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Advanced monitoring of tailings dam performance
using seismic noise and stress models
Susanne M. Ouellet 1✉, Jan Dettmer 1, Gerrit Olivier2, Tjaart DeWit3 & Matthew Lato4

Tailings dams retain the waste by-products of mining operations and are among the world’s

largest engineered structures. Recent tailings dam failures highlight important gaps in current

monitoring methods. Here we demonstrate how ambient noise interferometry can be applied

to monitor dam performance at an active tailings dam using a geophone array. Seismic

velocity changes of less than 1% correlate strongly with water level changes at the adjacent

tailings pond. We implement a power-law relationship between effective stress and shear

wave velocity, using the pond level recordings with shear wave velocity profiles obtained from

cone penetration tests to model changes in shear wave velocities. The resulting one-

dimensional model shows good agreement with the seismic velocity changes. As shear wave

velocity provides a direct measure of soil stiffness and can be used to infer numerous other

geotechnical design parameters, this method provides important advances in understanding

changes in dam performance over time.
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G lobal demand for minerals is rising, with additional
pressure on supply driven by the transition to renewable
energy sources1,2. Alongside declining ore grades, this

demand is increasing the volume of waste material, known as
tailings, produced by the mining industry3,4. Tailings dams,
designed to retain the waste by-products of mining, are among
some of the largest engineered structures in the world5; there are
an estimated 8100 tailings facilities worldwide4. Tailings dams are
designed and constructed under similar regulations as conven-
tional water storage dams in many industrialized nations6.
However, the likelihood of tailings dam failures is approximately
two orders of magnitude higher, and the risk of future tailings
dam failures is projected to increase2,5. The 2019 Brumadinho,
Brazil tailings dam failure caused over 270 deaths, was an
environmental disaster, and increased public scrutiny of tailings
dams worldwide4,7,8. Forensic investigations of the failure clas-
sified it as a flow liquefaction event and indicated that none of the
monitoring instrumentation installed (which included piezo-
meters, inclinometers, survey markers, flow meters, and rain
gauges) was able to detect any notable changes prior to the failure.
Furthermore, the investigations also indicated that the deforma-
tions obtained using post-failure satellite remote sensing (inter-
ferometric synthetic aperture radar) analysis were consistent with
ongoing internal creep, and were not considered a precursor to
failure9. This failure illustrates the challenges of designing and
maintaining a tailings dam monitoring system capable of pro-
viding adequate lead time up to a failure. Despite this, the
majority (94%) of tailings dam practitioners surveyed in a
2019 study2 felt that their site represented industry best practice
for tailings dam monitoring. An earlier review on the state of
practice for tailings dam monitoring identified extensive gaps,
including the use of outdated point-based sensors and insufficient
redundancy of sensors10. To address these gaps, the authors’
recommendations included combining point-based sensors with
broad area measurements. Remote sensing methods are broad
area measurements that are increasingly being used to support
tailings dam monitoring7,11–14 by detecting changes at surface.
Alternatively, geophysical-based monitoring methods detect
changes in the subsurface that aren’t measurable using remote
sensing methods15–19. Ambient noise interferometry (ANI) is a
geophysical technique that relies on the reconstruction of the
impulse response of a wavefield by cross-correlating the naturally
occurring noise signals between a pair of seismic sensors, where
one acts as a virtual source and the other as a receiver20,21. The
wavefield includes coda waves in the later portion of the seis-
mogram. Coda waves represent scattered waves that have spent
more time propagating within the medium, and are more sensi-
tive to seismic velocity changes20,22. By monitoring temporal
changes in the coda portion of the wavefield propagating between
the sensors, relative changes in seismic velocities are measured,
commonly referred to as dv/v. This method has been used to
monitor volcanoes, landslides, and dams23–27, but is not yet an
established technique for tailings dam monitoring.

Shear wave velocities (Vs) are an important parameter for
evaluating the liquefaction susceptibility of tailings materials28,29.
Industry standard methods for obtaining Vs for liquefaction
assessments include in-situ measurements with seismic cone
penetration testing (sCPT), geophysical methods such as multi-
channel and spectral analysis of surface waves, seismic refraction
tomography, downhole and crosshole tests, and laboratory mea-
surements using bender elements or resonant column tests30.
These methods are generally used to characterize site conditions
at one point in space and time, as multiple acquisitions are costly
and time-consuming. As coda waves are highly sensitive to Vs

20,
ANI could become an important component for tailings dam

monitoring applications, by improving understanding of how Vs

may change over time.

Results
Seismic velocity changes and environmental site data. We
employ ANI using a geophone array at a mine site in northern
Canada, located within a relatively aseismic region. Mine tailings
at the site are hydraulically transported via pipeline and are
deposited into a tailings beach adjacent to the dam (Fig. 1). The
tailings dam is approximately 8 m in height and is constructed
using the upstream method31. The dam is primarily comprised of
compacted tailings materials, and hydraulically placed coarse
tailings material are present where the geophone array extends
into the tailings beach. The tailings are non-plastic, and gradation
generally varies from a fine sandy silt to silty sand material. A
generalized stratigraphic cross-section of the dam shows that the
compacted tailings was originally placed over hydraulically placed
tailings material (Fig. 1d). A tailings pond is located ~200 m to
the north of the geophone array (Fig. 1a). Pond levels fluctuated
throughout the data acquisition period and are controlled both by
environmental (e.g., rainfall, seasonal changes in groundwater
levels) and operational factors (e.g., variable pumping rates).
Further details on the environmental site data are available in
Supplementary Notes 1. We acquired vertical-component wave-
form data from twenty-five 5 Hz geophones in a T-shaped array
during active and inactive construction periods, from June to
early August 2020 (Fig. 1). The array geometry configuration,
with 19 geophones along the dam crest and 6 geophones
extending into the tailings beach, was selected to optimize the
noise sources around the site and to avoid nearby construction
downstream of the dam (see Methods). As ANI requires coherent
cross-correlation waveforms and the active construction period
resulted in incoherencies, these were removed from the dataset
and only inactive construction period seismic data (three hours
recorded per day) were relied on for further processing (Fig. 2).

Standard ANI processing methodologies were applied to obtain
seismic velocity changes (dv/v) (see Methods). The dv/v estimates
were compared with other site information, including: tailings
pond levels, daily rainfall, atmospheric pressures and temperature
data. During the monitoring period, three main trends are
observed: (1) a dv/v increase of ~0.6% over the first month of
recording coincides with decreasing water levels at the pond; (2) a
dv/v decrease >0.5% in the five days following the highest daily
rainfall during the monitoring period; and (3) a dv/v recovery to
the pre-rainfall levels in the final week of data acquisition (Fig. 3).

Effective stress model. The shear wave velocity (Vs) is an
important parameter for geotechnical monitoring as it provides a
direct measure of soil stiffness and can be used to infer numerous
other geotechnical design parameters such as the stress state,
liquefaction resistance and degree of cementation28,30,32. For a
Poisson medium, Snieder20 demonstrated the higher sensitivity of
the coda waves to Vs. Here, we provide evidence of this Vs sen-
sitivity at a mine site in northern Canada, which can enable
meaningful dam performance monitoring.

We modeled relative changes in Vs, (dVs/Vs) to validate our
dv/v estimates by implementing a power-law relationship
between Vs and effective vertical stress for granular materials
(e.g., soils)33. This relationship applies under one-dimensional
loading and vertical shear wave propagation direction34–37. Using
the sCPT, the shear wave can be approximated as propagating
vertically as it travels from the source at surface to the receiver at
depth (within the cone)38. Thus, for effective vertical stress, Vs is
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Fig. 1 Site overview. a Geophone array overlain on lidar data with hill shading (1 m contours, collected in November 2020). Map was created using Global
Mapper v21.0 software. Location of subset of sCPTs used in regression analyses. Additional sCPTs used in analyses are not shown as they are outside of
the figure extents. b Twenty-five geophone array (20 on dam crest, five on tailings beach), showing cross-section A-A′. c Cross-section A-A′ of the tailings
dam. The dashed black line shows approximation of dam fill and tailings extent for an upstream tailings facility, and does not represent actual delineated
extents of fill and tailings. d Site stratigraphy obtained from historical borehole information.

Fig. 2 Overview of raw seismic data, spectral frequency and cross-correlations. a Spectral frequency content for a single station on one day of data
acquisition for active and inactive construction periods. b Daily cross-correlations over data acquisition period for a single station pair. The lower graph
shows the stacked (reference cross-correlation) waveform of individual daily cross-correlations over the data acquisition period.
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represented as

Vs ¼ ασ0βv ; ð1Þ

where α and β represent material constants, and σ 0v is the effective
vertical stress39,40. The material constant α represents the shear
wave velocity at σ 0v equal to 1 kPa, and β is a measure of the
stress-level dependency to shear waves and incorporates both
interparticle contact behavior and fabric changes41. We obtained
site-specific α and β parameters for the various stratigraphic units
by performing a power-law regression analyses with bootstrap
sampling, using Vs and σ 0v data obtained from 52 sCPTs
completed in 2017 and 2018 (Fig. 4; Table 1). Power-law
regression analyses, undertaken for the compacted tailings and
glaciolacustrine clay unit, are shown in Fig. 5. Additional details
of statistical analyses are described in Methods.

Estimates of daily effective vertical stresses were inferred from
daily resampled pond data using Eq. (6). These estimates,
alongside site-specific α and β parameters (Table 1) were input
into Eq. (1) to obtain daily Vs.

Relative changes in daily Vs were obtained, treating depths z as
an unknown and varying it from near surface to bedrock depths
(~39 m), using

dVs

Vs
¼ Vs � �Vs

�Vs
; ð2Þ

where �Vs is the mean of all daily Vs estimates obtained with Eq.
(1). The L1 norm was computed fitting the dVs/Vs prediction to
the dv/v results. A grid search over z produced a minimum misfit
for z equal to 15.7 m (Fig. 5b). Bootstrap analyses followed by
Monte Carlo sampling were used to estimate uncertainties of the
depth z obtained, with 95% confidence intervals from 14.1 m to
17.4 m (see Methods for details).

Figure 4 shows the predicted dVs/Vs results from the effective-
stress model for the optimal z and dv/v results from ANI. The
close agreement illustrates that the model successfully explains
the ANI results to be predominantly changes in Vs, and that
changes are primarily occurring at a depth of ~16 m. This
primary sensitivity to shear waves is in agreement with the
theoretical results for a Poisson medium20. Importantly, domi-
nant sensitivity to Vs permits ANI results to be interpreted in
terms of dam performance.

Discussion
Based on the general agreement between the dv/v measurements
and the dVs/Vs model, our results demonstrate how ANI can be
applied at a tailings dam site to provide highly sensitive (<1%)
measurements of in-situ changes of Vs alongside an approxima-
tion of depth sensitivity, without requiring advanced geomecha-
nical models. Our dv/v measurements suggest that effective stress
changes have the strongest influence on dv/v, with our effective

Fig. 3 Seismic velocity changes (dv/v) plotted with pond levels, rainfall and barometric pressure. Average dv/v over the geophone array is plotted as a
thick black line, with minimum and maximum extents of individual virtual sources averaged over all receiver combinations shaded in light gray. The nearby
pond elevation is plotted on the same graph with an inverted y-axis, to illustrate the inverse correlation of the pond levels with dv/v. Three main trends are
observed: a an increase in dv/v of up to ~0.6% over the first month of data acquisition coincides with a decrease in water levels at the nearby pond, shown
in yellow shading; b a decrease in dv/v of over ~0.5% in the five-days following the highest daily rainfall observed over the monitoring period, shown in pink
shading; and c a recovery in dv/v to the pre-rainfall levels in the final week of data acquisition, shown in blue shading.
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stress model replicating the three main trends visible in the dv/v
curve (Fig. 3). However, some discrepancies remain. Our modeled
dVs/Vs relies on an important assumption, that relative changes
in pore pressure u near the tailings dam are attributed to the
changes in the water levels recorded at the tailings pond. This was
required considering the lack of available instrumentation

recording pore pressure data over the geophone data acquisition
period near our array. However, factors such as hydraulic con-
ductivities and beach width, will contribute to variations in pore
pressure between the tailings dam and the pond31, which could
lead to discrepancies between our model and the dv/v observa-
tions. The effects of suction in the unsaturated zone are also

Fig. 4 Main result. a Estimation of site specific α and β from power-law regression using Vs estimates from sCPT surveys and effective vertical stress for
underlying tailings material. Bootstrap analyses, shown in shaded gray, were used to obtain 95% confidence intervals of the α and β parameters. Regression
results for compacted/coarse tailings and clay units are presented in Fig. 5. bModeled dVs/Vs based on α and β obtained from power-law regression for an
optimized depth z in blue. Shaded blue area represents the maximum and minimum extents of 50,000 Monte Carlo simulations, and the blue line is the
mean of all simulations. Average dv/v estimates over geophone array are shown as a black line, with gray shading representing maximum and minimum
extents of individual virtual sources averaged over all receiver combinations. The average correlation coefficient, plotted as a marker, shown between the
reference correlation waveform and the stretched waveform.

Table 1 Model parameters and site-specific alpha and beta parameters obtained from regression with bootstrap analyses.

Stratigraphic unit Unit thickness (m) Estimated unit weight (kN/m3) Alpha (m/s) Beta No. samples

Compacted tailings (dam fill) and coarse tailingsa,b 8.5 (dam fill) 22.0 (γdf) /24.0 (γdf,sat) 280.5 0.01 175
Tailings 25.5 20.5 (γt,sat) 55.9 0.26 415
Glaciolacustrine clay 5 17.0 (γGLU,sat) 68.1 0.21 117

a Coarse tailings data, representative of the tailings beach, was included in the power regression analyses to account for the 6 out 25 geophones that extend into the tailings beach.
b A moist unit weight of 22.0 kN/m3 was used for this unit above the pond level, and a saturated unit weight of 24.0 kN/m3 is used below the pond level.
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neglected; thereby assuming the soil behaves either fully saturated
below the inferred ground water level or fully unsaturated, above
the inferred ground water level. Capillary forces in unsaturated
soils contribute to an increase in the low strain stiffness, resulting
in higher Vs in unsaturated versus saturated soils42. Future stu-
dies using this approach should attempt to locate the geophone
array alongside instrumentation to monitor pore pressures (e.g., a
piezometer) and suction (e.g., a tensiometer). This would help to
improve understanding of the sensitivity of dv/v measurements to
suction in the partially saturated zone, by comparing with a
refined dVs/Vs model incorporating unsaturated soil mechanics.

Further discrepancies are notable when observing the higher
variability in the dv/v traces, particularly from July 15 to 17, 2020
(Fig. 3). We attribute this variability to nearby construction at the
south of the geophone array, resulting in lower waveform
coherencies over these periods. This underlines a general limita-
tion of applying ambient noise interferometry for monitoring, as
changes in noise characteristics at the site could affect the quality
of the estimated seismic velocity changes18. To account for
potential apparent velocity changes attributable to changes in
noise characteristics and not changes in dam performance, the
stability of the noise sources used for dv/v monitoring should be
reviewed on an ongoing basis (e.g., via power spectral density
plots as shown in Fig. 2a).

We attribute our lack of meaningful correlations between dv/v
and temperature or barometric pressure data to the shorter
seismic data acquisition period (~41 days) over summer, pre-
venting us from observing seasonal changes in dv/v, as observed
by others18,43,44. The effects of barometric pressure were also
neglected within our effective stress model, considering the non-
linearity of barometric pressures at depth (e.g., damping and time
delay effects), dependent on soil properties and groundwater
levels45.

We developed an effective approach to apply effective stress
principles46 to model dVs/Vs in the near surface. An alternative
approach47 relies on physics-based modeling to demonstrate that
changes in shear wave velocities are primarily caused by fluc-
tuations in effective stress. Modeled changes in seismic surface
wave velocity were obtained using relationships applicable to
deeper structures in the order of hundreds of meters, using a
spectral element method48. In comparison, our model is catered
towards near surface applications in soils and fractured rock41, as
it is based on the empirical equations shown in Eq. (6), using
fundamental principles of soil mechanics. Our approach is
desirable for tailings dams monitoring applications, since site-
specific sCPT data are typically available and our stress model
requires lesser computing power in comparison to alternative
numerical modeling techniques.

In addition to providing an estimate of Vs changes for com-
parison with dv/v, our effective stress model provides information
on the range of depths at which the dv/v are most likely to occur.
Our model estimates a maximum depth sensitivity near ~16 m.
We obtain an independent estimate, using the average wave
speeds of the medium and the range of frequencies used in the
analysis. The depth sensitivity of the dv/v estimates is dependent
on the frequency band applied to the cross-correlations (5 to
15 Hz in this work). In an isotropic and homogeneous medium,
most of the Rayleigh-wave energy at a frequency f is contained
from surface to a depth z at approximately one third of a
wavelength λ49. The average Vs in the dam fill (compacted tail-
ings) and underlying tailings can be approximated as 300 m/s and
200 m/s, respectively, based on nearby sCPTs. As such, we esti-
mate an average Vs of ~220 m/s over the topmost 39 m (i.e., from
surface to bedrock) near our geophone array. Assuming a
homogeneous medium, wavelengths for this Vs are between 15m
and 44 m, which suggest depth sensitivity between 5 m and 15 m.

Fig. 5 Power-law regression analyses on other stratigraphic units and probability density function of the minimum depth. a Estimation of site specific α
and β from power-law regression using Vs estimates from sCPT surveys and effective vertical stress for compacted and coarse tailings (upper plot) and
glaciolacustrine clay (lower plot) materials. Bootstrap analyses, shown in shaded gray, were used to obtain 95% confidence intervals of the α and β
parameters. b Probability density functions of the optimal depth z to minimize L1 misfit between dv/v estimates with dVs/dVs. Results obtained using
bootstrap sampling (150,000 samples) followed by 50,000 iterations of Monte Carlo analyses. 95% confidence intervals are shown as black vertical lines.
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This is within reasonable approximation of our modeled depth
sensitivity of ~16 m, considering the inhomogeneity of the
structure (with a higher-velocity dam fill layer overlying lower-
velocity tailings).

An important consideration of any tailings dam monitoring
method, is its ability to detect pre-cursors leading up to a tailings
dam failure. Tailings dams fail due to a variety of causes, such as
overtopping, structural and foundation conditions, seismic
instability, seepage and internal/external erosion50. As ANI is
highly sensitive to changes in Vs which can be used as a proxy for
soil stiffness, it provides important information leading up to a
potential tailings dam failure. Although our dataset does not
capture a failure occurring, a laboratory-scale experiment of an
embankment dam undergoing failure due to internal erosion (i.e.,
piping) demonstrates that ambient noise methods are capable of
detecting potential causes of tailings dam failures24. In this
experiment, seismic velocity decreases of up to 20% were
observed, which were attributed to stress redistribution as piping
progressed. Our approach averages the dv/v over all geophone
pairs with spacing ranging from 10m to 180 m, thereby providing
an estimated average change in Vs over a wider areal extent at the
location of the geophone array (Fig. 1). It should be noted that the
spatial resolution of this method is site-dependent, as it depends
on the frequency content of the ambient noise generated, as well
as the velocity structure at the site. Therefore, some mine sites
may have increased spatial resolution (and vice versa). Regardless,
this method could be used to alert to potential areas of concern by
establishing a trigger threshold level based on seasonal fluctua-
tions. For example, a ±2.5% threshold was used to monitor the
Pont Bourquin landslide for five years with no false alerts26. At
this same site, pre-cursory changes in seismic velocities of up to
7% in the days leading up to a flow-type failure were detected by
applying similar ambient noise techniques25. As Vs measure-
ments are used in the evaluation of the liquefaction resistance of a
soil28, combining modeled dVs/Vs with ANI could inform on
changes in liquefaction potential of the in-situ tailings material
and underlying foundation. For instance, as liquefaction involves
a phase-change in the medium from a solid to liquid state, it
follows that the Vs will also decrease dramatically51. Further
research of liquefaction-type failures is needed to improve
understanding of whether adequate warning time could be pro-
vided by monitoring changes in Vs

52.
The α and β parameters, obtained using Vs from sCPTs or from

other means (e.g., multichannel analysis of surface waves), are of
key importance to inform our dVs/Vs model and to provide further
characterization of the stratigraphic units. However, the uncer-
tainties of the α and β parameters vary considerably depending on
the unit. Lower uncertainties correspond to the tailings unit, with
increasing uncertainties for the clay and compacted/coarse tailings
units (Fig. 5). This is attributed to an overall lower number of
samples and the heterogeneity of these layers. Heterogeneity, such
as increased cobbles or gravel, as well as higher resistance, due to
compaction of the compacted tailings, prevents advancement of the
sCPT, lowering the reliability of measurements obtained through
these layers. Despite the higher uncertainties within the com-
pacted/coarse tailings unit, the mean α, β values obtained are
consistent with expected values for material undergoing cementa-
tion. For these material types, the Vs remains relatively consistent
regardless of changes in stress, with β values approaching zero36.
Cemented soils behave differently from non-cemented soils at both
small and large strains, and are challenging to study in the
laboratory setting due to sample preparation53. These findings
illustrate how the α, β values can be a useful addition by providing
complementary information that supports characterization of
tailings, in addition to parametrizing the dVs/Vs model.

In conclusion, we developed an effective approach to advance
tailings dam performance monitoring by combining ANI with a
stress model calibrated with using tailings pond levels and sCPT
data. Active mine sites are prime locations to study emerging
monitoring methods such as ANI, as complementary site infor-
mation (e.g., sCPTs, historical boreholes, weather station data),
can be used to compare and validate results. As sCPTs are rou-
tinely carried out at many mine sites to assess the liquefaction
potential of tailings, incorporation of sCPT data for model con-
straint allows for site-specific adaptation by mining practitioners.
The data processing steps described do not require high com-
puting power, and could be used to efficiently process incoming
data for ongoing monitoring purposes. For example, in an
operational setting, geophone data could be processed using a
three-day rolling average to reduce errors and limit
uncertainties18. Although the present study focuses on a relatively
short (~180 m) segment of a tailings dam, the geometry of the
geophone array can be adjusted by incorporating additional
geophones as required to monitor along greater linear extents. An
optimal segment length over which to average the dv/v should be
carefully selected, considering the trade-off between spatial
resolution and signal to noise ratio. Considering the current
limited spatial resolution of this method, complementary mon-
itoring techniques such as piezometers (e.g., pore pressures),
interferometric synthetic aperture radar (e.g., surficial deforma-
tion) and slope inclinometers (e.g., lateral deformation) should be
incorporated into an overall tailings dam monitoring system,
rather than relying solely on this method. Although some open
questions remain, the advances presented in this manuscript
show the potential to use ANI as a quantitative real-time tool and
increase our understanding of the temporal evolution of the
internal state of tailings dams.

Methods
Seismic recordings and cross-correlations. Nineteen geophones were installed in
a northwest-southeast orientation along the tailings dam crest and six were installed
in a northeast to southwest orientation extending into the tailings beach. The max-
imum and minimum interstation distances were 180m and 10m, respectively. This
array configuration was chosen in consideration of the average wave velocities in the
upper 30m of the site (~220m/s) and to account for uncertainties surrounding
directionality of the noise sources. Due to ongoing construction, it was unfeasible to
install geophones along the dam slope and near the dam toe, although this would
have been desirable from amonitoring perspective. Geophones were buried five to ten
centimeters below ground to reduce the near surface effects of atmospheric pressure
and temperature fluctuations. Geophones recorded for a 12-hour period per day.
Nine hours of data were collected during active construction at the site, and three
hours of data were collected when construction was not active. The ambient noise
recorded during active construction was highly directive and sources moved in time
and space, resulting in incoherent cross-correlation waveforms. Therefore, cross-
correlations are only considered from recording times without construction, three
hours per day (00:00 to 03:00 UTC; Fig. 2a).

Seismic data pre-processing included detrending, tapering, filtering and
normalization54. The theory of ambient noise interferometry (ANI) assumes an
isotropic and uniform noise source21,55. These theoretical requirements are
typically not met; however, these conditions can be simulated by applying standard
data processing methodologies54. Seismic data processing steps applied to the
acquired seismic noise data are as follows:

1. Raw Data Acquisition: Raw data were acquired at a sampling rate of 500
Hertz, collected over a 35 to 41 day period (dependent on battery life), from
15:00 to 03:00 UTC.

2. Pre-processing: Data pre-processing included trimming, detrending, taper-
ing, filtering and normalization:

● Trimming: Data were trimmed to only include inactive construction
periods (assumed to occur from 00:00 UTC to 03:00 UTC, based on
construction schedule).

● Detrending: Removal of linear trends.
● Tapering: Taper the edges of the signal in preparation for filtering.
● Filtering: Apply a bandpass filter from 5 to 15 Hz.
● Time-domain normalization: One-bit normalization reduces the effect of

instrumental irregularities, earthquake signals and non-stationary noise
sources54.

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-022-00629-w ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2022) 3:301 | https://doi.org/10.1038/s43247-022-00629-w |www.nature.com/commsenv 7

www.nature.com/commsenv
www.nature.com/commsenv


● Spectral whitening: Also known as frequency-domain normalization,
spectral whitening broadens the frequency band of ambient noise and
reduces the effect of monochromatic noise sources54.

3. Cross-correlations: Each station pair combination (representing a virtual
source and receiver) was cross-correlated using 20-s time windows with no
overlap applied between windows. These windows were stacked to obtain
daily cross-correlation waveforms. A reference cross-correlation waveform
(required for monitoring seismic velocity changes) was obtained by stacking
over the entire data acquisition period (35 to 41 days depending on the
battery life of the geophone).

4. Monitoring with ambient noise (dv/v): Relative changes in seismic velocities
using the reference and daily cross-correlation waveforms are obtained
using the ‘stretching’ method, by modifying the time axis using different
seismic velocity changes23,56–58 (Fig. 6). The stretching methodology was
applied to causal and acausal coda windows (±0.5 seconds to ±3.5 s, selected
based on interstation spacing and visual inspection of waveform coherency)
to obtain dv/v measurements, and causal and acausal windows were
averaged to improve signal to noise ratio.

Effective stress model. Shear wave velocities (Vs) were obtained approximately
every meter along the sCPT profile by laterally striking a beam held in place by a
normal load, using a sledgehammer38. Using a straight ray-path assumption,
average Vs are ~300 m/s in the compacted tailings material and ~200 m/s in the
tailings and underlying material, up until refusal. A generalized stratigraphy model
based on historical borehole data is shown in Fig. 1d.

The velocity of shear waves traveling within a soil depends on the effective
confining stress, saturation, and mass density36. For a homogeneous and isotropic
medium, Vs can be expressed as a function of the small strain shear modulus
(Gmax) and the bulk density of the soil (ρ),

Vs ¼
ffiffiffiffiffiffiffiffiffiffi

Gmax

ρ

s

ð3Þ

The principle of effective stress46 defines the stress experienced by the soil
skeleton that controls deformation. In a one-dimensional model, the effective
vertical confining stress is equal to the overburden stress minus the pore pressure

σ 0v ¼ σv � u; ð4Þ

where σv is the total vertical stress and the pore pressure u is obtained from

u ¼ γw z � dw
� �

; ð5Þ

where γw is the unit weight of water (9.81 kN/m3) and dw is the depth to the
inferred groundwater level, relative to the dam crest elevation. In Eq. (4), σv can be
approximated as the sum of the unit weights of each layer, multiplied by the
thickness of that layer. Using the resampled daily pond data, we estimate σ 0v at
depths varying from 1m below surface to the approximate bedrock depth at 39 m
at 0.1 m intervals, for each day. Equations to obtain the total vertical stress σv for z
in each layer, relative to the dam crest, are

σv zð Þ ¼

γdf z; z < dw

γdf dw
� � þ γdf ;sat h1 � dw

� �

; dw < z < h1

γdf dw
� � þ γdf ;sat h1 � dw

� � þ γt;sat z � h1
� �

; h1<z < h2

γdf dw
� � þ γdf ;sat h1 � dw

� � þ γt;sat h2
� �þ γGLU ;sat z � h2

� �

; z > h2

;

8

>

>

>

>

>

<

>

>

>

>

>

:

ð6Þ

where dw is the depth to the inferred groundwater level, h1 is the distance from
surface to the dam fill and tailings boundary, and h2 is the distance from surface to
the tailings and clay boundary (Fig. 1d). Unit weights are shown as γdf and γdf,sat,
representing the moist and saturated compacted tailings (dam fill), γt,sat,
representing the underlying tailings, and γGLU,sat representing the underlying
glaciolacustrine clay unit.

Bootstrap analyses were performed on α and β parameters obtained from the
power regression analyses, on the three units (compacted/coarse tailings,
underlying tailings, clay). Initial α and β parameters were obtained by performing a
power law regression on the dataset (corresponding to the scattered Vs/σv’ data
from sCPTs). Using the initial α and β parameters with Eq. (1), a power-law dataset
is reconstructed (representing the red dotted line in Fig. 4a). Then, for each
bootstrap simulation (150,000 total), the dataset was randomly resampled with a
uniform distribution, using the same size as the original dataset. Bootstrapped α
and β parameters were then obtained using the power law regression for each
simulation, and were each appended to an array to view their corresponding
probability distributions (Fig. 7).

Monte Carlo simulations were then performed (50,000 iterations) to randomly
select, using a uniform distribution, from the empirical cumulative distribution
function of the α, β parameters obtained from bootstrap sampling. A depth z,
representing the minimum L1 misfit between dv/v estimates and the dVs/Vs model,
was obtained for each simulation. The resulting probability distribution of depth z
is shown in Fig. 5b.

Fig. 6 Schematic showing the seismic data processing steps applied. a Initial raw data acquisition includes both active and inactive construction periods.
b Pre-processing described in Section 4, includes trimming, one-bit normalization and spectral whitening. c Daily cross-correlations are plotted as an image
in the upper plot, with a reference cross-correlation shown below. d The dv/v time series data is obtained using a ‘stretching’ algorithm (upper plot), which
also outputs a correlation coefficient representing the similarity between the daily waveform and reference waveform (lower plot).

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-022-00629-w

8 COMMUNICATIONS EARTH & ENVIRONMENT |           (2022) 3:301 | https://doi.org/10.1038/s43247-022-00629-w |www.nature.com/commsenv

www.nature.com/commsenv


Data availability
The data that supports the findings of this study has been uploaded to a public data
repository and is available at https://doi.org/10.5281/zenodo.721559059.

Code availability
Open-source codes were used and modified to compute the cross-correlations and
produce several of the figures in this report. This includes the stretching algorithm used
to obtain dv/v time-series data60, scripts within NoisePy61 and components of the ROSES
2021 code, courtesy of Jelle Assink62. The codes used for this work have been uploaded to
a public data repository and is available at https://doi.org/10.5281/zenodo.721370263.
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