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Forest disturbance decreased in China from 1986
to 2020 despite regional variations
Zhihua Liu 1,13✉, Wen J. Wang2,13, Ashley Ballantyne 3,4, Hong S. He5, Xugao Wang 1, Shuguang Liu6,

Philippe Ciais 4, Michael C. Wimberly7, Shilong Piao 8, Kailiang Yu 4, Qichao Yao9, Yu Liang1,

Zhiwei Wu10, Yunting Fang 1, Anping Chen11, Wenru Xu12✉ & Jiaojun Zhu 1✉

Human activities have altered disturbance patterns in many parts of world, but there is no

quantitative information on patterns and trends of forest disturbance regimes in China. We

applied a spectral-temporal segmentation approach over all available Landsat data to map

individual disturbance patches and characterize the patterns and trends in disturbance rate,

size, frequency, and severity across China’s forests. From 1986 to 2020, about 39.7% of

China’s forests were disturbed with an annual rate of 1.16 ± 0.41% yr−1. The disturbance

decreased at a rate of −390 ± 142 km2 yr−1, primarily driven by the effective implementation

of forest protection policy since 2000s. The rate, frequency, and size of disturbance generally

intensified in Southeast, but weakened in Northeast China. Our high-quality, spatially explicit

disturbance map provides an essential data layer to understand the landscape-scale drivers of

forest dynamics and functions for important but less understood pan-temperate forest

regions.
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D isturbances play a critical role in shaping forest structure
and dynamics and therefore have profound impacts on
ecosystem functions and biodiversity1,2. Satellite obser-

vations have shown that about 5.7% of global forest (ca. 2.3
million km2) was lost to stand-replacing disturbances from 2000
to 20123, and the drivers of forest loss varied considerately among
regions4. Meanwhile, low severity, non-stand replacing and dif-
fuse disturbances may be more prevalent, affecting much larger
forested areas. Multiple lines of evidence have demonstrated that
climate change and human activities increased the extent and
magnitude of forest disturbances in many parts of the world5.
Intensifying disturbance regimes, together with anthropogenic-
driven exacerbation of chronic environmental drivers (e.g., rising
temperature and water stress), will likely increase tree mortality
and force forests toward shorter-statured and younger stands, and
thus have cascading consequences for biodiversity and climate
mitigation6. Therefore, quantification of spatial patterns and
trends of disturbance regime is key to understanding the pro-
cesses underlying the shifts in forest dynamics and functions.

Disturbances are spatially contiguous landscape processes that
are best characterized by earth observations at fine to moderate
spatial resolutions (e.g., 10–50m)1. Recently, there is a growing
interest in using Landsat observations to map long-term changes
in forest disturbance regimes over large regions7–10. For example,
about 17% of European forests were disturbed during
1986–201611 with increasing disturbance rates due to forest
operations, including timber harvest12, even though Landsat-
based detection changes may bias the trends of harvested
areas13,14 and natural disturbances (e.g., fires)15. In Russian
boreal forests, climate warming has significantly increased fire
extent and severity in recent decades16. In North America, pat-
terns, trends, and severity of forest disturbances were also well
characterized by recent studies17–19. China ranks the 5th around
the world in terms of forested area, together with Europe and
North America, comprises most of world’s temperate forests.
Recent studies showed that disturbances and regrowth in tem-
perate forests contributed to over half of the carbon sink in the
world’s forests15,20–22. To date, there is little quantitative infor-
mation available on disturbance regimes and their changes over
time in China’s forests, which represents a significant spatial gap
in understanding the underlying drivers for structure and func-
tion in temperate forests.

China’s forests are heavily disturbed and primarily second-
growth forests recovering from extensive logging since the early
20th century. Excessive timber extraction and poor management
have led to forest loss and degradation, with cascading effects on
regional environmental and ecological conditions. Since the late
1970s, the Chinese government has implemented several forest-
relegated ecological restoration projects to reverse this trend23,24.
Notably, the Natural Forest Protection Program (NFPP) covers
27.5% of China’s land area launching in 1999 and represents a
paradigm shift in forest management policy25,26. Recent studies
have recognized the contribution of these ecological restoration
projects in preserving and enhancing forest covers, quality and
ecosystem services, such as carbon sequestration27–30. However,
there is no knowledge on how changes in forest restoration policy
affected the spatial and temporal patterns of disturbance regimes
in China’s forests. Recent global-scale disturbance data is often
limited by the temporal extent (e.g., post-20003,4), to a particular
disturbance type (e.g., wildfire31), or at spatial resolutions that
are often too coarse to capture landscape-scale disturbance
dynamics32. Therefore, the main objective of this study is to
provide a high quality, spatially explicit disturbance dataset to
characterize the disturbance regimes in China’s forests.

Here, we used a spectral-temporal segmentation method to
map and characterize the disturbance regimes of China’s forest at

30-m spatial resolution for the period 1986–2020 utilizing all
available Landsat time series images (i.e., TM, ETM+ and OLI)
over the growing season (June-September) (# of Landsat ima-
ges= 56634, Supplementary Fig. 1) and 31,225 reference plots
(Supplementary Fig. 1). We followed the definition of disturbance
by33: “any relatively discrete event that disrupts the structure of
an ecosystem, community, or population, and changes resource
availability or the physical environment”. We detected dis-
turbances within forests by tracking the abrupt changes in time-
series spectral indices, which were indicative of removal or
change in tree cover associated with forest conversion to other
land use types, management activities at various intensities (e.g.,
logging), or forest fires; and mapped reforestation/afforestation
disturbances outside of forests by tracking forest expansion. Our
overarching goal is to understand the patterns, trends and drivers
of disturbance regimes in China’s forests during 1986–2020.
Specifically, (1) What are the spatial patterns of disturbance
regimes across China’s forests? (2) How have the forest dis-
turbance regimes changed during 1986–2020? (3) What are the
roles of restoration policy in shaping the disturbance regimes
across China’s forests? Here we demonstrate that about 39.7% of
China’s forests were disturbed with an annual rate of 1.16 ± 0.41%
yr−1, and the annual disturbed forested decreased at a rate of
−390 ± 142 km2 yr−1 from 1986 to 2020 primarily driven by the
effective implementation of forest protection policy since 2000s.
The disturbance regimes generally intensified in Southeast and
weakened in Northeast China, reflecting a regional shift in
restoration and conservation policy.

Results
Disturbance regimes. Satellite observations showed that the total
forested area was 209.8 million ha in 2000, which were consistent
with the national forest inventory data, global forest resource
assessment, and other estimates from satellite observations34–36.
The forested area was mainly distributed in Northeast (NE, 20%),
Southwest (SW, 30%) and Southeast (SE, 37%) China. Our results
showed that about 83.3 million ha forest was disturbed in the
period 1986–2020, accounting for 39.7% of China’s forested area,
with an annual rate of 1.16 ± 0.41% (mean ± sd, hereafter)
(Fig. 1). Nationally, forest fires constituted only a small percen-
tage of disturbances (~5%), with regional hotspots (>30%) mostly
located in the deciduous needle leaf forests of the Great Xing’an
Mountains in NE region, and the mountainous coniferous forests
of the southeast Tibet in SW region (Supplementary Fig. 3a).
However, climate warming increased the percentage of forest fires
in Great Xing’an Mountains in NE region (Supplementary
Fig. 3b).

We used the user’s and producer’s accuracy as the main
accuracy assessment metrics. Comparisons between the visually
derived reference data and Random Forest (RF) classified
disturbance maps showed that the user’s and producer’s accuracy
was 0.76 and 0.96, respectively, with an overall accuracy of 0.96
(CI95%= (0.955, 0.963), Kappa score= 0.93) (Supplementary
Table 1). The temporal accuracy (i.e., year of disturbance) was
within 3 years, consistent with other studies11. Our spatially
explicit disturbance maps also showed significant positive
correlations with the Landsat-derived global forest cover changes
between 2001 and 2019 (r2= 0.44, Supplementary Figs. 4, 3) and
the national forest fire records between 2003 and 2009 (r2= 0.5,
Supplementary Fig. 5). These results collectively suggested that
the spectral-temporal segmentation method used in this study
generally captured the spatiotemporal characteristics of distur-
bance in China’s forests.

There were substantial spatial variations in the disturbance regimes
across China’s forests (Fig. 2, Supplementary Table 2). Among
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0.5° grid cells, the annually disturbed forest area averaged
10.17 ± 11.78 km2 yr−1, with a highly left skewed distribution
(Supplementary Fig. 6), in which 75% of disturbance patches had
an annual disturbed area <17.95 km2 yr−1 (Supplementary Table 2).
There were a few regions (e.g., mountainous coniferous forests in
SW) that experienced relatively larger percent of annually disturbed
forest area due to higher fire activity levels (Supplementary Fig. 3).
The percentage of annually disturbed forest, normalized by forest
area in each grid cell, roughly showed the similar patterns with the

annually disturbed forest area (Fig. 2a and b). The annual disturbance
frequency was 1.70 ± 1.67 patches yr−1 per km2 of forest area with
higher frequency in SE region, where forest management practices
(e.g., plantation) provided the majority of timber in China since
2000s. The patch size of disturbance was 1.35 ± 0.45 ha, with larger
patches located both in SE region due to intensive plantations and in
NE region due to frequent, large forest fires. The patch size
distribution was also left skewed, in which 75% of grid cells were
1.56 ha or smaller. The disturbance severity, calculated as the changes

Fig. 1 Forest disturbances in China’s forests from 1986 to 2020. a The occurrence of disturbances across China’s forests, overlaid on the forested region
(TC1986 > 20%, gray area). Inset in top left showed the TC1986 (see Methods), and insets 1–4 showed disturbances in a few exemplary regions. The
Northeast (NE), Southeast (SE), and Southwest (SW) regions were shown in red polygons. Years of disturbance were binned into 5 years for illustration
purpose. For the annual disturbance map, refer to Data availability section. b–e are annual disturbance area and trends at national (back), NE (blue), SE (red),
and SW (dark orange) regions, respectively. In b–e, disturbance area (1000 km2) and percent of forest disturbed (%) are shown in left and right Y-axis,
respectively. The numbers indicated the trends of annual disturbed area (km2 yr−1) in different regions. Note the scale differences in b–e.

Fig. 2 Spatial patterns of disturbance regimes within each 0.5° grid cell across China’s forests. (a) total annually disturbed forest area (km2 yr−1),
(b) normalized percent of forest disturbed annually (% yr−1), (c) disturbance frequency (# of patches per 1000 km2 forest), (d) mean patch size (ha), and
(e) fire severity (ΔNDVI, delta Normalized Difference Vegetation Index).

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00676-x ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |            (2023) 4:15 | https://doi.org/10.1038/s43247-023-00676-x | www.nature.com/commsenv 3

www.nature.com/commsenv
www.nature.com/commsenv


of spectral vegetation greenness index 1 year before and 1 year after
disturbance (i.e., ΔNDVI=NDVIt-1−NDVIt+1), was 0.36 ± 0.51,
with higher severity of disturbances generally located in the north of
the Yangtze River probably due to higher percentage of fire
occurrences.

Besides mapping of disturbances within forests, we also
mapped the pattern and rate of forest expansion via reforesta-
tion/afforestation outside forests across China (See Methods).
Consistent with recent studies29,30, our results showed that forest
covers increased substantially in the ecologically sensitive regions,
such as the Loess plateau, the upper reach of Yangtze River, and
the northern Beijing (Supplementary Fig. 7), which also
experienced a relatively low and declining rate of forest
disturbance (Figs. 2 and 3). The spatial synchrony between forest
cover increases and disturbance decreases implied that forest
restoration and conservation policy significantly affected the
extent and dynamics of forest cover and disturbance in China.
We also observed that the provinces with largest increases in
forest area were located in SW region while simultaneously
experiencing increased disturbance rates (Supplementary Fig. 7,
Fig. 3), suggesting the regional balance between forest conserva-
tion and timber production.

Trends in disturbance regimes. Disturbance regimes changed
profoundly between 1986 and 2020, but their trends of change
differed among regions (Fig. 3, Supplementary Table 3). At the
national scale, the annual disturbance area decreased at rate of
390 ± 142 km2 yr−1 (p < 0.01) from 1986 to 2020 (Fig. 1b), which
was −1.6 ± 0.58% relative to the annually disturbed forested area

(24489 ± 8707 km2 yr−1). The national trend in disturbance rate
was mainly driven by the decreasing trends in NE region (Fig. 1c
and Fig. 3a) while there was no significant trend in overall dis-
turbance rate in SW and SE regions (Fig. 1). Trends in dis-
turbance regimes also exhibited a north–south gradient (Fig. 3).
Generally, the disturbance regime (rate, frequency, and size)
intensified in SE region and weakened in NE region. The dis-
turbance severity generally showed a decreasing trend across
China’s forests with only a few areas in SE region that showed an
increasing trend. The different trends of disturbance regime
between northern and southern China broadly reflected the
regional restoration strategies to promote ecological functions of
forests in the slower growing regions (e.g., NE region) and sustain
timber products in the faster growing regions (e.g., SE, SW
region).

Role of forest restoration policy. To understand the underlying
drivers of changing disturbance regimes, we used the generalized
linear model (GLM) to investigate the effects of social-economic
factors, climate changes, vegetation types, soil properties, and
variability in Landsat time series on the percent of annually
disturbed forest area at 0.5° grid cells. The GLM analysis
explained about 42% of variation in annual disturbed area, in
which forest restoration had a greater impact compared with
other factors under investigation. Although the non-stationarity
of variability in Landsat images may affect the detection of trends
in disturbance, we found that its influence was relatively small
(Fig. 4). Vapor pressure deficit, Normalized difference vegetation
index (NDVI), and soil organic content had negative impacts on

Fig. 3 Spatial patterns of trends for disturbance regimes within each 0.5° grid cell across China’s forests. (a) total annual disturbed forest area (km2 yr−1),
(b) percent of forest disturbed annually (% yr−1), (c) disturbance frequency (# of patches per 1000 km2 forest), (d) mean patch size (ha yr-1), and (e) fire severity
(ΔNDVI yr-1, delta Normalized Difference Vegetation Index). Points indicated a significant trend at 0.05 levels for disturbance regimes.

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00676-x

4 COMMUNICATIONS EARTH & ENVIRONMENT |            (2023) 4:15 | https://doi.org/10.1038/s43247-023-00676-x | www.nature.com/commsenv

www.nature.com/commsenv


annually disturbed forest area, suggesting forests with favorable
growth conditions experienced lower disturbance rates. On the
contrary, regions with higher elevation and population density,
and shorter distance from roads were more likely to experience
higher disturbance rates (Fig. 4).

Of six major ecological restoration projects, the RSFP (Yangtze
River and Zhujiang River Shelter Forest Projects) and NFPP were
selected as the major drivers of forest management policy.
However, different influences on annually disturbed forest area
were observed by these two projects. There is decreasing trend
within the NFPP region but increasing trend within the RSFP
region (Supplementary Fig. 8), indicating trends within in the
NFPP region governed the overall decreased disturbance rate in
China’s forests. Specifically, annual disturbance rate was reduced
from 1.14 ± 0.47% during 1985–1999 to 0.81 ± 0.57% during
2000–2020 at the national level. However, after the NFPP was
implemented in 1999, the annual disturbance rate was signifi-
cantly reduced (p < 0.05) by almost half from 1.21 ± 0.48% during
1986–1999 to 0.59 ± 0.42% during 2000–2020 within the NFPP
regions (Fig. 5). The most significant decreases in disturbance rate
occurred in NE region, the Loess Plateau, and the upper Yangtze
River region, where timber harvest was significantly reduced, but
reforestation/afforestation substantially increased forest covers
(Supplementary Fig. 7) to enhance ecological functions of forests.
In contrast, the annual disturbance rate was only slightly reduced
(p > 0.05) from 1.09 ± 0.46% to 0.98 ± 0.61% outside the NFPP
regions. There was also a sharp contrast in the spatial patterns of
trends for annually disturbed forest between 1985–1999 and
2000–2020, indicating significant changes in disturbance regime
at the turn of the 21st century (supplementary Fig. 9). Therefore,
our findings suggested the NFPP played a substantial role in
changing disturbance regimes across China’s forests since its
implementation.

Discussion
Our results showed that about 1.16 ± 0.41% yr−1, equivalent to
39.7% of total forested area was disturbed in China from 1986 to
2020. This figure was higher than the rate in European forests
(0.55% yr−1)11, Canadian boreal forests (0.37 ~ 0.49 % yr−1)17,
and contiguous United States (0.9 ~ 1.09% yr−1)18,37,38. However,
there was a significant decline in disturbance rate across China’s
forests due to the effective implementation of protective forest

policy for ecological restoration. On the contrary, increases in
disturbance rate and severity that many parts of world were
experiencing, were caused by either climate-driven wildfires in
boreal forests and western U.S.39, management and droughts in
Europe’s forests12,40, or deforestation in tropical forests3,41.
Changes in disturbance regime in China’s forests were primarily
governed by forest operation activities, ranging from more
intensive timber harvest and plantation to less intensive thinning
or understory treatment, similar to findings by4, suggesting
restoration practices were key factors in regulating the dis-
turbance regimes, and thus the structure and functions in China’s
forest ecosystems.

Our study provides high-quality quantitative and spatially
explicit characterization of disturbance regime and its changes.
Our findings highlight the role of forest restoration and con-
servation in driving the spatial and temporal variability in dis-
turbance regime across China’s forests. The NE region dominated
by cold temperate forests is experiencing a decreasing disturbance
rate. Historically, natural forests in NE region were one of the
major timber providers in China. However, the NFPP first set
strict limits on area, tree species, and age for selective logging to
maintain a high-quality forest in 1999, followed by even stricter
policy implemented in 2015 to prohibit all commercial logging in
this region. These policies closely followed a shifting management
objective of regional forest resources from timber production to
sustainable supply of ecological services at the turn of the 21st
century. In addition, wildfire historically was the dominant nat-
ural forest disturbance in NE region with a return interval
between 30 and 100 years42. The strict fire exclusion policy,
especially after the “black dragon” fire in 1987, has greatly
lengthened the fire return interval in the region43. Since fires only
accounted for <10% of disturbed area in NE region, the decreased
disturbance regime was thus mainly caused by the reduced timber
extraction. However, climate change will likely intensify the fire
disturbance, compensating for the reduction in timber harvest in
NE region (Supplementary Fig. 3b). In contrast, there was a
significant increase in plantation in SE China to meet rising
demand for forest products. As a result, more intensive forest
management practices (e.g., timber harvest) led to higher dis-
turbance rate and frequency, and larger individual patches in the
region. Such trends are expected to continue in the near future.
Forest fires in SE region accounted for around 84% of total fire
occurrences in China, which were largely of anthropogenic origin
with high frequency and relatively small patches44. However,
there was an overall decreasing trend in forest area disturbed by
fires from 1986 to 2020 (Supplementary Fig. 3), suggestive of
increasing intensity of forest operations in Southern China.

Our spatially explicit forest disturbance dataset provides a
baseline to assess the impacts of changing disturbance on forest
dynamics, biodiversity, and climate forcing. Forest management
and wildfire are major disturbance types in temperate and boreal
forests, but with large regional variations4. Our study confirmed
that natural disturbance was a minor disturbance type in China’s
forests; Instead, forest management activities were the dominant
drivers of disturbance regimes and had stronger effects on the
extent, composition, and stand structure across China’s forests.
Over the past few decades, afforestation/reforestation projects
have led to a continuous increase of forest cover which was also
observed in the recent national forest inventory statistics45,46.
Recent studies have found that increases in forest cover con-
tributed greatly to increasing leaf area index or land
greening32,47–49, and the enhancement of China’s terrestrial
carbon sink over the past three decades29,50–52. On the other
hand, forest conservation projects, such as the NFPP, have
effectively decreased the disturbance rate in China’s forests and to
what extent such decreasing disturbances contributed to leaf area

Fig. 4 Relative importance of variables on the trends of annual disturbed
forests based on the generalized linear model. The + (−) indicated the
variable had positive (negative) effects on the trends of annual disturbed
forests. Abbreviations are: NDVI Normalized difference vegetation index,
RSFP Yangtze River and Zhujiang River Shelter Forest Projects, and NFPP
Natural Forest Protection Project.
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index and carbon sequestration remains to be quantified. Our
spatially explicit forest disturbance dataset provides a baseline to
disentangle the contribution of increasing forest cover and
changing disturbance regime to forest dynamics, carbon cycle,
and climate feedback53–55. However, it is also worthwhile to note
that although intensified afforest/reforestation has significantly
increased forest covers in China, there is an increasing need to
enhance forest structure and quality via effective management26.

Although the Landsat represents the longest and one of the
best satellite observations to detect forest disturbances over large
spatial and temporal scales7, the spatial, spectral, and temporal
resolution offered by Landsat data are still not equipped to
separate subtle structural and compositional changes caused by
different silvicultural practices and chronic, low intensity dis-
turbances. Thus, we lumped different types of disturbances
together including disturbance events that caused abrupt changes
in canopy cover or biomass through permanent forest losses, or
different silvicultural practices (e.g., timber harvest and other
silvicultural options), though we tried to separate forest fires from
other types of disturbance. We also only mapped reforestation/
afforestation by tracking forest expansion without detecting post-
disturbance establishment practices (e.g., planting and assisted
regeneration) within forests that increased forest covers or bio-
mass because of lack of high-quality reference data to distinguish
forest recovery and these establishment practices. Future work
should thus aim for the improved attribution algorithms that
more explicitly consider the complex interactions between human
and natural disturbance processes in China’s forest ecosystems56.
We also only mapped the largest disturbances for each 30 × 30-
m2 pixel, in which there was only one disturbance event recorded
for the whole 36-year period. For the short-rotation forest sys-
tems (e.g., fast-growing plantations in subtropical regions) or
sequential disturbances (e.g., post-fire salvage logging), our
approach may underestimate the disturbance rate if two or more
disturbance events occurred in the past three decades. Finally, we

did not further consider changes in disturbance regimes between
natural and planted forests, because of a lack of detailed spatial
and temporal distribution of these forests. Despite these limita-
tions, remote sensing offers the only feasible way to map dis-
turbance at large spatiotemporal scales and our quantitative
analysis of patterns and trends in forest disturbances provides a
first step towards better understanding of the drivers and ongoing
changes in China’s forest ecosystems.

In conclusion, we demonstrated that 1.16 ± 0.41% of China’s
forest was disturbed annually from 1986 to 2020. However, there
was a decline in disturbance rate across China’s forests mainly
due to the effective implementation of protective forest policy.
Generally, we found disturbance regime weakened in Northeast
and increased in Southeast China. Our high-quality spatially
explicit characterization of disturbance map provides an essential
data layer for vegetation models to improve their capacity to
represent disturbances and their roles in regulating ecosystem
services provided by China’s forests.

Methods
Disturbance detection. We used a well-established spectral-temporal segmenta-
tion method, Landsat-based Detection of Trends in Disturbance and Recovery
(LandTrendr), to detect disturbances within the Google Earth Engine (GEE) cloud-
computing platform57,58. The core of the LandTrendr is to extract a set of
disturbance-related metrics by breaking pixel-level annual time-series spectral
trajectories into linear features using Landsat observations. The LandTrendr has
been widely used for change detection in various forest settings, and details about
the algorithms can be found in previous publications57. Here we briefly described
the key steps in generating the year and type of disturbances in China’s forests
using the LandTrendr within the GEE platform. The overall analytic flow can be
found in Supplementary Fig. 10.

First, we generated annual spectrally consistent time-series data by using all
available, good quality (cloud cover ≤ 20) Tier 1 Landsat 5 (Thematic Mapper),
Landsat 7 (Enhanced Thematic Mapper Plus), and Landsat 8 (Operational Land
Imager) images acquired during the peak growing seasons (June 1—September 30)
from 1986 to 2020. The peak growing seasons were selected to exclude
compounding influences from ice, snow, and soil, and to maximize the spectral
changes after forest disturbances. To tackle the spectral inconsistency among

Fig. 5 Significant decreases in forest disturbance rate due to the implementation of China’s National Forest Protection Program (NFPP) in 1999.
a, b showed the spatial distribution of percent of disturbed forest annually (% yr−1) within each 0.5° grid cell before (a, 1986–1999) and after
(b, 2000–2020) NFPP. c–e showed the histogram distribution of percent of disturbed forest annually (% yr−1) before (blue) and after (red) NFPP at
national (c), within the NFPP region (d), and outside the NFPP region (e). Blue lines in a and b indicated the NFPP boundary (also see Supplementary
Fig. 8a).
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Landsat sensors, we harmonized spectral values via linear transformations
according to band-respective coefficients presented in59. Clouds, cloud shadows,
snow, and water were masked out using the Fmask algorithm60. The annual band
composites at 30-meter spatial resolution during 1986–2020 were computed using
the Medoid method61.

Secondly, we ran the LandTrendr using five spectral indices, including two
spectral bands (shortwave infrared I and II that were B5 and B7), tasseled cap
wetness (TCW), normalized burn ratio (NBR), and normalized difference
vegetation index. These five indices were effective indictors to represent vegetation
greenness and structures, and were commonly used for detecting changes in forest
disturbance and recovery62. For each spectral index, the LandTrendr produced a
set of parameters to describe a possible disturbance event at the pixel level,
including spectral values at pre-disturbance level (preval), magnitude of change
(mag), duration (dur) and rate of change (rate), and the signal-to-noise ratio (dsnr)
(n= 5). Using these five spectral indices, we generated a stack of disturbance-
related parameter layers (n= 25, 5 spectral indices × 5 parameters), which were
later used to detect and classify disturbances using machine learning models
derived from reference data (described below).

Disturbance classification
Reference data. High-quality consistent reference data is key to train and classify
disturbance types. To do so, we generated a total of 31225 reference points using a
hierarchical approach. We first generated a large number of potential disturbance
points using forest loss data from 2001 to 20203. Then we separated fire dis-
turbances from non-fire disturbances by overlaying MODIS burned area (BA) with
potential disturbance points following the procedure used by63. Specifically, fire
disturbances were determined if the MODIS BA data coincided with the Landsat-
derived forest loss for the fire year and 2 years postfire (i.e., t+ 0, t+ 1, t+ 2) to
account for delayed post-fire tree mortality. Following this step, we derived points as
potential disturbances that consisted of fires and non-fire disturbances (including
forest conversion to other land use types and silvicultural practices at various
intensities). We also generated roughly the same number of points that experienced
no disturbances (e.g., persistent forests), which were determined by selecting pixels
with very few changes in spectral indices. These reference points, including fire,
non-fire disturbances, and persistent forests, were then used to sample the time-
series spectral data from 1986 to 2020. Finally, time-series spectral data from each
reference point were visually checked to make sure they accurately represented
disturbance events. This process resulted into a total of 31225 reference data points,
including 2356 fire disturbance points, 13,242 non-fire disturbance points, and
15,627 no disturbance points (persistent forests) (Supplementary Fig. 2).

Random forest classification. We used machine learning modeling to classify each
pixel into fire disturbance, non-fire disturbance, or no disturbance. The reference data
points were used to sample the LandTrendr-derived disturbance-related parameter
layers described above, which resulted into a dataset consisting of disturbance types.
We divided the dataset into 70% of training data, and 30% as validation data. Using
the training data, a Random Forest (RF) model was trained to classify each reference
point into fire, non-fire disturbance, or no disturbance. Our RF approach showed that
short-wave infrared (SWIR)-based moisture indices (e.g., B7, TCW) were strong
predictors for detecting forest disturbances (Supplementary Fig. 11) likely because of
their sensitivity to vegetation water content and canopy structure64. Finally, we
applied the trained RF model to the full classification stack to consistently map the
disturbance types from 1986 to 2020 across China’s forests, assuming that the spectral
trajectories derived from reference data period 2001–2020 can be extrapolated to the
whole mapping period 1986–2020. However, note that our approach was meant to
detect relatively acuate and discrete disturbances that caused canopy opening, rather
than subtle changes of forest structure or composition resulted from low intensive
silvicultural practices and chronic disturbances.

Year of disturbance. We used the LandTrendr to determine the year of disturbance as
the onset of magnitude of spectral change. Since we ran LandTrendr on five spectral
indices, there were five possible years of disturbance for each pixel. Thus, we deter-
mined the year of disturbance using the median value from at least three different
indices (i.e., NDVI, NBR, TCW, B5, B7). In this way, we only kept pixels that were
detected as disturbances using at least three indices, thus reducing commission errors.
The year with the greatest spectral changes generated by the LandTrendr often had an
accuracy within 3 years11. A confidence level was also assigned to each disturbed pixel
based on numbers of indices which showed possible disturbance events. Specially, low,
medium, and high confidence were assigned if the disturbance was detected by three,
four, or five spectral indices, respectively.

Validations. We validated the disturbance map at the pixel and national levels. At the
pixel level, we validated the final map using the validation sub-sample described in the
previous section. We derived a confusion matrix to report user’s and producer’s
accuracy (Supplementary Table 1) as the main accuracy assessment metrics. At the
national level, we compared forest disturbance detected in this study to available
existing dataset. Specifically, we compared the area of forest fire disturbance between
our study and the national fire records during 2003–2009 (Supplementary Fig. 5). We
compared the disturbance rates between our study and Landsat-derived global forest
cover changes from 2001 to 20193 (Supplementary Fig. 4).

Post-processing. We applied a series of spatial filters to minimize the unrealistic
outliers from two potential sources of uncertainty, including speckle in time-series
spectral trajectories or misregistration among images. This may lead to individual
pixel or small patches including only a few pixels, which were (a) detected as
disturbances, thus increasing the commission errors, or (b) not detected as dis-
turbances, while their surrounding pixels were mostly disturbed, thereby increasing
the omission errors. To address the issue (a), we removed all single-pixel dis-
turbance patches through setting the minimum mapping unit as two 30 × 30m2

pixels (0.18 ha). To address the issue (b), we applied a 3 by 3 moving window to fill
holes through assigning the year of disturbance based on the years in the sur-
rounding pixels. Finally, we smoothed the year of disturbance by assigning the
center pixel using majority rules from surrounding pixels within the 3 by 3 win-
dows, thus accounting for artefacts associated with uncertainties in the correct
identification of the disturbance year.

Characterizing disturbance regimes and their trends. We characterized the
disturbance regime using five indicators within each 0.5° grid cell (n= 1946) across
China’s forests based on annual forest disturbance maps generated from the pre-
vious step. Within each grid cell, we calculated (1) total annually disturbed forest
area (km2 yr−1), (2) percentage of forest disturbed annually (% yr−1), as annual
disturbed forest area divided by the total forested area, (3) disturbance size (ha), as
the number of disturbed pixels for each individual patch using an eight-neighbor
rule, (4) disturbance frequency (# of patches per 1000 km2 forested area each year),
as the number of disturbance patches per year divided by the total forested area, (5)
disturbance severity (ΔNDVI=NDVIt−1−NDVIt+1), as magnitude of NDVI
change 1 year before and 1 year after disturbance, obtained from the LandTrendr
analysis. We used (1) and (2) to characterize the disturbance rate, and (3)–(5) to
describe the patch characteristics. The (2) and (4) were normalized by forest area
within each grid cell, thus making them comparable among grid cells. For (3)–(5),
we only calculated the patch size >0.45 ha (five 30 × 30-m2 pixels), because patches
<0.45 ha only contributed <10% of disturbance area, while greatly increasing the
computation demand. Larger patches were also likely to be detected more accu-
rately, having greater effects on forest dynamics and functions. In our analysis, the
area was calculated by numbers of pixels multiplied by pixel size (0.09 ha).

We reported the five disturbance regime indicators at each grid cell, and
aggregated patch-based metrics (disturbance size, frequency, and severity) within
each grid cell. We visualized the spatial patterns of forest disturbance regime using
arithmetic mean and reported the statistics using both arithmetic mean and
median. Trends in five disturbance regime indicators at each grid cell were
quantified using the Mann Kendall trend test, which is a non-parametric measure
of monotonic trends in time series insensitive to outliers.

We also assessed how variations in satellite image availability affected the trend
of disturbance. There is an increasing availability of Landsat images per year as
Landsat mission evolves (Supplementary Fig. 1). Although it provides us more
opportunities to detect changes on the ground, this could potentially cause a false
positive trend13,14. The number of available Landsat images was much lower from
1986 to 1999 but increased with time. As a result, there has been great interannual
variability in disturbance area, with a non-significant decreasing trend. However,
the number of available Landsat images has doubled since 2000, except that the
number of available Landsat images was especially low in 2000 and 2012 due to the
decommission of TM and ETM+ sensors, respectively (Supplementary Fig. 1).
This resulted in a relatively small interannual variation in disturbance area and a
decreasing trend. Although more detailed analysis (see below) indicated positive
trends of Landsat observations contributed to the increasing disturbance rate
during 1986–2020, our results showed that its influence was relatively small
compare the other factors (Fig. 4). Furthermore, the declining rate of disturbance
would be higher if the density of Landsat observation was consistent during
1986–1999, because the denser Landsat observations in the later observation period
could create false positive trends.

Underlying drivers of changing patterns of forest disturbance. To understand
the underlying drivers of changing patterns of forest disturbance, we used the
generalized linear model (GLM) to explore the effects of climatic factors, bio-
physical factors (topography, vegetation, soil), social-economic factors (e.g., man-
agement, pullulation density, road density, and distance to the nearest road), and
variability in Landsat observations on annually disturbed forest area at each 0.5-
degree grid cell. Climatic factors were used to investigate if background climates
had an influence on disturbance patterns. We summarized annual mean air tem-
perature (MAT), mean annual precipitation (MAP), and vapor pressure deficit
(VPD) from 1985 to 2020 using 4-kilometer, monthly gridded TerraClimate data65.
VPD was then only included in the analysis due to its collinearity with MAT and
MAT. Forest management variables included percent of forest management area
and the status of ecological projects. The percent of forest management area was
calculated as percent of pixels with forest management activities divided by all
forest pixels at 0.5° grid cell, using a newly derived forest management dataset for
201566. The boundary of ecological project was used to determine whether dis-
turbance patches were located in the ecological project regions (i.e., 1-within the
ecological project region, 0-outside ecological project region, detailed descriptions
of ecological projects were provided below). Population density (persons/km2),
road density (km/km2), and distance to the nearest road (km2) were summarized at
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0.5° grid cell. Trends for Landsat observations were calculated using annual
availability of all Landsat observations (Supplementary Fig. 1). Biophysical factors
included topography (e.g., elevation, slope), vegetation (e.g., NDVI as a proxy for
rate of growth), and soil (e.g., soil organic content, soil bulk density).

The GLM was fitted using annually disturbed forest area as dependent variables, and
climatic factors, biophysical factors, management, and availability of Landsat
observations as independent variables. The GLM was fitted using the glm function of
the stats package in R. A parsimonious model was selected using the stepwise algorithm
based on Akaike Information Criterion (AIC). The standardized regression coefficient
from the GLM can be interpreted as the relative influences of independent variables.
Partial plots were used to indicate direction of independent variables (Fig. 4).

Forest restoration policy and its effects on disturbances. Forest management
policy has undergone substantial changes since the establishment of P.R. China in
1949. Before 1970s, excessive timber harvest decreased forest covers, degraded
forest conditions, and caused serious ecological and environmental consequence,
such as soil erosion, sandstorm, and flood. To restore the degraded forest eco-
systems, Chinese government has implemented several national key ecological
restoration projects since 1987, including Three-North Shelter Forest Program
(TNSFP, also known as Green Great Wall), Yangtze River and Zhujiang River
Shelter Forest Projects (RSFP), Natural Forest Protection Project (NFPP), The
Grain for Green Program (GGP, also known as China’s Sloping Lands Conversion
Project). The TNSFP, initiated in the late 1970s, is an afforestation program, and
spans half of northern China. It aims to improve environmental conditions, reduce
the soil erosion, and promote the forest/grass-related products in the Three-North
regions. The RSFP, initiated in 1989, is a forest restoration program, and covers the
Yangtze River and Zhujiang River watersheds. It aims to reduce the soil erosion,
rocky desertification, and occurrence of flood in south China. The NFPP, initiated
in 1999, is a forest protection/conservation program to conserve China’s natural
forests, with the objectives of conserving biodiversity, protecting the water quality,
preventing soil erosion and desertification, and reducing the likelihood of floods
and other natural disasters associated with deforestation. Within the NFPP regions,
the major restoration strategies include decreasing and adjusting the logging
intensity, and accelerating afforestation in ecologically sensitive regions, especially
along the Yangtze River and the Yellow River basin. The GCP, initiated in 2000, is a
nation-wide ecological compensation program, which encourages farmers to
convert croplands in hilly areas (>20 degree) to forests. Other than the forest-
related programs mentioned above, there are also a few other ecological projects,
including the Beijing–Tianjin Sand Source Control Project and Returning Grazing
Land to Grassland Project. However, these two projects focus on dryland ecosys-
tems and thus were not included in our analysis24,46.

To further assess the effects of forest management policy on disturbance
regimes, we compared the fraction of positive and negative trends of annually
disturbed forest area at 0.05 significance level (i.e., p < 0.05) within and outside the
ecological restoration projects boundary (Supplementary Fig. 8). A higher
proportion of negative trends within the ecological restoration projects boundary
indicated a decreasing trend of disturbance rate caused by the effective
implementation of the project. The boundaries of these projects were digitized at
the province level from maps obtained from the administrative agencies.

Mapping forest expansion. Besides the mapping of disturbances within forests,
we also mapped the pattern and rate of forest expansion via reforestation/affor-
estation outside of forests to fully capture disturbance regimes that regulated forest
changes across China. Since the LT-GEE cannot map forest extent dynamics, we
derived the forest extent (defined as canopy cover >20%) by merging the 30 m
annual land cover map from 1990–201930 and an average tree canopy cover map
from AVHRR (1985–2016)32, MODIS (2000–2020)67 and Landsat (2000–2020)3.
The annual forest expansion was defined as newly gained forests on previously
non-forested land use types and remained forested for the rest of study period. The
rate of forest expansion (km2 yr−1) was mapped with each 0.5° grid cell (n= 1946)
across China’s forests (Supplementary Fig. 7).

Forest mask. Forest mask in 1986 was derived using the following procedures.
First, a composite tree cover map in 1986 (TCcompostite1986) was obtained by
merging the tree cover map in 1986 (TC1986) using observations by Advanced Very
High-Resolution Radiometer (AVHRR)32 and the tree cover map in 2000 (TC2000)
using observations by Landsat sensor3. The percent of tree cover in TCcompostite1986

was determined as the maximum tree cover in TC1986 or TC2000 (that was
TCcompostite1986=max(TC1986, TC2000)). In this way, we could capture the possible
forest disturbances that occurred before 2000 (e.g., TC1986 > TC2000), and the
expansion of forested area from 1986 to 2000 (e.g., TC1986 < TC2000). Then the
forest mask in 1986 was defined as TCcompostite1986 > 20% following Liu et al.,
(2019). We should note that our study area did not include the newly afforested
area after 2000. All analyses were performed within the forest mask, thus excluding
the potential confounding factors from other land cover types. The description of
TC1986 and TC2000 can be found in3,32.

Data availability
The Landsat data are freely available via either USGS Earth Explorer (https://
earthexplorer.usgs.gov) or Google Earth Engine (https://earthengine.google.com). The
tree cover data was available at https://glad.umd.edu/dataset/long-term-global-land-
change and https://earthenginepartners.appspot.com/science-2013-global-forest. The
disturbance maps produced in this paper are available at https://liuzh822.users.
earthengine.app/view/chinaforestdisturbance.

Code availability
The code for processing the Landsat data and run LandTrendr is available at https://
emapr.github.io/LT-GEE/. The codes for reproduction of all figures are available at
https://github.com/liuzh811/DisturbMapping_China.
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