its direct connection to the vegetation
dynamics (vegetation uptake of water through roots in the soil).
The intriguing contrasting TWUE drought response between
arid and humid hydro-climates, for example, was much more
pronounced during soil moisture drought (Fig. 3d) and less
distinctive during precipitation droughts (Fig. 3c). It is note-
worthy that the differing root depths of vegetation land cover
(especially shallow versus deep rooted) might have influenced
the drought response signal. We investigated the difference in
WUE response between soil moisture droughts in different soil
depth layers (see Methods) and we did not discover apparent
differences. So, we focused the further discussion only on WUE
drought response to soil moisture droughts in the surface layer
(0–7 cm depth).

To conclude on these contrasting TWUE drought response
between arid and humid hydro-climates, it is helpful to first
discuss the gradient of IWUE drought response across hydro-
climates. Those were exclusively positive with the largest response
in semi-arid hydro-climates (Fig. 3f). We concluded two points
from here: Firstly, the physiological drought response of Gc

reduction was not accompanied by a proportional decrease of
GPP, resulting in the ubiquitous positive response of IWUE. This
was in accordance to the current understanding of plant bio-
chemistry drought response54. Secondly, humid ecosystems
responded much less sensitive to droughts than arid. This was
evident in weaker responses in humid hydro-climates than in arid
for all drought severity categories, and exhibits the two opposing
drought water management strategies of plants: The isohydric
strategy common in arid ecosystems, where the stomatal con-
ductance is quickly regulated to limit transpiration during
droughts, and the anisohydric strategy common in humid eco-
systems, where the plants do not regulate Gc until close to
dehydration to maximize carbon assimilation35,56. Importantly,
our analyses were conducted at monthly time scale, where VPD
and soil moisture were found to be coupled57, and under such
conditions, the isohydric – anisohydric framework is a good
predictor for Gc variability58. The results show that there was still
some adaptation of the Gc in humid hydro-climates even during
moderately dry conditions, expressed through slightly increased
IWUE. This can be the result of upscaling heterogeneity of dif-
ferent plant dehydration thresholds and occurrence of

anisohydric species in humid climates. Additionally, the drought
definitions by standardized indices did not differentiate between
specific water needs of ecosystem types. Further, the different net
water availability during same drought category between loca-
tions of different mean soil water magnitudes might also have
confounded these gradients. However, the gradient towards more
dynamically adapted stomata and Gc and increased IWUE in dry
hydro-climates is clear, and there, it even resulted in increased
TWUE (Fig. 3d), which could be due to the fact that decreasing
Gc let Tr decrease stronger than GPP, leading to a net water
saving per carbon assimilated during droughts. That behaviour
remained exclusive for arid and semi-arid ecosystems, suggesting
that humid ecosystem functioning with their ineffective and risky
water strategy behaviour that evolved with water resource
abundance36,56, will possibly be inhibited by dehydration (and/or
shift to more drought tolerant vegetation) along with the expected
increase in drought occurrence and severity across the whole
European continent. Upcoming studies should project ecosystem
functioning and performance with future climate scenarios and
assess the state of humid ecosystems by accounting for ecological
instead of soil moisture drought categories.

We concluded with analyses of causal networks from
PCMCI+ to determine differences between the detected drivers
of WUE variability across regions, hydro-climates and land cover
types in Europe. A striking result was the GPP caused EWUE
variability in Southern Europe which is not evident for TWUE
variability accordingly (Fig. 4a, b). Therefore, the weaker link
between ET and EWUE in Southern Europe comes from the
inclusion of evaporation from soil. Especially in semi-arid, less
vegetated regions during dry conditions, soil evaporation will
increase as long as there is water in the soil but Tr will decrease
due to the closure of stomata (as seen in Fig. 3d). Hence, the
resulting ET variability is lower than Tr variability in semi-arid
regions and resulted in less significantly explained EWUE varia-
bility by ET and the predominance of GPP influence on EWUE
(Fig. 4f). However, TWUE variability showed the differences
between isohydric, more Tr-controlled, arid ecosystems and ani-
sohydric, less Tr controlled, humid ecosystems well (Fig. 4b, j and
k). In addition, the influence of GPP that was present on EWUE
and TWUE, but not obvious for IWUE suggested that IWUE
variability was predominantly controlled by Gc through depen-
dence of GPP on Gc (Fig. 4c, m, n and o). Hence, IWUE
depended mostly on the water management strategy and the
physiological adaptability to environmental changes. Importantly
though, in the most humid regions (near the coast of Norway, in
Iceland and the Alps), there is high influence of GPP on IWUE,
potentially pointing at a decoupling of GPP and Gc.

We investigated the large increasing trend of grassland IWUE
(Supplementary Fig. S4 and S5) with respect to its drivers. For
that, we depicted the linear regressions of relevant link strengths
(as independent variables) as a function of the grassland IWUE
trend (dependent variable) slope in Fig. 5. Interestingly, the larger
the slope of IWUE trend, the stronger was the GPP→ IWUE and
VPD→Gc and the weaker was the Tr→Gc link. This pattern
matched to the regulation of Gc and Tr to dry conditions that we
described above, through down regulated Tr variability and more
GPP variability. Comparing the trends of relevant variables
confirmed the emergent picture: high positive IWUE trends
corresponded with positive GPP trends and negative Gc trends.
Coincidentally, soil moisture droughts became less likely because
of increasing soil moisture trends, but atmospheric water
demand, as VPD, rose, causing the described physiological
responses of Gc and Tr in the long term. Combined with the GPP
increase, which was presumably caused though the enhanced
light-use efficiency with rising atmospheric CO2

59, among other
environmental factors, these resulted in the large IWUE increases
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in European grasslands. Future studies should look in more detail
on the factors driving the large positive grassland GPP trends and
its decoupling from Gc variability from in-situ data on smaller
scales and whether this signal is represented in current land
surface models.

We saw the overarching pattern of semi-arid ecosystems
reacting distinctively than humid, croplands and forested eco-
systems in the drought response of causal networks (Supple-
mentary Fig. S8). Semi-arid ecosystems effectively control Tr

without inhibiting carbon assimilation, which was evident in
unchanged GPP link strengths to EWUE and TWUE as shown in
Supplementary Fig. S8f and j, but partly strengthening the Tr→
TWUE link (Supplementary Fig. S8k) and generally strengthen-
ing the Gc→ IWUE link (Supplementary Fig. S8o). This under-
lines the conclusions on the opposing TWUE drought response
between isohydric ecosystems in arid hydro-climates and aniso-
hydric ecosystems in humid ecosystems through different water
management strategies.

We also emphasize the response of causal networks in grass-
lands to drought that corresponded with the response to long-
term increasing VPD described above. Grasslands showed a
rather small change in the Tr→ TWUE link (Supplementary
Fig. S8k) and no changes to the Gc variability as well (Supple-
mentary Fig. S8o). Rather, GPP influence on IWUE increased
especially in grasslands, again pointing at a potential decoupling
of Gc and GPP through other environmental factors like
increased atmospheric CO2 that would also explain the large
increasing grassland IWUE trend along with continuous drying
of the atmosphere (see increasing VPD trend).

Long-term environmental changes and resulting in trends of
ecosystem variables over the 24-year study period might have had
an impact on influences between those variables, thus changing
the causal network over time. Those long term effects on causal
networks were not considered here. Prospective work will deal
with differences in e.g. decadal causal networks around WUE to
determine the changes in the drivers over time, that were not
considered here. We included a wide range of meteorological,
hydrological and ecosystem processes time series in the
PCMCI+ analysis to comply with the causal sufficiency
assumption and have as many possible confounding factors
included as possible. But scarce and fragmentary data kept us
from including factors that might have played a role on ecosystem
processes change: local atmospheric CO2 concentrations and
human forest and crop management, inter alia.

All in all, the study advanced the understanding of the WUE
ecosystem function, using new remote sensing data and relating
results to existing studies from different data sources and scales.
Concretely, we highlight:

1. Decreasing summer IWUE trend as indicator for poten-
tially inhibited ecosystem function and performance in
Central Europe;

2. High increasing European grassland summer IWUE trend
despite atmospheric drying was caused by maintained Tr

through adaptive Gc and increased, decoupled GPP;
3. Contrasting TWUE drought response and IWUE drought

sensitivity across hydro-climates that demonstrated the
contrast between isohydric and anisohydric plant water
management.

In this study, we provided references for the further develop-
ment of land surface models and its discretization and para-
metrization and assessments of European ecosystem functioning
and performance changes. Future work will scrutinize whether
these effects are detected by in-situ observations and the repre-
sentation of these effects by current implementation and para-
metrization of plant functional types in state-of-the art land
surface models.

Methods
GPP data. We used GLASS12B02 V40 (http://www.glass.umd.edu/introduction.
html)40 GPP data, which is in 0.05° spatial and 8 daily temporal resolution and was
created with the revised EC-LUE model41 and includes long-term effects of CO2,
temperature (T) and VPD on GPP. While we left the assessment of the impact of
the inclusion of those long-term environmental variables in GPP on WUE varia-
bility for future studies, we still validated this GPP product with FLUXNET2015
and ICOS Drought-2018 data (see their data descriptions below). To facilitate the
data handling in this work and streamline comparisons with upcoming outputs
from a land surface model, we aggregated this data from the original 0.05° reso-
lution to the 3 km European CORDEX domain60 by bilinear interpolation. Then
we compared the site GPP time series with those of corresponding grid cells in
Supplementary Tables S3 and S4 and the mean ET value of stations against the
mean of corresponding grid cells in Supplementary Fig. S10. We also plotted the
geographical distribution of R² values between station and GLASS GPP in Sup-
plementary Fig. S2a. We assessed the validation as good (mean R² value of 0.67
across 60 FLUXNET2015 and 0.7 across 52 ICOS Drought2018 sites), but point out
potential bias in regions where there less station density or no station data available
at all (e.g. Southern and Eastern Europe).

ET data. The ET data used in this work is from GLASS11B02 V41 (http://www.
glass.umd.edu/introduction.html), is calculated by a multi-model ensemble
approach merging five process-based ET data40 and has a 0.05° spatial and 8-daily

Fig. 5 Strongly increasing IWUE in European grasslands are the result of regulated Tr and increasing GPP. We show in (a) the link strengths (y-axis,
color lines) as linear regression function of the IWUE trend (x-axis). The 95% confidence interval was plotted but is minimal for all. The slope and p values
of the regression are given in the figure legend. In (b) the linear regression of trend slopes of other relevant variables (y-axis, color lines) are plotted against
the respective IWUE trend (x-axis). Again, the slope and p values are given in the figure legend. The stronger the positive IWUE trend, we note stronger
GPP influence in (a, blue line) and the stronger the GPP trend slope, too (b, red line). At the same time, although vapour pressure deficit (VPD) is rising
(b, light blue line), transpiration (Tr, b, purple line) was regulated by decreasing canopy conductance (Gc, b, dark blue line), resulting in the strong IWUE
increases.
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temporal resolution. Similar to the GPP data described above, we linearly interpolated
the GLASS ET data from the original 0.05° resolution to the 3 km European COR-
DEX grid. Importantly, GLASS ET is given as latent heat in W m−2, so we converted
the values to mm day−1 by multiplying all values by 0.035, assuming a constant
enthalpy of vaporization decoupled of variable temperature, which was applied in
numerous studies before because of the small effect of variable enthalpy to the overall
outcome of the conversion. Additionally to the validation with FLUXNET2015 and
ICOS Drought-2018 ET (calculated from latent heat flux, see below) we also com-
pared GLASS ET with reanalysis ET data from GLEAM3.5a (https://www.gleam.eu/)
and ERA5-Land (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
land). In Supplementary Fig. S9 we plot mean FLUXNET2015 ET from stations
against mean ET of the corresponding grid cell in GLASS, GLEAM and ERA5-Land
ET. We decided to do our analyses with GLASS ET based on this result: The slope of
GLASS ET against station ET shows better representation across sites than ERA5-
Land and GLEAM. Again, in Supplementary Tables S3 and S4 we present the R²
between GLASS ET and station FLUXNET2015 and ICOS Drought-2018 ET time
series. There is good agreement in the ET variability of GLASS and station ET,
yielding mean R² across stations of 0.74 and 0.71 for FLUXNET2015 and ICOS
Drought-2018 respectively. The geographical distribution of R² between stations and
GLASS ET is also shown in Supplementary Fig. S2b.

Tr data. Here we used GLEAM3.5a (https://www.gleam.eu/) Tr data42 in all our
analysis. The data is created in a land evaporation model and uses data assimilation
of soil moisture from satellite observations. It is available in 0.25° spatial and daily
resolution. We again bilinearly interpolated in space to the 3 km European
CORDEX grid, and aggregated the daily data to 8-daily means to make direct
comparisons with the GLASS RS data. We compared GLEAM and ERA5-Land
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land) Tr with
sap flow measurements from trees that we upscaled to forest stand Tr from
sapfluxnet61 (http://sapfluxnet.creaf.cat/). The results are shown in Supplementary
Table S5. We opted for GLEAM Tr because of the higher mean R2 across stations
(0.42) than ERA5-Land (0.39). We add that the comparisons were biased because
the upscaling from tree sap flow to tree stand transpiration did only represent one
species (although this species dominated the forest) and did not represent
understory transpiration at all while GLEAM transpiration represents whole eco-
system transpiration. Still, we were not aware of currently existing, more adequate
homogeneous in-situ Tr data spanning multiple sites to verify transpiration directly
and leave this out for future studies.

Meteorology data. Meteorological variables we used in this study were used to
determine droughts (precipitation), hydro-climates (precipitation, annual sums55,
see Supplementary Fig. S1 and Table S1) and/or environmental drivers in the
PCMCI+ analysis (precipitation, temperature, shortwave incoming radiation,
wind speed, relative humidity). All those values originated from the COSMO-REA6
(https://reanalysis.meteo.uni-bonn.de/?COSMO-REA6, a meteorological, high-
resolution regional reanalysis over the European CORDEX domain in 6 km spatial
and hourly time resolution with boundary conditions from ERA-Interim44. Again,
we bilinearly interpolated the data to 3 km and aggregated to 8-daily means. This
meteorological data also forces a land surface model, which will be used to ela-
borate on the current implementation of the WUE ecosystem function in Europe in
an upcoming study. The VPD was calculated from the temperature and relative
humidity after Allen et al.62:

ES ¼ 0:6108 ´ e
17:27 ´T
Tþ237:3 ð1Þ

EA ¼ ES ´RH
100

ð2Þ

VPD ¼ ES � EA½kPa� ð3Þ
Where ES is the saturated vapour pressure and EA the actual vapour pressure, T the
temperature and RH the relative humidity.

Hydrology data and drought indices. We took soil moisture data from ERA5-
Land (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land) at
two different depth layers (0 – 7 cm, 7 – 28 cm). We bilinearly interpolated from
the native 0.09° spatial resolution to the 3 km European CORDEX grid and
aggregated the daily values to 8-daily means. After we compared the WUE drought
response based on drought indices of both, we opted to just use the surface soil
moisture layer (0 – 7 cm) because the WUE response to soil moisture drought in
both soil layers did not differ. The drought indices of precipitation and soil
moisture of both layers were calculated using the climate indices python package63

by fitting the soil moisture and precipitation of the whole 1995 – 2018 time series in
every grid cell into a gamma distribution. Then we calculate standardized
anomalies from the transformed time series:

SXI ¼ X � �X
σX

ð4Þ

Where X is the time series of the respective water resource (precipitation or soil
moisture from both layers), and X̄ and σX the mean and the standard deviation of

the respective time series at the grid cell level. SXI represents the resulting stan-
dardized drought index, specific for the water resources, the standardized pre-
cipitation index (SPI) and the standardized soil moisture index (SSI) of the surface
soil layer.

Leaf area index and land cover data. We obtained the leaf area index for the
PCMCI+ analysis from the ERA5-Land. We bilinearly interpolated from the 0.09°
native spatial resolution to the 3 km European CORDEX grid and aggregated the
daily data to 8-daily means.

The land cover data is IGBP-Modified MODIS 20-category data from
MCD12Q1 (https://lpdaac.usgs.gov/products/mcd12q1v006/). We upscaled the
data from 500m native spatial resolution to our 3 km European CORDEX working
grid by selecting the dominant land cover within the native grid cells whose centers
lay inside the coarser 3 km grid cell. Therefore, the land cover indications refer in
this paper refer to the grid cell-specific dominant land cover type by area.

In-situ observation data and validation. We used in-situ observation data from
three different networks, that are FLUXNET201564 (60 sites, 569 site-years) and
ICOS Drought-201865 (42 sites, 577 site-years) for GPP and ET (latent heat) sand
SAPFLUXNET (54 sites, 180 site years) for sap flow.

The ICOS Drought-2018 data used the FLUXNET format64 and methodology
that is also used in FLUXNET2015, so here we describe how we used them for both.
We used the GPP variable estimated by night-time partitioning from net ecosystem
exchange with variable threshold on friction velocity dependence
(‘GPP_NT_VUT_REF’ variable). We masked this variable based on estimations of
data quality of net ecosystem exchange (‘NEE_VUT_REF_QC’ variable), which is the
measured variable before GPP gets partitioned from it. Similarly, to use in-situ ET
observations, we took the measured latent heat flux from those data (‘LE_F_MDS’
variable) that uses the marginal distribution sampling technique (MDS) for gap
filling. This variable was again masked by data quality measure (‘LE_F_MDS_QC’
variable). Then, we converted Wm-² to mm day−1 by multiplying all values by 0.035,
assuming a constant enthalpy of vaporization decoupled of variable temperature,
which was applied in numerous studies before because of the small effect of variable
enthalpy to the overall outcome of the conversion.

As in-situ Tr data remains scarce, we opted to use a pan-European in-situ data
of sap flux measurements and upscale them to the tree stand with the method seen
in Nelson et al.66: We normalized daily tree sap flow values to the unit basal area of
each tree and averaged the values for each species present in the stand. In all stands,
species where sap flow was measured covered 90% of the total stand basal area.
Then we multiplied the species-specific sap flow per basal area by the basal area of
each species in the stand and summed the resulting Tr of all species to obtain the
stand level Tr in mm day−1.

For the validation, we first found the closest grid cell in the 3 km European
CORDEX grid, which the spatial data where regridded to before (see above), to the
coordinates of the observation station. Closest grid cell means the grid cell where
the grid cell center has the shortest distance to the observation coordinates. We
extract the GPP, ET and Tr variables from the aggregated spatial data and
calculated R² between the time series of the station and the grid cell level data of the
spatial data.

Determination of WUE drought response. We then identified the drought
response in each location or grid cell as the difference of the median WUE only in
drought years to the overall median WUE in that grid cell. For this, we defined a
drought where the monthly SSI or SPI is less than −1. Similarly, drought severity
categories were defined over the monthly SPI and SSI bins based on thresholds
from Supplementary Table S2. Respective drought response refer to the difference
between the median WUE of the variable values masked to when the drought index
is within the given bin and the overall median WUE at this location.

Resulting European data for WUE analyses. We aggregated the spatial data to
one single netCDF file. This data is in the 3 km European CORDEX grid, in 8-daily
time-steps from 1995 until 2018 and comprises of variables from GLASS remote
sensing (GPP, ET), GLEAM reanalysis (ET, Tr, surface and root layer soil moist-
ure), ERA5-Land reanalysis (ET, Tr, surface and first sub-surface layer soil
moisture, leaf area index), and COSMO-REA6 meteorology (temperature, pre-
cipitation, relative humidity, incoming shortwave radiation, wind speed). The data
can be made available upon request.

Water-use efficiency indices. The WUE indices are calculated from the selected
data described above. We calculated the EWUE index based on the GPP and ET
from GLASS remote sensing:

EWUE ¼ GPP
ET

½gCmm�1� ð5Þ
The TWUE index is based on GLASS GPP and GLEAM Tr:

TWUE ¼ GPP
Tr

½gCmm�1� ð6Þ
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To calculate the IWUE index, that considers the canopy conductance Gc rather
than actual water-use per se, we first define Gc as:

Gc ¼
Tr

VPD
½mmkPa�1� ð7Þ

With Tr from GLEAM and VPD calculated from COSMO-REA6 (see above).
Therefore, IWUE results as:

IWUE ¼ GPP
Gc

¼ GPP
Tr

´VPD ¼ TWUE ´VPD½gC kPamm�1� ð8Þ

Trend analysis. The WUE slope, intercept and p values were calculated in each
grid cell using the non-parametric, seasonal Mann-Kendall analysis from the
python package pymannkendall67 for monthly values from 1995 – 2018 masked to
the summer months June, July and August. The slope is determined as the Theil-
Sen estimator slope and the p value with a two-tailed test. We estimated median
trends and intercepts of geographic regions and land cover by first determining the
grid cells corresponding to a certain region or to one particular or a group of land
cover and then calculating the median slope and intercept values corresponding to
those grid cells, respectively. The relative median trend is then calculated by
dividing the resulting median trend by the median intercept. We chose the
intercept as the relative reference because it represents the regression value at the
start of the time series, in our case i.e. beginning of 1995 and by multiplying with
the number of years, i.e. 24, we got the total relative change of the trend regression
during this study period.

Causal network discovery analysis. PCMCI+45,46 is a causal network discovery
method, which can estimate contemporary and lagged dependencies between time
series. Important assumptions to entitle causality in PCMCI+ is causal and time
series stationarity and causal sufficiency. To fulfill causal sufficiency, we included as
many as 11 variables related to ecosystem process variability (i.e. GPP, ET, Tr,
temperature, relative humidity, VPD, Gc, shortwave incoming radiation, wind
speed, precipitation, soil moisture and the leaf area index) and selected possible
links of physically plausible relationships using the selected_links parameter and a
significance level threshold of 0.01. Although some links of the network were not
analysed here, their inclusion secured causal sufficiency (consideration of all pos-
sible common influencing factors to a variable) and they will be scrutinized in
future investigations. We approximated causal stationarity by masking the time
series to the summer season to omit changing relationships between variables, e.g.
shortwave incoming radiation→GPP in deciduous forests is given in summer but
not in winter68. We further acknowledged changes in the causal relationships
between the variables during special conditions, such as extreme high
temperatures69, and in the long-term over the 24-year period but we argue that
they are negligible in the 8-day timely resolution in our data. Time series statio-
narity is satisfied by detrending and using seasonal anomalies of the time series of
each variable that have already been masked to the summer months, before
inputting into the PCMCI+ algorithm of the python package tigramite (https://
github.com/jakobrunge/tigramite). We conducted three analyses whereby we
added one respective WUE index to the input variables and adapted the selecte-
d_links parameter to match the possible links between the different components
and their respective WUE index and no lag of causal relationships. Directed causal
links between variables are iteratively found with conditional independence tests.
We remark that some relationships among the selected links are of nonlinear
nature. Nonlinear conditional independence tests in the PCMCI+ algorithm exist,
however the detection power of linear links will be inhibited. We chose to assume a
linear causal network as we are predominantly interested in how the strength of
particular links vary across networks aggregations of regions, climates and land
cover. Therefore we opted for the linear partial correlation conditional indepen-
dence test for the cost of potential false positives and false negatives, but is still able
to detect small nonlinearities. We minimized the impact of this uncertainty by
limiting the network to physically possible and plausible links with the selecte-
d_links parameter as described above. For the full methodological description of
PCMCI+we refer to Runge et al.46. The network including all possible links
through our selected_links control is shown in Supplementary Fig. S11. Impor-
tantly, the total possible network may not make sense as such but enables
PCMCI+ to unravel the different causal networks of hydro-climates and land
cover. An exemplary causal graph output from PCMCI+ for a grid cell corre-
sponding to the Wüstebach ICOS station (DE-RuW) for the EWUE index is shown
in Supplementary Fig. S12.

To identify shifts in the causal network resulting from a particular
environmental condition, two causal networks have to be determined: One with
time series including only time periods with this particular effect and one with time
periods excluding this effect. The differences in the detected links and link
strengths between those two networks are the effect of the environmental condition
on the causal network. We investigated the effects of drought on the causal network
by splitting the grid cell time series of all variables into two: one only containing
values corresponding with SSI values lower than −1, and another non-drought
time series, containing all other values. Then we subtracted the absolute link
strengths of the non-drought from the drought network to have the difference

network representing all link changes during droughts.

Linkresponse ¼ Linkdrought � Linknon�drought ð9Þ
Where Link is a chosen link of the causal network, Linkdrought the strength, or partial
correlation, of the chosen link in the casual network during droughts and Linknon-
drought the strength of the chosen link in the non-drought causal network. Therefore,
we applied PCMCI+ to each land surface cell in the study grid for threeWUE indices
and for non-drought periods, drought periods and overall, resulting in a high
dimensional output with six causal networks from mentioned variables for each cell.

Data availability
We made use of only publicly available data without restricted access. In addition to the
more detailed information in the method section, in this declaration we state the sites
where the data are accessible publicly based on the used variables. The GLASS remote
sensing GPP and ET and leaf area index data are available at http://www.glass.umd.edu/
introduction.html. The ERA5-Land reanalysis transpiration, ET, soil moisture and leaf
area index data are stored at https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-land. The GLEAM reanalysis ET and transpiration can be found at
https://www.gleam.eu/. The meteorological variables, temperature, precipitation, relative
humidity, wind speed and shortwave incoming radiation are from the COSMO-REA6
reanalysis at https://reanalysis.meteo.uni-bonn.de/?COSMO-REA6. The station data
from FLUXNET2015 are accessible at https://fluxnet.org/data/fluxnet2015-dataset/, the
ICOS Drought-2018 at https://www.icos-cp.eu/data-products/YVR0-4898, and
SAPFLUXNET at http://sapfluxnet.creaf.cat/.

Code availability
The python, bash and NCL code generated to aggregate the data, analyse and plot the
data can be obtained by request from the author and are published at https://doi.org/10.
5281/zenodo.6522085.
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