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Exposure to precipitation from tropical cyclones
has increased over the continental United States
from 1948 to 2019
Laiyin Zhu 1 & Steven M. Quiring 2✉

Extreme precipitation from tropical cyclones can generate large-scale inland flooding and

cause substantial damage. Here, we quantify spatiotemporal changes in population risk and

exposure to tropical cyclone precipitation in the continental eastern United States over the

period 1948–2019 using high-resolution in-situ precipitation observations. We find significant

increases in the magnitude and likelihood of these extreme events due to increased rainfall

rates and reduced translation speeds of tropical cyclones over land. We then develop a social

exposure index to quantify exposure and risk of tropical cyclone precipitation as a function of

both physical risk and socio-economic activities. Increased social exposure is primarily due to

the increased risk of tropical cyclone precipitation, but there are regional differences. We

identify exposure hotspots in the south-eastern United States, where rapid population growth

and economic development amplify societal exposure to tropical cyclone hazards. Our multi-

scale evaluation framework can help identify locations that should be targeted for mitigation

and adaptation activities to increase their climate resilience.
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Extreme precipitation from Tropical Cyclones (TC) can cause
significant inland flooding in both coastal and interior areas
in the continental U.S. (CONUS) and lead to substantial

economic damage. For example, Hurricane Harvey (2017) caused
$136.7 billion in losses, mostly from rain-induced inland
flooding1. It ranks as the second most expensive disaster after
Hurricane Katrina. Similar flooding disasters also occurred in
Hurricane Irene (2011), Hurricane Florence (2018), and Hurri-
cane Ida (2021). Tropical Cyclone Precipitation (TCP) will likely
increase in the future because a warming climate will increase TC
rain rate and reduce TC translation speed2–4, causing more fre-
quent stalling5. These changes in TCP patterns will elevate inland
flooding risk6. In addition, local factors such as the urban heat
island effect7 and aerosols8 can further exacerbate risk by inten-
sifying TCP.

While the physical risk of TCP is changing, there have also been
substantial shifts in regional demographics and economic devel-
opment. These changes are likely to continue in the future9.
Therefore, inflation-adjusted GDP is an essential criterion to
quantify historical10–13 and future trends14 in TC damages. Two
studies10,15 have concluded that there is no trend in destruction
because of the lack of trends in landfalling TC frequency and
intensity13 in CONUS. In contrast, Klotzbach et al.11 used a more
extended period of record and found positive trends in hurricane-
related economic losses in CONUS. In addition, there are also
observed increases in socio-economic exposure globally and
regionally16 from TC wind damages11,14,17. While many discus-
sions have focused on damages caused from TC winds, few10,18

have focused on impacts from TCP and inland flooding. In a
changing climate, local mitigation, adaptation, and risk manage-
ment are crucial for reducing the effects of TCs19. Here we use a
long-term, high-resolution TCP record (at 0.25°) derived from daily
in-situ precipitation observations20, high-resolution population data
(highest resolution of 1 km)21 and Gross Domestic Product (GDP,
1 km)22 to quantify spatial and temporal changes in physical TCP
risk and socio-economic exposure to TCP in CONUS over 70 years
(1949 to 2018). We summarize changes at the local, state, and
national levels to inform mitigation and adaptation strategies.

Results
Temporal trends in TCP. About 3.7 million km2 (30%) of
CONUS has consistent TCP records from 1949 to 2018 (Fig. 1a)
and 52,000 km2 (0.4% of CONUS) has a statistically significant
positive trend in annual TCP. There is an even larger area
(144,000 km2, 1.2% of CONUS) that has a statistically significant
positive trend in annual maximum event TCP (Fig. 1b). There is
also small area with negative trend (~28,000 km2 for annual TCP
and 1540 km2 for annual maximum event TCP), although not
statistically significant. Most locations with increasing annual
TCP trends are located in the mid-Atlantic and south-eastern
Atlantic coast (Fig. 1a). In comparison, extreme TCP (Fig. 1b) has
a more expansive spatial pattern with significant positive trends
in the northeastern Atlantic coast, Gulf coast, and some inland
locations. There are different spatial patterns for increases in daily
rain rate (Supplementary Fig. 2), annual TCP days (Supplemen-
tary Fig. 3) and durations of TCP events (Supplementary Fig. 4)
and they all contribute to increases in total and extreme TC in
Fig. 1. Previous studies have found either positive trends in
TCP23–26 or no trend in TCP27,28 over CONUS. Differences in
the length of the record, the definition of the TCP (radius to the
TC center), or the source of rainfall data are possible causes of the
lack of agreement in past studies. Our novel dataset shows that
there is substantial spatial variability in annual total and extreme
TCP trends. The mainly positive trends are caused by increased
TC rain rate and event duration.

Changes in TCP Probability. We have chosen 100 and 200 mm
as the thresholds to quantify changes in the Return Periods (RP)
of extreme TCP events across the CONUS because 100 mm is a
general precipitation threshold for generating flooding29 and
200 mm indicates an extreme precipitation event30,31. The RPs
are calculated for two overlapping 50-year time windows (Fig. 2)
to evaluate changes between the early period (1949 to 1998) and
the late period (1969–2018). The overlapping period of record
was selected so that we are using a robust and conservative
estimate of changes in return periods for extreme events. Please
see the “Methods” and Supplementary Fig. 10 for results of the
sensitivity analysis using non-overlapping periods. Only 529,760
km2 of areas in CONUS have <25 years RP for >100 mm event
TCP in the early period (Fig. 2a), and it increases to 904,750 km2

in the late period (Fig. 2b) with a relative increase of 70%. The
>200 mm TCP (Fig. 2c, d) events are rarer but more destructive.
We observe a ten-fold increase in the areas with <25 years RP
from 11,550 km2 in the early period to 117,810 km2 in the late
period. Geographically, locations with a higher risk of extreme
TCP are mostly in coastal areas during the early period, but these
higher-risk regions extend much further inland during the later
period (Fig. 2b, d).

Cities have concentrations of people and economic activities, so
they usually have greater exposure to extreme weather hazards32.
Rapid urbanization and elevated risk of severe weather jointly
exacerbate the damage risk33,34. Therefore, we chose nine large
cities (locations shown as Supplementary Fig. 5) along the coast
for analysis, and many have increased TCP risk (Fig. 3). Houston
has the most significant increase, with the 20-year event TCP
increased from <200 mm in the early period to >400 mm in the
late period. The tail of the distribution during the late period
increases to > 600 mm as a result of extreme events like Tropical
Storm Alison (2001), Hurricanes Ike (2008), and Harvey (2017)
in the late period. Other large cities, including New Orleans,
Mobile, Tampa, Jacksonville, and Raleigh, have also experienced
substantial increases in TCP risk (Fig. 3b–f). Cities further to the
north generally have lower TCP risk and demonstrate different
patterns of change in TCP risk. For example, TCP risk increased
by 50% in New York City and decreased slightly in Boston, while
it did not change in Washington, D.C. This is partly a function of
the uncertainties in determining TCP risk in regions that
experience fewer TCs.

TC rain rate generally follows the Clausius–Clapeyron
equation, and many previous studies have demonstrated that
higher global mean atmospheric temperature will lead to more
precipitation2,35,36. Our analysis shows substantial increases in
TC rain rates over CONUS during the last 70 years (Supplemen-
tary Figs. 2, 6) and increased probabilities of higher rain rates in
many major cities (Supplementary Fig. 7). At the same time, the
mean translation speed of TCs decreased from 10.55 kt in the
early period to 10.37 kt (Supplementary Fig. 8) in the late period
(~1.7%). This reduction is most pronounced in the distribution’s
0 to 20 kt range. We also find high spatial variability in changes in
TC translation speeds, and clustered grids with slowing downs are
in the southern part of CONUS (Supplementary Fig. 9). There is
still debate on the global trend in TC translation speed37–39.
Nevertheless, our records indicate that the recent increase in TCP
risk in CONUS is associated with a substantial rise in TC rain rate
and a slight decrease in regional TC translation speed over land.

Changes in socio-economic exposure to TCP. In CONUS,
substantial demographic and economic changes have occurred in
the last 70 years. For example, the southern “Sunbelt” population
has increased since 1950, driven by economic growth, demand for
amenities, and housing supply40. Meanwhile, these locations are
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Fig. 1 Trends in tropical cyclone precipitation from 1949 to 2018 in CONUS. The trend at each location is calculated using Sen’s slope (mm year-1) for:
a annual total Tropical Cyclone Precipitation (TCP), and b annual maximum event TCP from 1949 to 2018 in CONUS. Black dot indicates that the trend at
that location is statistically significant based on the Mann–Kendal test at the 95% significance level.

Fig. 2 Comparison of Return Period (RP, in years) for 100 and 200mm Tropical Cyclone Precipitation (TCP) events between the early period
(1949–1998) and the late period (1960 to 2018). Each panel is a RP for 100mm TCP events in the early period, b RP for 100mm TCP events in the late
period, c RP for 200mm TCP events in the early period and, d RP for 100mm TCP events in the late period. Only locations with robust estimation of the
empirical exceedance probability density curve are displayed.
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prone to TC-related disasters because of their proximity to the
ocean. We created a TCP socio-economic exposure index
(TCPEI, see data and methods for details) by combining demo-
graphic and economic data with physical TCP risk. The TCPEI
quantifies how socio-economic exposure to extreme TCP events
has changed between the early period (1949–1998) and the late
period (1969–2018). There is a general increase in TCPEI from
the early period (Fig. 4a, c) to the late period (Fig. 4b, d). About
55 million people were exposed to > 100 mm TCP in the early
period, and it increased to 107 million people (92% relative
increase) in the late period (Fig. 4c, d). The population with > 1
TCPEI (the highest category for TCP > 200 mm, Fig. 4g) has
increased from zero to 4 million. Meanwhile, the population with
> 0 TCPEI (lowest category for TCP > 200 mm) has risen ~6 folds
from 4.9 million to 29 million. This pattern indicates that the
densely populated areas are experiencing more relative increases
in exposure to more extreme TCP events.

We also observe significant changes in TCPEI regionally. By
averaging the TCPEI within state boundaries, we demonstrate
that most states have experienced increases in the median TCPEI,
but the magnitude varies from state to state (Supplementary
Fig. 11). Louisiana, Florida, and North Carolina have the largest
absolute increases (0.49 to 0.70 in median) and relative increases
(97 to 100%) in population exposure for > 100 mm TCP
(Supplementary Fig. 11a, b). Louisiana, Florida, and Texas have
the largest increases in population exposure to >200 mm TCP
(0.19 to 0.29 increases in the median with 39 to 58% relative
increases, Supplementary Fig. 11c, d). This pattern indicates that
states with larger populations are experiencing significantly
elevated exposures to extreme TCP events. Florida, Texas, and
North Carolina rank high in the relative population growth from
1990 to 2020 (Supplementary Fig. 12). Louisiana has slower
population growth, so its significant increase in population
exposure is primarily due to elevated physical TCP risk.

Fig. 3 Return Period (RP) for event Tropical Cyclone Precipitation (TCP) calculated for U.S. cities by the empirical kernel density function of
exceedance probability. Each panel represents: a Houston, TX. b New Orleans, LA. cMobile, AL. d Tampa, FL. e Jacksonville, FL. f Raleigh, NC. g District of
Columbia, D.C. h New York City, N.Y.C, NY. i Boston, MA. Confidence Intervals (CI) are estimated by the upper (95%) and lower (5%) boundaries of the
Poisson distribution.
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Economic activities are closely associated with population
changes and can be substantially disturbed by extreme weather
events like TCs. Similar to the population TCPEI, we have found
substantial increases in the exposure of economic activities to
extreme TCP events (Supplementary Fig. 13). There are
expansions of areas with high TCPEI in the late period
(Supplementary Fig. 13b, f) compared with the early period
(Supplementary Fig. 13a, e). The > 200 mm TCPEI has more
significant relative increases than the >100 mm TCPEI. For
example, the GDP exposed to > 100 mm TCP increased by 2%,
from $5.2 trillion to $5.3 trillion (Supplementary Fig. 13c).
Meanwhile, the GDP exposed to >200 mm TCP increased by
124%, from $581 billion to $1.3 trillion (Supplementary Fig. 13g).
Most states had increases in median GDP TCPEIs (Supplemen-
tary Fig. 14), and the southern states had more pronounced
relative increases. For example, Florida, Mississippi, Texas,
Alabama, and Louisiana rank as the top 5 states highest relative
increase (32–131%) in the 200 mm TCPEI (Supplementary
Fig. 14c, d).

The TCPEI combines physical TCP risk and socioeconomic
information. The TCP risk has larger relative increase (> 60% at
many locations, Fig. 4i, j) than the population (<20% at many
locations in the sourthern U.S., Fig. 4k) and GDP (<10% at most
locations, Fig. 4l). Therefore, the increase of physical TCP is the
major driver of increasing TCPEI over the CONUS. On the other
hand, the changes in population/GDP intensified (attenuated) the
regional TCPEI changes (e.g., in the southern U.S., Fig. 4a, b),
with major influences from the changing physical TCP risk.

Discussion
Large areas in the southern U.S. and coastal mid-Atlantic have
significant positive trends in annual total TCP and maximum
event TCP during the last 70 years. Widespread increases in TCP
probability occur in coastal regions and they are most pro-
nounced in the southern U.S. Elevated TCP risk is also observed
in most coastal cities. Those changes in physical TCP risk are
associated with increased TCP rain rates and decreased TC
translation speed6,41. Our records also show that the most

significant decreases in TC translation speed are in the slowest
moving TCs (<20 knots, Supplementary Fig. 8a) and in TCs
tracking towards the northwest (Supplementary Fig. 8b). Large
spatial variabilities also exist in the temporal trend in TCP. These
variabilities are a result of multiple factors, including anthro-
pogenic climate change3,41,42, natural variability (e.g., El Niño-
Southern Oscillation and Atlantic Multidecadal Variability) and
forcing from volcanic activity28,43,44, and inconsistencies and
limitations of historical observations20. Therefore, we need more
high-quality and long-term historical TCP data and carefully
controlled numerical experiments for a better understanding of
changes in TCP and its relationship with climate/environment.

Many previous studies showed increasing risk of extreme
weather events under anthropogenic climate change3,45,46. Some
provide quantitative estimates of social exposure to extreme heat
and cold events, floods, sea level rise, etc.47–50. Using the TCP
data, we proposed a new index that combines changes in the
physical probability of extreme events and socioeconomic mea-
surements directly affected by the disaster. We demonstrated that
while the physical TCP risk is the primary driver determining the
socioeconomic exposures, increases in population and GDP are
exacerbating these changes. Areas with high TCPEI have
expanded substantially due to rapid urbanization and population
growth in the southern and mid-Atlantic states of CONUS during
the last 70 years (Fig. 4k, l and Supplementary Fig. 15). Future
regional population growth51 and urbanization52 may intensify
TCP flooding6,33 and its societal exposure. In addition, the spatial
heterogeneity in the population growth and economic develop-
ment cause differences in local exposure to TCP hazards.
Potential damage may increase exponentially due to changes in
the magnitude and frequency of extreme TC events53,54. Com-
pound events such as storm surge and pluvial floods can intensify
those damages55. At the local level, government and citizens need
more detailed mitigation strategies such as updated building
codes, expanded insurance, and infrastructure hardening11 when
faced with increased exposure to extreme TCP. Our research
quantifies how physical risk from TCP and societal exposure
changed simultaneously across CONUS during the last 70 years.

Fig. 4 Spatial Changes in the population-based Tropical Cyclone Precipitation Exposure Index (TCPEI), comparison of population and area for
different ranges of TCPEI, relative changes in TCP probabilities, and relative changes in population and Gross Domestic Product (GDP). Each panel
represents: a >100mm daily TCPEI in the early period, b >100mm daily TCPEI in the late period, c population comparison between the early period and the
late period for different ranges of >100mm daily TCPEI, d comparison of the impacted area between the early period and the late period for different
ranges of >100mm daily TCPEI, e >200mm daily TCPEI in the early period, f >200mm daily TCPEI in the late period, g population comparison between
the early period and the late period for different ranges of >200mm daily TCPEI, h the comparison of the impacted area between the early period and the
late period for different ranges >200mm daily TCPEI, i relative changes in >100mm daily TCP probability, j relative changes in >200mm daily TCP
probability, k relative changes in the logarithm of the population, l relative changes in the logarithm of GDP. The 1970 Population and the 1949–1998 TCP
are used to calculate the early period TCPEI. The 2020 population and 1969–2018 TCP are used to calculate the late period TCPEI. In panels c, d, g, h, “m”

stands for million and “k” stands for thousands.
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Geiger et al.14 predict an annual global exposure increase of 26%
(33 million people) to TC winds for every 1 °C rise in global mean
surface temperature. We demonstrated that the number of people
exposed to >200 mm TCP has increased by 24 million (489%
relative increase, Fig. 4g) and the GDP exposure to >200 mm TCP
has increased by $719 billion (124% relative increase, Supple-
mentary Fig. 10g). Future research needs to address how com-
pound flood56 exposure (extreme floods generated by both
rainfall and storm surge) changes by integrating and coupling
earth system models, hydrological/hydraulic models, and socio-
economic/land cover change models. Substantial disparities exist
in social exposure57,58 to TC hazards, and our TCPEI does not
explicitly address this. Future metrics of social exposure to
extreme weather events also need to reflect social disparity so the
most vulnerable social groups to nature disasters can be better
protected.

Data and methods
Precipitation data are from the Daily Global Historical Clima-
tology Network (GHCN-D), which provides a complete global
daily precipitation record. They are freely accessible from
National Centers for Environmental Information, NCEI (https://
www.ncei.noaa.gov/products/land-based-station/global-
historical-climatology-network-daily). We obtained daily pre-
cipitation observations for TCP calculation from GHCN-D gau-
ges that are within a moving daily boundary. Four connected
circles define this daily boundary with 600 km radius to four TC
centers recorded at 6 h intervals from the International Best
Track Archive for Climate Stewardship (IBTrACS). Here a larger
radius (600 km) is used instead of 500 km to extract rain gauges
because we want to avoid missing the rain gauge observations
ouside the boundary when spatial interpolation is processed near
the 500 km boundary. The IBTrACS data are also freely available
from NCEI (https://www.ncdc.noaa.gov/ibtracs/). After a wind
under-catch bias correction20, we use Inverse Distance Weighting
(IDW) interpolation59 to estimate the precipitation at a set of grid
points with even spacing of 0.25° across the CONUS:

Pg ¼ ∑
N

i¼1
di
� ��u

zi

�
∑
N

i¼1
di
� ��u

��� �
ð1Þ

Pg is the precipitation estimation at each grid point. N is the
number of gauges within a searching distance (R= 30 km) for
each grid point. di is the distance from each gauge to a specific
grid within R. u is the weighting power and is set to 2 as the
default value. After we calculate Pg for all daily TCP, only grids
within 500 km of the storm track finally enter our daily TCP
database. We choose the 500 km boundary because it provides
consistent criteria for our 70-year record to define TCP. It also
includes most precipitation systems in TC41,60, including both
convective precipitation in the core and stratiform precipitation
in outer bands. This routine has been validated and optimized by
comparing available TMPA observations20 and is available upon
request. To guarantee the consistency of the data, we only chose
grids with at least one consistent gauge with 70 years of complete
observations within R (30 km). We have chosen 4816 grids
(Supplementary Fig. 1) based on that criterion, and most have
more than two gauges within 30 km, which guarantees there are
no missing observations in the time series. Therefore, we believe
that the final grids (4816) provide good spatial coverage of the
TCP’s affected areas across the CONUS.

The population for 1970 is from The Global Population
Density Grid Time Series v1 and the 2020 population is from the
Gridded Population of the World (GPW) v4. They are compiled
by the Socioeconomic Data and Application Center (SEDAC) of
Columbia University both have 1 km spatial resolution. GDP data

at 1 km resolution are obtained for 1990 and 2015 from the
Gridded global datasets for Gross Domestic Product and Human
Development Index from 1990 to 201522. We re-scaled the
population and GDP data for each 0.25° grid by summing all
1 km grid values within each TCP grid box.

We then aggregate daily TCP observations at each grid into
event TCP based on the duration of each TC (from the start to
the end of each TC event over CONUS) and sum total TCP in
each year as the annual total TCP. A 70-year climatology is
constructed for annual total TCP, annual maximum event TCP,
and annual maximum daily TCP at each grid. The Mann–Kendall
non-parametric test61,62 is used to detect trends in those time
series and the Sen’s slope63 is calculated for each time series. We
use a 95% significance level for both non-parametric methods for
all trend detections. We also calculate return periods for daily and
event TCP samples at each grid by constructing empirical
exceedance probability density64. For any sample of TCP obser-
vations (event or daily) at a specific grid, the non-parametric
kernel density estimation (KDE) function is defined as:

f̂ h p
� � ¼ 1

nh
∑
n

i¼1
K

p� pi
h

� �
ð2Þ

where p1, p2, … pn are observations of TCP at each grid with an
unknown distribution; n is the sample size. h is the bandwidth set
as 0.02 to provide enough detail for each KDE curve. K is the
kernel smoothing function, which we used a Gaussian kernel
smoother, expressed as:

K p�; pi
� � ¼ exp � p��pið Þ2

2σ2

	 

ð3Þ

where σ is the length scale for the input space. After a KDE curve
is fitted, we can estimate the cumulative distribution function
(CDF) and the Exceedance Probability Function (EPF) (1 −
CDF). By using a linear interpolation approach65, we can find the
Return Period (RP) estimate for each TCP threshold (e.g, >
100 mm). We estimated the RPs of daily and event TCP thresh-
olds for all 4816 grids and compared the estimates from the early
period (1949–1998) to the late period (1969–2018). We did not
make extrapolations, so our most extended return period is 50
years. We removed all locations where we could not determine a
value from this empirical EPF calculation. We also assume both
the event and daily TCP at each location follow a Poisson
Distribution6,66 and use it to calculate Confidence Intervals (CI)
by the upper 95% and lower 5% boundary for each kernel. Finally,
we compare the spatial distribution of RP for different magni-
tudes of TCP between the early and late periods and demonstrate
how the whole TCP probability profile changes at night cities in
the CONUS. We also finished a sensitivity analysis that compares
two non-overlapping periods of 35 years (Supplementary Fig. 10).
Results show that there is little change in the pattern of TCP RP
change as compared to the overlapping test in Fig. 3. The long
tails of the distribution for extreme values have systematically
shifted to a shorter RP. Therefore, the RP estimated with a longer
period of record (Fig. 3) will have less uncertainty in the estimates
of extreme values.

To quantify society’s exposure to extreme TCP events, we
created a TCP exposure index (TCPEI):

TCPEI ¼ log10SEC
RP

ð4Þ

Where the SEC stands for Social Economic Criteria, in this study,
we utilized two datasets: population and annual GDP in U.S.
Dollars ($). We use the logarithm of 10 for the SEC to re-scale the
population and GDP for spatial analysis. The RP is the Return
Period for a specific magnitude of TCP (e.g., 100 mm). The
TCPEI increases as population or GDP increases or RP becomes
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shorter (higher physical TCP risk). Since there can be spatial and
temporal changes in both physical TCP risk and population/
socio-economic activities, our TCPEI can quantify the spatial
variability of socio-economic exposure and identify hot spots
vulnerable to TC floods. Supplementary Fig. 16 shows a flowchart
that summarizes all data processing and analysis used for
this study.

Data availability
All data used in this study is available at Zenodo at: https://doi.org/10.5281/zenodo.
7292939.

Code availability
All codes used in this study are available at Zenodo at: https://doi.org/10.5281/zenodo.
7292939. Matlab 2021 was used to analyze the data and generate graphics.
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