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State-dependence of Cenozoic thermal extremes
B. B. Cael1✉ & Philip Goodwin 2

Oxygen isotopes in sediments reflect Earth’s past temperature, revealing a cooling over the

Cenozoic punctuated by multimillenial thermal extreme events. The magnitude of these

extremes and their dependency on baseline climate state is not clearly understood. Here we

use global records of deep sea foraminiferal δ18O as a proxy for atmospheric temperature

over the Cenezoic and investigate how closely the generalised extreme value distribution

matches δ18O block maxima. We find that the distribution of these extremes is captured well

by the generalized extreme value distribution. In addition, the distribution of extremes’ shape

changes with baseline temperature such that large thermal extremes are more likely in

warmer climates. We therefore suggest that anthropogenic warming has the potential to

return the baseline climate state to one where large thermal extremes are more likely.
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Analysis of geochemical archives provides insight into
Earth’s climate history through proxies of paleoclimate
conditions1. Characterizing this history is critical for

understanding the evolution of modern Earth and for con-
straining possible future responses to anthropogenic greenhouse
gas emissions2. Estimates of cumulative emissions so far,
remaining fossil fuel reservoirs, and the long-term sensitivity of
climate to cumulative emissions3,4 indicate that humanity has the
potential to perturb the climate system enough that the large
changes in Earth’s paleorecords1 are relevant indicators of its
potential response on millennial timescales. It is thus particularly
important to determine how paleoclimatic variations may depend
on baseline climate state because this is directly linked to the risk
of a large long-term Earth system response to anthropogenic
forcing. Variations in Cenozoic climate are studied using deep-sea
benthic foraminiferal δ18O, which relates approximately inversely
to global temperature and linearly to global ice volume such that
low δ18O corresponds to warm climate states5. Much of the
Cenozoic was a greenhouse climate state with minimal ice
volume1, and so δ18O is used as an inverse linear proxy for global
temperature6. Analogously, foraminiferal δ13C records past car-
bon cycle changes through isotopic fractionation during photo-
synthesis. The tremendous scientific effort has gone into
producing, refining, and interpreting these records; it is a marvel
that we can infer with some confidence so much about Earth’s
climate tens of millions of years ago based on the isotopic com-
position of shells of protist algae that sink to and are preserved in
the seabed7,8. Figure 1 shows the δ18O record from8 leveraging
new methods and measurements, which we focus on here. Four
phenomena are evident: (i) a long-term cooling trend, (ii) the
emergence of periodic Pleistocene glacial–interglacial cycles at 2.6
million years ago (Ma), (iii) noisy sub-million-year fluctuations
before then and superimposed on these recent periodic cycles,
and iv) punctuations of the record by large, rapid, negative δ18O
excursions corresponding to multimillennial timescale warming
events, most notably the Paleocene-Eocene Thermal Maximum
(PETM, 56Ma). The long-term cooling trend and Pleistocene
glacial–interglacial cycles have been the subject of extensive
study1,7, and the sub-million year noise has recently been shown
to be consistent with multiplicative fluctuations9, potentially due
to metabolic temperature-sensitivity of the biosphere10. The
tendency for large negative δ18O excursions, perhaps the most
concerning from a future climate perspective, has been noted9,
and considerable investigation of individual events such as the
PETM shows promise for providing useful constraints on Earth’s
future climate11. However, these thermal extreme events (iv) have
not been studied quantitatively and collectively, meaning a

general explanation for these extremes and their magnitude is
lacking, impairing our ability to use these extremes to make
inferences about future climate. Here, following the lineage of
stochastic climate modeling beginning with12 and most recently
typified with respect to the Cenozoic by9, we study these extremes
from a stochastic lens.

The generalized extreme value (GEV) distribution is widely
used to study such extremes in other settings13. Analogously to
how the ubiquity of normal and log-normal phenomena in nature
is explained by the central limit theorem14, the maxima of many
natural phenomena tend to be GEV-distributed, which is
explained by the extreme value theorem (Methods). The GEV
distribution has three parameters μ, σ, and ξ, the last of which
controls the weight of its upper tail13 (Methods). We show that
the GEV distribution describes thermal extremes (i.e., δ18O
minima) in the Cenozoic excellently, then utilize it to study how
the magnitude of these extremes depends on baseline climate
state, allowing us to project the increased likelihood of large
( > 3 standard deviations above baseline) thermal extremes as a
function of cumulative emissions.

Results
The distribution of thermal extremes, as captured by standard (z−)
scores of δ18O minima in blocks of consecutive δ18O values, is well-
characterized as GEV-distributed (Fig. 2). The Kuiper statistic V
quantifies the deviation between the theoretical and empirical
distributions; here V= 0.0357, well below the threshold
V5%= 0.0499 for significance at the 5% level for this sample size (a
smaller V-value indicates a better correspondence between the null
hypothesis of GEV distribution, and a V-value below V5% indicates
a failure to reject the GEV distribution at the 5% significance level;
Methods). The GEV distribution also applies for δ18O maxima (i.e.,
thermal minima, V= 0.0278), δ13C maxima (V= 0.0256), and
δ13C minima (V= 0.0360). This result is also robust to the choice
of block size (Methods). This excellent agreement suggests we can
utilize the GEV distribution to characterize the rarity of individual
events in terms of return levels and return periods, but more
importantly, motivates the use of the GEV to investigate the pos-
sible dependency of extremes on baseline climate state.

Through this lens of the GEV distribution, we investigate
whether the magnitude of thermal extremes changes with the
baseline climate state. We fit the GEV distribution to ‘metablocks’
of standardized δ18O minima grouped according to their asso-
ciated mean δ18O values. Figure 3A shows that the shape para-
meter ξ decreases monotonically as baseline δ18O increases, from
ξ=+ 0.01 ± 0.03 when δ18O= 0 ± 0.5‰, to ξ=− 0.32 ± 0.08
when δ18O= 4 ± 0.5‰. The implication of this ξ-change is

Fig. 1 δ18O over the Cenozoic (66Ma-present), from8. Inset is the same for the most recent 2.6Ma.
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shown in Fig. 3B, which plots the GEV distribution with best-fit
parameters for δ18O = 0 ± 0.5 andδ18O = 4 ± 0.5. The relative
likelihood of an δ18O minimum > z standard deviations below the
mean for a given z-score is captured by the ratio of these dis-
tributions’ complementary cumulative distribution functions
(CCDFs). When δ18O ~ 4 as over much of the past ~ 3.5 Ma, δ18O
minima with z-scores > 3 are virtually impossible/nonexistent,
whereas when δ18O ~ 0 as at the boundary between the Paleocene
and the Eocene, such large excursions still had some probability
of occurring. We found no other significant or systematic changes
in any other parameters (μ, σ, ξ) of extremes’ (maxima/minima of
δ18O or δ13C) distributions as a function of baseline climate or

carbon cycle state (mean δ18O or δ13C), indicating this phe-
nomenon is restricted to the potential for large thermal maxima
depending on the baseline climate state.

As the state-dependency seen in Fig. 3A is restricted to thermal
maxima and does not materialize in the δ13C record, we interpret
it to be driven by the state-dependency of the physical climate
system rather than the carbon cycle. Thermal extremes have been
interpreted as being caused by the release of isotopically depleted
organic carbon into the surface environment, such as methane
hydrates, permafrost, or dissolved organic carbon. Many of these
thermal extremes have been shown to be accompanied by
extremes in δ13C9. The lack of ξ-changes in δ13C is consistent
with temperature-dependent climate feedback; when the climate
is warmer, the same input of carbon produces a larger tempera-
ture change11. Temperature-dependent climate feedbacks occur
in most Earth System Models, most notably due to the water
vapor feedback15 though also possibly due to e.g., ice-albedo or
cloud feedbacks11. While we cannot exclude the possibility that
this dependency is due to carbon cycle perturbations that are
balanced in their effect on organic and inorganic carbon and,
therefore, not observed in the δ13C record, or an external aspect
of the Earth system that co-varies with the baseline climate state
such as silicate weathering, these are less parsimonious explana-
tions given the lack of any relationship involving δ13C extremes
and baseline δ18O or vice versa. Additionally, while by any ana-
lysis, the PETM is an outlier in the δ18O and δ13C record, our
results help contextualize it statistically; such a large outlier was
far more probable during such a warm climate state due to the far
heavier tail of the thermal extreme distribution.

We can utilize the trend in Fig. 3A to estimate Earth’s
increased susceptibility to large (>3z) multimillenial thermal
extremes resulting from potential human emissions (Methods).
Figure 3C shows the probability of large multimillenial thermal
extremes increases with background warming, doubling at
approximately 2 °C warming, quadrupling at approximately 5 °C
warming, and sextupling at approximately 7.5 °C warming.
(These relationships are approximate; this extrapolation should
be taken illustratively/qualitatively.)

Altogether our results suggest that thermal extremes over the
Cenozoic are more likely to be large when the baseline climate
state is warmer. As similar behavior is not seen in carbon cycle
extremes, this dependency is most plausibly due to the

Fig. 2 Cumulative distribution functions for standardized δ18O block
minima and generalized extreme value distribution with maximum-
likelihood-estimated parameters. Lower inset: corresponding probability
density functions. Upper inset: corresponding percentiles of each
distribution.

Fig. 3 The shape of the extremes’ distribution changes with the baseline climate state. A Generalized extreme value (GEV) distribution’s shape
parameter ξ as a function of baseline climate state. Compare with analogous figures, including δ13C and maxima in δ18O in Fig. S1. Error bars are bootstrap
median absolute deviation. B GEV probability density function with the parameters from mean δ18O= 0 ± 0.5 (solid black line) and 4 ± 0.5 (dashed black
line) from (A). The orange line is the ratio of these two distributions' complementary cumulative density functions, indicating e.g., that δ18O extremes >2 2

3

standard deviations below the mean are > 3× more likely when δ18O ~ 0 than when δ18O ~ 4. C Relative likelihood of δ18O extremes > 3z (three standard
deviations below the mean) for different mean δ18O values (upper x-axis) compared to present (mean δ18O= 3.5 ± 0.25). For instance, such extremes are
~5× more likely when δ18O= 2 ± 0.25.
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temperature sensitivity of physical climate feedback. The prob-
ability of large multimillenial thermal extremes (superimposed on
anthropogenic warming) may considerably increase if a sub-
stantial portion of remaining fossil fuel reserves is combusted.

Methods
δ18O records were taken from8 (Fig. 1), along with associated δ13C records; these
variables and their relationship to temperature and other aspects of the Earth
system are described extensively elsewhere. As discussed in8, the average temporal
resolution of these data is 2 kyr for the 0–34Ma portion of this dataset and 4.4 kyr
for the 34–67Ma portion due to lower sedimentation rates and a lower sample
resolution of the available records; this difference is not enough to affect our
conclusions or justify additional manipulation of the data to generate temporally
equal blocks. This implies that maxima of blocks of size 20 correspond to
multimillenial-timescale maxima within <100 kyr intervals. This timescale is small
relative to the dominant 405kyr periodicity described in8, and therefore such
periodicity can be neglected for present purposes.

For blocks of consecutive values, the mean, standard deviation, and minima were
calculated to determine the standard deviations below the mean (z-score) of the
minimum δ18O value for that block. The distribution of minima’s z-scores is then fit
by a generalized extreme value (GEV) distribution via maximum likelihood esti-
mation (Matlab’s mle function). Note that the GEV is fit to sets of block minima,
not to the full blocks of samples themselves. This is because the extreme value
theorem states that the GEV distribution is the only possible limit distribution of
properly normalized maxima of a sequence of independent and identically dis-
tributed (i.i.d.) random variables. Natural phenomena are rarely, if ever truly i.i.d.,
but the GEV distribution holds and is applied broadly nonetheless13, analogous to
the central limit theorem holding quite accurately for only a handful of summed or
multiplied random variables14. The GEV distribution has the form:

f ðx; μ; σ; ξÞ ¼ 1
σ
tðxÞξþ1e�tðxÞ

where f( ⋅ ) is the probability density function and

tðxÞ ¼ ð1þ ξðx�μ
σ ÞÞ�1=ξ if ξ≠0

e�ðx�μÞ=σ if ξ ¼ 0

(

so μ, and σ are the location and scale parameters, and ξ is the parameter that
controls the shape of the distribution. Whether the empirical distribution of maxima
deviates significantly is then determined by calculating the Kuiper statistic V, which
is the maximum of the hypothesized minus empirical cumulative distribution
functions plus the maximum of the empirical minus hypothesized cumulative
distribution function, chosen because it gives equal weight to all portions of the
distribution16. We compare V to a critical value at the 5% significance level, V5%

17;
the difference is not significant if V <V5%. Figure 2 uses the minimum block size of
20 from18, for which V= 0.0357 <V5%= 0.0499, and the median z-score is 1.91.
Here we focus on the minimum block size because maximizing the number of
blocks is useful to assess changes in the distribution’s shape as a function of baseline
climate state, as this requires grouping sets of blocks into ‘metablocks.’ In general,
the larger the block size, the larger the minima’s z-scores will be, and also, the larger
V5% will be due to a smaller sample size of maxima. For instance, using a block size
of 67 (the largest prime factor of the length of the δ18O record, 24321) yielded a
V= 0.0516 < 0.0909=V5% and a median z-score of 2.46, while a block size of 33
(another factor of 24321) yielded V= 0.0373 < 0.0640=V5% and a median z-score
of 2.17. V-values for δ18O maxima and δ13C maxima and minima reported in the
main text are for the same block size of 20 and are also significant for larger
block sizes.

Figure 3 A was generated by repeating this process on metablocks of block
minima, where blocks were grouped by their mean δ18O values into the bins
(0,1,2,3,4) ± 0.5‰. Uncertainties (shown using the robust metric of median absolute
deviation) were estimated by bootstrap resampling the distribution of maxima and
re-fitting the GEV distribution. We use 10,000 bootstrap iterations, which we find to
be more than sufficient as ten 1000-member subsets were negligibly different. The
other GEV distribution parameters (location μ and scale σ) vary negligibly, neither
systematically nor significantly (p ≥ 0.33 for the block and bin sizes in Fig. 3A; this
also holds for the bin sizes in Fig. 3C), with baseline climate state (i.e., across
metablocks). The decreasing trend of ξ with mean δ18O holds for larger block sizes
(e.g., 33 from above) or narrower bin widths (e.g., ± 0.25 from Fig. 3C. In Fig. 3B,
the complementary cumulative distribution function of a probability distribution is
one minus its cumulative distribution function. For Fig. 3C, we repeat the procedure
to estimate the δ18O-dependence of ξ (with uncertainties) using the bins
(2,2.5,3,3.5) ± 0.25. We then perform a weighted regression of ξ vs. mean δ18O to
estimate ξ(δ18O) over this range, yielding an estimate of the GEV distribution for
any given δ18O value between 1.75–3.5‰. (Note again that other GEV parameters
do not change systematically or significantly over this range or over the entire δ18O
range.) This is then used to calculate the probability density > 3 z-scores, which is
shown in Fig. 3C relative to the probability density > 3 z-scores estimated for
present-day δ18O= 3.5‰. We underscore that this subfigure, which includes
assumed proportionalities between δ18O, global temperature change, and cumula-
tive emissions, should be interpreted as illustrative and qualitative.

We repeated these calculations for block maxima of δ18O and for block maxima
and minima of δ13C. All of these were well-characterized by GEV distributions
(V <V5% in each case), but we found no evidence for any state dependence other
than that reported in the main text. In other words, only the shape parameter ξ for
δ18O minima was dependent on mean δ18O, and no other GEV distribution
parameter of any other maxima or minima was dependent on mean δ18O or δ18C.

The glacial-interglacial cycles of the Quaternary period (2.6 Ma–present) are
recognized not to follow the same sort of fluctuation characteristics as the rest of
the Cenozoic, which must be accounted for in any analysis of extremes. Figures 1–3
exclude the last 2 Ma; neither increasing this to exclude the entire Quaternary
period (2.6 Ma) nor decreasing this to exclude only after the mid-Pleistocene
transition (1.25Ma) affects the results or conclusions. Additionally, these are
robust to including the Quaternary period and filtering out the glacial-interglacial
cycles via robust locally estimated scatterplot smoothing (R-LOESS) with a window
size of 10. We note that our interpretation of δ18O minima as thermal maxima is
robust to the effects of ice volume on δ18O because ice sheets primarily act to
change the slope and intercept of the linear temperature-δ18O relationship
T ≈ α− βδ18O, with α, β > 0 approximately constant over the timescales of the
extremes considered here. We note that excluding the PETM did not affect our
results (as would be expected, as this is only one thermal maximum, and we are
analyzing distributions of many thermal maxima), and therefore our inferences
about PETM likelihood are not confounded by including it in our analyses.

For Fig. 3C, as a 0.22‰ change is associated with a ~1 °C temperature change19,
cumulative carbon emissions so far plus remaining fossil fuel carbon resources are
on the order of 5 EgC (=5 TtC = 5000 PgC = 5000 GtC)3, and 1 EgC cumulative
emissions are associated with ~1.35 °C long-term warming4, we focus on the δ18O
range 3.5( ± 0.25)−2( ± 0.25)‰, and estimate the ξ change over the equivalent
ranges 3.5–1.75‰ δ18O, 0–8 °C temperature anomaly, and 0–6 EgC emissions.

Data availability
Data are available from https://doi.org/10.1594/PANGAEA.9175038.

Code availability
Annotated code is available at github.com/bbcael/paleogev (Matlab R2021b).
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