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Deciphering human influence on annual maximum
flood extent at the global level
Maurizio Mazzoleni 1,2✉, Francesco Dottori 3, Hannah L. Cloke2,4,5,6 & Giuliano Di Baldassarre2,4

Human actions are increasingly altering most river basins worldwide, resulting in changes in

hydrological processes and extreme events. Yet, global patterns of changes between sea-

sonal surface water and urbanization remain largely unknown. Here we perform a worldwide

analysis of 106 large river basins and uncover global trends of annual maximum flood extent

and artificial impervious area, as proxy of urbanization, over the past three decades. We

explore their relationships with hydroclimatic variability, expressed as rainfall and snowmelt,

and find that hydroclimatic variability alone cannot explain changes in annual maximum flood

extent in 75% of the analyzed major river basins worldwide. Considering rainfall and urban

area together can explain changes in the annual maximum flood extent in 57% of the basins.

Our study emphasizes the importance of understanding the global impacts of human pre-

sence on changes in seasonal water dynamics.
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Anthropogenic climate change is drastically changing the
spatio-temporal climatic patterns1, leading to changes in
the timing and duration of hydrological extremes at the

global scale2,3. Intensification of extreme precipitation and flood
events have been observed worldwide4. As a result, ordinary high-
water conditions and thus annual seasonal surface water extent
(annual maximum flood extent, AMFE, hereafter) have increased
more than permanent surface water area over the past three
decades5,6.

Together with climatic variability, human presence has altered
the hydrological response of river basins over the last decades,
through land cover changes7, agricultural irrigation8, and dam
construction9,10. Lower infiltration due to land-use changes
increases surface runoff, and together with changes in flow con-
veyance characteristics leads to higher flood peaks and larger
flooding extents11–13. Similarly, agricultural practice, drainage,
terracing, and forest change cause soil compaction and decrease
soil infiltration. While dams have enabled societies to reduce
flooding risk and exposure14, they are strongly influencing
the variability of global seasonal surface water, greenhouse
emissions15, and degraded water quality and ecosystems10.

Unprecedented rates of global urbanization16,17 have sig-
nificantly shaped the hydrological response and water availability
in most river basins around the world18–20. Land-use changes and
urbanization driven by socio-economic factors have deeply con-
tributed to increasing flood risk and exacerbating economic losses
and human exposure21–23. Urbanization patterns have been
shown to affect the severity of flood extent worldwide, e.g., in
several African cities, Brazil, Canada, China, Indonesia, Italy,
Peru, United Kingdom, and United States19,24–29.

Changes in AMFE are important indicators for both ordinary
high-water conditions and water availability. Understanding the
influence of increasing global urbanization trends on AMFE is of
pivotal importance for preserving inland water ecosystems30 and
guaranteeing freshwater sources for agriculture, water supply31,
and electricity production32. Changes in the availability of sea-
sonal surface water can also lead to different impacts on society
and ecosystems at different scales6. For these reasons, under-
standing changes in AMFE will enable the support of better-
informed decision-making and disaster risk reduction policies for
strengthening resilience and adaptive capacity33.

A number of studies have investigated the influence of
changes in the urbanized area on particular extreme flooding
events using statistical and modeling frameworks. These stu-
dies found increasing flood extent and consequent impacts due
to urbanization. Studies using statistical flood-frequency ana-
lyses have investigated the relationship between changes in
impervious surfaces with changing flood magnitude and tim-
ing, both for single river basins or paired basins with different
urban growths28,34,35. Models have been used to estimate the
impact of land-use change and type of impervious area on
flood frequency and magnitude by carefully setting the model
parameter values36,37. The use of modeling tools enabled a
more accurate spatio-temporal representation of flood pro-
cesses, showing that increasing impervious area could also
affect rural and peri-urban areas and not only, as expected,
urban areas38.

Despite these previous efforts aimed at quantifying the relation
between urbanization and extreme flooding events at local to
regional scales, it is still unclear how human presence has influ-
enced the occurrence of seasonal surface water, i.e., AMFE (the
focus of this study), over the last decades at the global scale. In
this study we explore the long spatio-temporal evolution of global
AMFE and impervious area, as proxy of urbanization, using high-
resolution observational global data over the last 30 years. In
particular, we investigate the relation between changes in the

AMFE and changes in the hydroclimatic variables and urban
area. To address these objectives, we first investigate the con-
current trends of AMFE and artificial urban area as proxy of
human activities. Then, multiple regression models are imple-
mented to assess the influence of urban area and hydroclimatic
variables such as rainfall and snowmelt on the variability of
AMFE. We exploit multiple high-resolution global datasets to
represent AMFE, urban area, rainfall and snowmelt, floodplain
delineation, and reservoir maximum storage capacity in the
period 1985–2018.

Results
Global trends of annual maximum flood extent. AMFE—the
maximum extent of water overflowing onto areas that are usually
dry—was estimated as seasonal maximum surface water, i.e.,
present for only part of the year, from the Global Surface Water
dataset5 (see “Methods”). A total of 106 river basins were selected
based on floodplain location and drainage area size. The trend
analysis reveals a general increase in the AMFE within floodplains
worldwide (Fig. 1a). Global trends range from a decrease of
−1.7% yr−1 (Sao Francisco river basin, Brazil) to an increase of
8.1% yr−1 (Rharsa river basin, Tunisia) per year. Significant
trends at the 0.05-level are found for 77 out of 106 river basins,
and visualized with a dot in Fig. 1a. The empirical distribution of
the trend values (Fig. 1b) shows an average value of about 2.8.

The highest change rates are found in river basins located in
Africa and Asia, with average continental values equal to 5.0 and
3.1, respectively. Conversely, North America, Central America,
and the Caribbean area show the lowest average trend value equal
to 1.1, followed by South America with an average value of 1.27.
Similar high increases in surface water area in river basins in US
and China were also recently observed in other studies39,40.
Europe and South-West Pacific area have average trend values of
2.4 and 2.2, respectively.

Among the major world river basins with high significant
AMFE trend, we can find the Chad (6.6% yr−1), the Zambezi
(5.9% yr−1), the Niger (5.4% yr−1), the Yellow (5.1% yr−1), the
Congo (4.7% yr−1), the Nile (4.5% yr−1), and the Yangtze
(3.7% yr−1) river basins. The Mississippi (1.2% yr−1), the
Amazon (0.93% yr−1), and the Amur (0.1% yr−1) river basins
show negligible trends of AMFE. On the other hand, only eight
basins show a decreasing trend in the flooded area, with the
Parana and Murray rivers having trends −1.2% yr−1 and
−0.5% yr−1, respectively.

When analyzing the changes of AMFEs by different global
hydroclimatic regions, the highest change rate values are found in
equatorial basins, which could be linked to the high values of
average rainfall (Supplementary Fig. 7) and runoff41 in those
basins. River basins located in the northern dry area show
the highest spread in AMFE trends (Fig. 1c) mainly due to the
contrasting values observed in the Rharsa (8.1% yr−1), Sarysu
(7.3% yr−1), Ural (−1.6% yr−1), and the Great Salt Lake
(−0.9% yr−1) river basins caused by the diverse latitude of these
basins. The lowest values are found in southern mid-latitude and
boreal basins.

Global trends of the annual urban area. Artificial impervious
area is a critical indicator of impervious surfaces associated with
urbanization and human settlements within river basins42–44. As
such, in the following, we assume that artificial impervious area
can be considered a proxy of the urban area. As was observed
with the trends of AMFE, the extent of artificial impervious
surface (urban area, hereafter) is also generally increasing
worldwide (Fig. 2a). Our findings reveal a slightly lower average
trend of urban area within the floodplains (2.9% yr−1) than
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outside (3.1% yr−1). Maximum values of 8.3% yr−1 (Balkhash-
Alakol Basin, Asia) within floodplains, and 8.7% yr−1 (Senegal
river, Africa) outside the floodplains are observed. Similarly, the
higher average urban area is found outside the floodplain than
within (Supplementary Fig. 3a). In all the continents, the average
value and annual trend of urban area is higher outside the river
floodplains, with the exception of Asia that shows slightly higher
values inside a few river floodplains.

Opposite results are found when analyzing the trends of urban
density (Fig. 2b), calculated as the ratio between the annual urban
area and floodplain area. Higher average trends of urban density
are found within the floodplains (0.04% yr−1) than outside
(0.02% yr−1), with maximum values of 0.5% yr−1 (Yongding
basin, Asia) within floodplains, and 0.23% yr−1 (Huai He basin,
Asia) outside. Higher average urban density values within
floodplains than outside are found in all continents

Fig. 1 Global trends of AMFE. a Theil–Sen slope trend of the AMFE normalized over the average value for the period 1985–2018. The black dots indicate a
significant trend. b Distribution of the values of the trend of AMFE. c Boxplots of the trend of normalized AMFE for each hydroclimatic region, i.e., boreal
(BOR), equatorial (EQT), northern mid-latitude (NML), southern mid-latitude (SML), northern dry (NDR), southern dry (SDR), northern sub-tropical
(NST), southern sub-tropical (SST). Boxplot elements shown are the median (midline), the interquartile range of 25% and 75% percentile (box
boundaries), and data points within the 1.5× quartile range (whiskers).

Fig. 2 Global trends of annual urban area and density of floodplain urbanization. Theil–Sen slope trends of the annual urban area normalized over the
average value for the period 1985–2018 (a) and annual urban density (b) within the floodplains. Significant trends are found in all the river basins.
c, d Boxplots of the trends of normalized annual urban area within and outside the floodplains for each hydroclimatic region, i.e., boreal (BOR), equatorial
(EQT), northern mid-latitude (NML), southern mid-latitude (SML), northern dry (NDR), southern dry (SDR), northern sub-tropical (NST), southern sub-
tropical (SST). Boxplot elements shown are the median (midline), the interquartile range of 25% and 75% percentile (box boundaries), data points within
the 1.5× quartile range (whiskers), and outliers (red dots). e, f Fraction of basins belonging to different classes of urban density within and outside the
floodplains for each hydroclimatic region.
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(Supplementary Fig. 3b), with the exception of a few river basins
such as the Parana, Rio de la Plata, Zambezi, Okavango,
Limpopo, Orinoco, and Tarim He basins. This finding stresses
once more the role of floodplains in promoting socio-economic
growth and consequent urban expansion.

The highest increase of urban area within floodplains is found
in Asian and African river basins (Fig. 2a), with an average
country value of 4.0% yr−1 and 3.3% yr−1, respectively. In those
continents, the major river basins with high significant trends of
urban area within floodplains are the Volta River (7.1% yr−1), the
Senegal river (4.9% yr−1), the Niger River (4.3% yr−1), the
Mekong River (5.2% yr−1), the Tarim river (5.9% yr−1), and
the Yangtze River (4.2% yr−1). Europe shows an average trend
value of urban area within the floodplains of 2.4% yr−1, similar to
the global average trend of AMFE.

River basins with high trends of urban density within the
floodplains can be found in the United States, Europe, and East
China. The lowest trends in urban density values are observed in
South America, Australia, and Africa, which could be linked to
the floodplain extent in relation to the total basin area (18.1%,
15.5%, and 15.8%, respectively) compared to Europe, North
America, and Asia (14.8%, 11.7%, and 10.8%, respectively). These
findings highlight the importance of considering the relative
spatial extent of the artificial impervious surface when exploring
urbanization effects. When focusing at basin scale, those that
show higher positive values of trends in urban density within
floodplains are the Rhine river (0.38% yr−1), the Zhu river
(0.33% yr−1), the Yellow river (0.17% yr−1), the Yangtze river
(0.17% yr−1), the Loire river (0.14% yr−1), and the Rio Grande
river (0.9% yr−1).

Comparable changes in trends in an urban area within and
outside the floodplains are obtained for global hydroclimatic
regions (Fig. 2c, d). The highest average values are found in
northern sub-tropical areas, while higher spread of trend values
can be observed in a northern dry area. The lowest values are
found in boreal and equatorial river basins. With respect to the
average annual urban density (Fig. 2e, f), we observed that
the majority of the basin with density higher than 1.5% belongs to
the northern mid-latitude areas.

Concurrent trends analysis. Here, we compare the trends of
AMFE with those of urban areas and density. These exploratory
analyses provide further insights for the basins in which high
increase of AMFE could be linked to growing floodplains
urbanization.

A high increase in both trends of the urban area and AMFE
(i.e., higher than the 75th percentile of the sample of the total
trends of the urban area and AMFE, see Fig. 3) is observed in only
nine river basins of the world, including the Volta, Senegal,
Orinoco, Niger, Tarim, and Yellow River. On the other hand,
high increase in both urban density and AMFE are found in
three basins, i.e., in the Loire, Zhu, and Yellow River basins.
Some general spatial patterns can be found at the global scale
(Fig. 3a, b).

In Africa, AMFE tends to increase more than the urban area
and density within floodplains. On the other hand, in Asia and
South America, a lower and moderate increase in AMFE with a
higher change in urban area and density can be observed. In
Europe, both AMFE and urban area show moderate trends
(middle class in Fig. 3a). Similar patterns can be found in the
central and Eastern part of North America, while in the western
basins AMFE seems to increase more slowly than in urban area.
However, higher trends of urban density are experienced in
European and North American basins. Major river basins such as
the Amazon, the Okavango, and the Nile rivers show an increase

in AMFE while a lower increase in urban area, while higher
increase in urban density are experienced in the Mississippi river.

River basins that experienced both high changes in AMFE and
urban area are mainly located in equatorial, northern dry and
northern sub-tropical regions (Fig. 3c), while basins with high
changes in AMFE and urban density are found in northern mid-
latitude and areas (Fig. 3d). The majority of the river basins in the
northern mid-latitude area shows a moderate increase in AMFE
and urban area while a higher increase in urban density.

While urban surface and AMFE shows similar trends in many
river basins worldwide, their occurrence at basin scale may be
spatially uncorrelated. For this reason, we intersected the
footprint of AMFE with the urban area to assess the annual
flooded urban area within floodplains. We then calculated the
annual trends of relative flooded urban area estimated as the ratio
between annual flooded urban area and the annual urban area.
Overall, the majority of the river basins experienced positive
trends, showing that flooded urban area is increasing faster than
urban area within floodplains (Fig. 3a, b). In particular, high
trend values are found in river basins in Asia, and West and
South Africa (e.g., on the Senegal, Mekong, Tarim, Yellow River,
Niger, and Orinoco rivers). On the other hand, lower trends
characterize basins in which either flooded urban area is
increasing slower than urban area, as in some Europe basins
with high urban density (e.g., in the Rhine basin), or in which
both flooded urban area and urbanization are decreasing, as in
some basins in North and South America (e.g., in the Columbia,
and Amazon rivers, see Supplementary Fig. 5b). The trends of
relative flooded urban area are then compared with that of
AMFE. The pattern depicted in Fig. 3e shows a linear relation
between trends in relative flooded urban area and AMFE. Higher
values of trends in relative flooded urban area are also related to
high trends of the urban area.

Hydroclimatic influence on annual maximum flood extent.
Climate variability has significantly shaped changes in AMFE45.
To explore the influence of hydroclimatic and anthropogenic
factors, we assess the pair-wise correlation of AMFE with rainfall
and snowmelt, at different temporal scales (i.e., annual maximum,
monthly maximum, and total annual), and urban area. We did
not consider river streamflow and soil moisture as dependent to
changes in the urban area. Here we report the results considering
monthly maximum rainfall and monthly maximum snowmelt
(Fig. 4). Moreover, since the urban density is calculated as the
urban area over the floodplain area, constant over time, identical
correlation results were achieved. Thus, urban area is considered
as explanatory variable in the following statistical analyses.

The findings highlight that the majority of the river basins
shows a positive Spearman rank correlation of rainfall and
snowmelt with AMFE (Fig. 4). In particular, 83 out of 106 basins
have a positive correlation between rainfall and AMFE, with 74
basins reporting also a positive correlation between urban area
and AMFE (Fig. 4a). A total of 23 river basins have a positive
correlation with urban area and increasing trend of AMFE but a
negative rainfall correlation (e.g., in the Red, Indus, Ogooue,
Yangtze, Congo, and Nile rivers). These preliminary results
suggest that, despite a negative correlation of precipitation (found
mainly in equatorial, northern dry, and northern sub-tropical), an
increasing AMFE could be due to a positive correlation with
urban area.

Similar patterns are depicted between snowmelt and AMFE
(Fig. 4b) with 60 basins showing a positive correlation. A total of
44 river basins shows a negative correlation between snowmelt
and AMFE while a positive one with urban area. Among these
basins, we can find the Sao Francisco, Orinoco, Yellow River,
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Ganges, Zambezi, Tarim, Yangtze, Chad, Congo, Nile, and
Amazon rivers.

There is no apparent correlation pattern between rainfall,
snowmelt, urban area, AMFE, and urban density within flood-
plains. Similar results are found when correlating annual
maximum rainfall (and snowmelt) and total annual rainfall
(and snowmelt) with AMFE (Supplementary Fig. 11). Despite the
interesting outcomes of these analyses, the results cannot explain
the compound influence of both hydroclimatic and anthropo-
genic factors on AMFE.

Influence of urban area, reservoirs, and hydroclimatic variables
in explaining changes in annual maximum flood extent. River
basins with large changes in maximum flood extent (Fig. 1a) do
not necessarily show a similar increasing trend in rainfall and
snowmelt (Fig. 4 and Supplementary Figs. 12 and 13). On the

other hand, a significant increase of floodplain urban area is
observed in those river basins (Fig. 2a). Two stepwise multiple
linear regression analyses were performed to identify the response
variables explaining the changes in the AMFE. First, only rainfall
and snowmelt were considered as explanatory variables of the
AMFE. Second, the floodplain urban area and reservoir max-
imum capacity were included to assess the human influence in
shaping maximum flood extent.

The stepwise regression with only rainfall and snowmelt
indicated a statistically significant correlation (0.05 level) with
AMFE on 67 of the analyzed 106 river basins. When the
contribution of urban area is neglected, AMFE is correlated with
only rainfall drivers in 41 (62%) basins and with both rainfall and
snowmelt in 25 (38%) basins (Figs. 5a and 6). Values of adjusted
R2 higher than 0.5 are found in on the Colorado, Murray, Nelson,
and Congo basins (Fig. 5a). Rainfall is an important variable for

Fig. 3 Analysis of concurrent trends of AMFE, annual urban area, annual urban density, and annual flooded urban area. Bivariate maps between trend of
normalized AMFE and trend of normalized annual urban area within the floodplains (a) and between trend of normalized AMFE and trend of annual urban
density within the floodplains (b). The size of each black dot indicates whether the trend of a given basin falls below the 25th percentile, between the 25th
and 75th percentiles, or above the 75th percentile of the sample of trends of normalized relative flooded urban area. c, d Fraction of basin belonging to
different classes of the bivariate values for each hydroclimatic region in case urban area (c) or urban density (d) is considered. e Relation between the trend
of normalized AMFE and trend of normalized relative flooded urban area. The colors of the scatter plots represent the trend of the normalized annual urban
area, while the size of the scatter plot is the urban density within the floodplains.

Fig. 4 Correlation analysis between AMFE, hydroclimatic variables, and urban area. Comparison of the Spearman rank correlation coefficients between
AMFE and monthly maximum hydroclimatic variables (a, rainfall; b, snowmelt) and Spearman rank correlation coefficient between AMFE and the annual
urban area within the river floodplains. The colors of the scatter plots represent the trend of then AMFE, while the size of the scatter plot is the urban
density within the floodplains.
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the AMFE in southern and northern sub-tropical basins (Fig. 6b)
such as Senegal, Parana, Zambezi, Niger, and Congo as also
reported in ref. 46. In the Ganges, Yellow River, Don, Yangtze,
Tarim, Mississippi, and other northern mid-latitude, northern
dry and boreal river basins the maximum flood extent can be
statistically explained by a combination of rainfall and
snowmelt47.

Our findings indicate that urban area is also a significant
variable in the stepwise regression models for 70% of the analyzed
river basins (Fig. 5b). Those basins are mainly located in northern
mid-latitude areas (Fig. 6), which are characterized by hetero-
geneous hydroclimatic conditions and by a high percentage
(81.4%) of the world’s population living within them41. Including
the urban area in the statistical analysis led to an increase of the
explanatory performances of the multiple regression analysis. The
results highlight an average reduction of the predictive error (root
mean square error, Fig. 5c) up to 27%, with the highest reductions
in the Tarim (49%) and Okavango (43%) basins (Fig. 5c).
Similarly, the adjusted R2 (Fig. 5d) tends to increase on average of
71% with respect to the regression analysis without urban area,
with maximum values observed in the Tarim (0.85), Indus (0.81),

Okavango (0.79), Volta (0.73), and Godavari (0.73) river basins.
A sensitivity analysis is then performed to assess the average
change of the root mean square error and adjuster R2 in case of
different thresholds of the minimum basin area size (Supple-
mentary Fig. 15).

Rainfall and urban area (dark blue color in Fig. 5a, b) are the
main explanatory variables of AMFE in the majority of the river
basins (57%), mainly located in northern and southern sub-
tropical areas (Fig. 6). This is evident in African river basins, as
also showed by previous research focused at a more local level on
the Chad48, Nile24, Niger49, Zambezi24, and Okavango50 river
basins. The combined effect of rainfall and urban area on AMFE
is observed also on other major river basins like the Amur, Indus,
Godavari, Parana, and Volta river basins51,52. In addition to
rainfall and snowmelt, urban area (dark brown color in Fig. 5a
and b) is a significant variable for 26% of the analyzed river
basins. These basins include the Columbia, Mekong, Ganges,
Yangtze, Yellow River, Tarim, and Mississippi, as supported
by22,28,53. In 16% of river basins, climate variability alone can
explain changes in AMFE (e.g., in the Amazon, Nelson, Murray,
Colorado, and Don river basins). A sensitivity analysis was

Fig. 5 Outcome of the multiple regression analysis between AMFE (dependent variable) and hydroclimatic variable, urban area, and the maximum
capacity of reservoirs (independent variables). Explanatory variables resulting from the multiple linear regression analyses without (a), and with (b),
urban area (Urb), as response variable. The black dots (b) indicate the reservoir’s maximum capacity as one of the main explanatory variables in addition to
rainfall (Rain), and snowmelt (SnMe). c Reduction in the root mean square error when including urban area and reservoir capacity in the multiple linear
regression analyses. d Adjusted R2 of the multiple linear regression analyses when including urban area and reservoir capacity.

Fig. 6 Distribution of the different explanatory variables for each hydroclimatic regions. a, Global scale. b, without, and c, with urban area as response
variable in the multiple linear regression analyses.
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performed (Supplementary Fig. 15) to assess the robustness of
our findings with respect to the basin area.

In addition to urbanization, other human activities as reservoir
construction can alter surface water39. As many of the analyzed
river basins have large reservoirs, we considered the reservoir
maximum capacity as an additional dependent variable in the
regression analyses. We found that reservoir maximum capacity
is one of the main response variables in 40 river basins (Fig. 5b),
of which 5 are influenced by hydroclimatic variables (i.e., in the
Brahmaputra and Rio Grande river basins), and 35 influenced by
a combination of urban area and hydroclimatic variables (i.e., in
the Danube, Yellow River, Ganges, Niger, and Mekong). The
majority of the river basins in which reservoir maximum capacity
influences changes in AMFE are located in Asia and central
western Europe10. Such influence can be due to an increase of the
flood levels, for the same discharge, downstream the reservoir54,
and to the filling of small reservoirs that affected high-flow and
the consequent seasonal surface water within the main river
channel55.

Discussion
We use global high-resolution observational datasets of AMFE
and annual impervious surface (used as proxy of urban area) to
reveal increasing trends of both variables within river floodplains
in the period 1985–2018. High increment values are found in
Asian and African river basins. Our exploratory global analysis
suggests that hydroclimatic variability alone cannot explain
changes in AMFE. Instead, we find that rainfall and urban area
together can explain changes in the AMFE for 57% of the ana-
lyzed river basins. Including the urban area as response variable
in the statistical analyses led to an average increase in the model
performances (i.e., adjusted R2) up to 71%, with a reduction of the
predictive error (i.e., root mean square error) up to 30%. In
particular, a number of river basins with negative rainfall corre-
lation and increasing trend of AMFE have instead a positive
correlation with urban area. Thus, our findings suggest that
changes in urbanization, and thus human stress on river basins,
together with climatic variability might play an important role
increasing global trends of AMFE.

It has been shown that urbanization can increase annual
maximum flood and affect statistical properties (e.g., stationarity)
of river streamflow54,56. However, effects of human presence can
be different at different spatial scales. In fact, while urbanization
led to an increase in flooding events for small basins57, urban
expansion can affect seasonal surface water extent (i.e., the
AMFE) at larger scales due to the complex dynamics between
sub-basins58. Moreover, we observed that seasonal surface water
is more influenced by the reservoirs’ maximum capacity than by
the hydroclimatic oscillation. Similar relations were also observed
by10 using high-resolution altimetry data for the period
2018–2020.

Urban growth may not only directly affect AMFE as the result
of higher surface runoff, but also indirectly due to the mala-
daptation strategies introduced to reduce drought impacts. For
example, increasing urbanization may lead to increasing water
demand for urban and agricultural sectors with possible water
shortages during drought conditions. As a consequence, changes
in agricultural crops and construction of reservoirs could help in
reducing water shortages, while they could in turn increase flood
vulnerability due to higher surface runoff59 and inefficient
operational release rules60. Thus, increasing urbanization could
result in the implementation of more flood regulation policies
and construction of flood defences, which could increase
the presence of seasonal water surface at the expenses of
permanent ones.

Increasing trends in urbanization and human presence within
floodplains have significantly exacerbated flood risk61 and the
occurrence of drought periods62, compromising the achievement
of the Sustainable Development Goals (SDGs). Capturing the
dynamics emerging from the complex interactions between
human and water systems is crucial to meet numerous SDGs63.
For example, the global hotpots characterized by an emerging
reciprocal effect between urbanization processes and AMFE
changes identified in our study will help addressing SDG11 and
promoting resilient and sustainable cities to reduce unplanned
urban development on flood impacts. Moreover, the global results
found in our study will assist in achieving the SDG6 on protect
and restore water-related ecosystems. A better understanding of
the effects of anthropogenic drivers on AMFE is therefore needed
for developing global policies and guidelines for improving urban
planning, mitigation policies, flood risk management, and land-
use interventions64. In view of the worldwide rapid development
of urban areas, this work can inform the process of flood risk
management and help improve targeted policy and land-use
interventions.

This study has certain limitations. We did not account for the
effect of climatic patterns and other types of human actions (e.g.,
deforestation and agriculture) on the spatio-temporal occurrence
of AMFE. Moreover, as the analyses were performed at basin
scale, the local influence of urbanization on AMFE is not con-
sidered. Despite their potential, the new global datasets used in
this study come also with certain limitations. The frequency of
flood events included in the Global Surface Water dataset is
conditioned by the revisit time of Landsat imagery (8 or
16 days)41. This could lead to a possible underestimation of the
annual flood maximum extent in areas affected by floods with
shorter duration than revisit time, or where flood peak is not
captured by Landsat imagery. The Global Artificial Impervious
Areas dataset presents large uncertainty in the between 1985 and
2000 due to low availability of Landsat data. In addition, the
mapping performances of this dataset could be affected by mixed
pixel errors. The authors addressed this issue by assuming stable
impervious areas in urban core over the past decades. However,
this may not occur in urban renewal processes linked to affor-
estation and reconstruction in rapidly developing regions. The
global GranD database does not include reservoirs with max-
imum capacity smaller than 0.1 km3. However, small barriers and
reservoir accounts for an important number of the total human-
made structures for river regulation and this could highly affect
seasonal water extent. Because the GFPLAIN250m dataset pro-
vides floodplain extent up to 60°N, river basins of higher altitudes
are not included in the analyses.

Future research should focus on unraveling the complexity in
the physical and human adaptation responses. Causal inference
methods could be used for explaining the emergence of complex
dynamics between AMFE and other geomorphological (e.g.,
changes in river channel), hydrological (e.g., soil moisture, dis-
charge) and socio-economic drivers (e.g., irrigation practices,
water uses, structural flood protections, economic value of
properties, social welfare measures, flood insurances, etc.)65,66.
Moreover, integrated earth system frameworks should be devel-
oped to represent the dynamics between climate mechanisms,
land surface processes, and human dynamics to quantify trade-
offs and unintended consequences linked to future flood adap-
tation actions67. Future studies should be also developed to fur-
ther quantify the effects of land-use change (e.g., deforestation
and changes in cropland), changes in the number of reservoirs,
spatial distribution of impervious cover68, uneven urban devel-
opment across different societal groups, and the influence of flood
mapping in (re)distributing floodplains urbanization on flood
extent at different spatio-temporal scales. This entails the

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-022-00598-0 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2022) 3:262 | https://doi.org/10.1038/s43247-022-00598-0 | www.nature.com/commsenv 7

www.nature.com/commsenv
www.nature.com/commsenv


synergetic use of empirical local analyses and modeling applica-
tions to unravel the complex human-water interplays.

Methods
Data. Five global datasets were exploited to investigate the relationships between
global AMFE, impervious area, reservoir presence, and hydroclimatic drivers.

AMFE was derived from the recent Global Surface Water dataset, generated
from high-resolution (30 m) Landsat 5, 7, and 8 images5. Among the different
products of this dataset, we selected the annual maximum water extent available
from 1984 to 2018 at the annual time step. The dataset was validated by Pekel
et al.5 using a total of 40,124 control points distributed both geographically
(globally), temporally (across the 32 years), and across multiple sensors, reporting
less than 5% of omission errors and less than 1% for commission errors. Moreover,
the validation showed that less than 1% of the points where water was actually
present remained entirely unmapped over time5. Non-water, permanent water, and
seasonal water (including, for instance, annual floods caused by monsoons and
reservoir areas with seasonal oscillations in water extent) are the different surface
water classes of the Global Surface Water dataset. We selected only pixels with
seasonal surface water to evaluate the annual maximum water extent. Then, we
filtered the annual seasonal water with the permanent water extent in the main
lakes and wetlands from the Global Lakes and Wetlands Database69 and the water
extent in main river channel estimated as permanent water of the Global Surface
Water dataset from 1984 to 2018. The results of this data processing, performed
using the Google Earth Engine platform, was assumed to be representative of the
AMFE at basin scales.

The AMFE was then assessed only within the floodplains of each major river
basins. Floodplains were delineated using the recent GFPLAIN250m dataset
proposed in ref. 70 having a spatial resolution of 250 m and spatial extent up to
60°N. This dataset is based on a hydrogeomorphic approach in which the
topography is used to directly identify the floodplains as unique morphological
entities due to geomorphic and hydrologic processes. One of the advantages of this
dataset is that floodplains are identified regardless of the presence or lack of
structural flood protection measures (e.g., levee systems). The proper floodplains
delineation was fundamental to assess the correlation of maximum flood extent
with urban area.

The ERA5 reanalysis dataset was employed to assess the influence of
hydroclimatic drivers in shaping AMFE. We considered precipitation and
snowmelt as main factors affecting flood extent47. Precipitation and snowmelt are
estimated as annual maximum, monthly maximum, and total annual values
averaged over each river basins. ERA5 freely provides both hourly and monthly
estimates of different atmospheric, land and oceanic climate variables from 1979 up
to 5 days real-time with about 30 km spatial resolution. Advanced variational data
assimilation techniques are used to integrate historical observations within global
modeling estimates71. It was shown by72 that precipitation change of ERA5
matches well the observations for all continents, with correlations higher than 90%
for Europe and higher than 70% for North America, Asia and Australia. ERA5 data
were downloaded from the Copernicus Climate Data Store (https://cds.climate.
copernicus.eu/#!/home) from 1985 to 2018 at daily resolution.

The Global Artificial Impervious Areas43, GAIA, based on Landsat imaginary
available on Google Earth Engine, was used to represent the impervious surfaces
associated with urbanization and human settlements between 1985 and 2018 with a
30-m spatial resolution. It is worth noting that artificial impervious area has large
overlaps with urban area, however, they are not always the same. Urban areas do
not include other types of artificial surfaces such as mining fields. However, the
GAIA dataset43 only considered impervious area at urban level, so other types of
impervious surface are not included. For each year, the GAIA dataset classifies a
pixel as belonging to either an artificial impervious surface (pixel value equal to 1)
or to any other land cover type (pixel value equal to 0). We extracted the pixels
belonging to artificial impervious surface class using the Google Earth Engine
platform and then calculated the artificial impervious area, expressed in km2,
within and outside the floodplains of each river basin. The GAIA dataset showed
satisfactory spatial-temporal results when compared with other existing global
urban products of different spatial resolution43. Overall43, reported accuracies
consistently higher than 89% at the global scale for the GAIA dataset. Moreover,
this database can detect impervious areas in small villages which are not detected
from coarse-resolution satellite observations43.

Finally, we used the Global Reservoirs and Dams database (GRanD)73 to derive
the location and reservoir maximum capacity of existing dam and reservoirs with a
storage capacity of more than 0.1 km3.

It is worth noting that because of the high quality of observational datasets and
the low and uncorrelated validation errors between global datasets, we can expected
a low cumulative error resulting from our findings.

Given the focus on global river flood extent and the resolution of hydroclimatic,
we considered a total of 106 perennial rivers (continuous flow all year round) with
drainage area bigger than 105 km2 (see Supplementary Data 1). This threshold was
selected also to limit the influence of coastal flooding due to tidal effect or storm
surge and to discard river basins with comparable areas than the spatial resolution
of the ERA5 reanalyzes product to avoid unreliable estimation of precipitation and
snowmelt. We did not consider other drivers of AMFE such as river streamflow

and soil moisture due to their high relation with the impervious area and to the
consequent misleading statistical outcomes.

Trend analysis. We investigate the annual variation of the AMFE, urban area,
rainfall, and snowmelt by calculating the trend model of their corresponding
annual normalized values. The normalization was performed over the long-term
average of the 1985–2018 period to compare the results from basins with different
hydroclimatic characteristics. The trends were assessed by means of the adjusted
Theil–Sen slope estimator. Annual trends of urban density were assessed by con-
sidering the ratio between the annual impervious area and the floodplain area. The
resulting annual trends for the 106 analyzed basins are then analyzed at continental
scale and over eight climatic representative hydroclimatic regions (or hydrobelts),
i.e., boreal, northern mid-latitude, northern dry, northern sub-tropical, equatorial,
southern sub-tropical, southern dry, southern mid-latitude41. We selected hydro-
belts as homogenous regions with similar climatic and hydrological characteristics.
Hydrobelts are delineated by natural hydrological basins (similar to our study) and
are designed for the analysis of global-scale water-related linked to human
alteration41. Moreover, the eight hydrobelts are designed in order to maximize the
inter-belt differences and minimize the intra-belt hydroclimatic heterogeneity.

Supplementary Fig. 2 shows the location of the analyzed river basins with
respect to the global hydrobelts.

The bivariate mapping reported in Fig. 3 was calculated by separately classifying
the AMFE, the urban area, and the urban density in three groups according to the
25th, 50th, and 75th percentiles of the corresponding sample of 106 river basins.

Statistical analysis. We first calculated the pair-wise Spearman correlation coef-
ficients and p-values between the AMFE and the explanatory variables (impervious
area, rainfall, and snowmelt) for the 106 river basins. Multiple linear regression was
then performed to assess which variable could explain the AMFE. Multiple linear
regression has been widely used in hydrological and ecological studies for assessing
the effect of urbanization on river flow and water quality74. Two different multiple
linear regressions were performed.

First, only rainfall and snowmelt calculated as annual maximum, monthly
maximum, and total annual were considered as explanatory variables. Based on
these six different hydroclimatic drivers, a total of 15 possible model outcomes
can result from the multiple regression analysis. In order to simplify the
visualization of the results, we have grouped the model outcomes having
different temporal scales but belonging to the same hydroclimatic variable in a
single outcome. For example, if annual maximum rainfall and total annual
rainfall are the main explanatory variables of maximum flood extent change in a
given river basin, we grouped them as rainfall explanatory variable. Different
regression models were generated based on the different combinations of the
rainfall and snowmelt variables. Snowmelt was considered as possible
explanatory variables in basins with total annual value higher than 10 cm.
Moreover, we assumed that maximum flood extent can be explained by either
rainfall or by the combination of rainfall and snowmelt as high-latitude basins,
mainly driven by snowmelt75, are not considered in this study. An Augmented
Dickey-Fuller test was performed on the residuals of the different multiple
linear regression models to discard the ones with non-stationary residuals to
avoid spurious correlation leading to misleading statistical results. The Akaike
information criterion was used as the objective function to assess the best
multiple linear regression model as other indicators like the p-value or the
adjusted R2 may lead to multicollinearity problems and thus misleading results.

Second, once the main explanatory variables were identified, the impervious
area and the reservoir’s maximum capacity were included to assess the human
influence on the maximum flood extent. The results of the multiple linear
regression of each river basin are assessed in terms of root mean square error and
adjusted R2.

Data availability
The Global Surface Water Explorer data are publicly available at https://global-surface-
water.appspot.com/download or on the Google Earth Engine (https://developers.google.
com/earth-engine/datasets/catalog/JRC_GSW1_3_GlobalSurfaceWaterat). The
precipitation and snowmelt data can be obtained from the Copernicus Climate Data
Store (https://cds.climate.copernicus.eu/#!/home). The Global Artificial Impervious
Areas data are publicly available at http://data.ess.tsinghua.edu.cn/. The Global
Reservoirs and Dams database (GRanD) is publicly available at https://globaldamwatch.
org/grand/. The GFPLAIN250m dataset can be found at https://www.nature.com/
articles/sdata2018309#Sec6. The dataset containing all the relevant information about the
characteristics of the analyzed river basins, the average values of annual maximum flood
extent and urban areas, and the average values of the hydroclimatic variables for the
period 1985–2018 are reported in Supplementary Data 1.

Code availability
The scripts used to estimate the annual maximum flood extent, annual urban area, and
annual flooded urban area are reported in the supplementary material of the paper.
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