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Wheat trade tends to happen between countries
with contrasting extreme weather stress and
synchronous yield variation
Srishti Vishwakarma 1, Xin Zhang 1✉ & Vyacheslav Lyubchich 2

Extreme weather poses a major challenge to global food security by causing sharp drops in

crop yield and supply. International crop trade can potentially alleviate such challenge by

reallocating crop commodities. However, the influence of extreme weather stress and syn-

chronous crop yield anomalies on trade linkages among countries remains unexplored. Here

we use the international wheat trade network, develop two network-based covariates (i.e.,

difference in extreme weather stress and short-term synchrony of yield fluctuations between

countries), and test specialized statistical and machine-learning methods. We find that

countries with larger differences in extreme weather stress and synchronous yield variations

tend to be trade partners and with higher trade volumes, even after controlling for factors

conventionally implemented in international trade models (e.g., production level and trade

agreement). These findings highlight the need to improve the current international trade

network by considering the patterns of extreme weather stress and yield synchrony among

countries.
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Extreme weather events, such as drought, flood, and heat-
wave threaten food security from regional to global scales
through the resulting sharp decline in the availability,

affordability, and adequate utilization of food1,2. During
2003–2013, extreme weather events caused marked damage of
USD 30 billion to agricultural productivity3. Crop production was
impacted the most, with yield reductions3–7 introducing price
volatility in the food systems1,8, affecting food trade, the welfare
of farmers, and economic development, especially in low-income
or import-dependent countries1,9–11.

International crop trade can potentially alleviate the negative
impacts of extreme weather events on food security by exporting
food commodities from surplus to deficit regions12. Currently,
international trade accounts for 23% of the global food supply for
humans through major food commodities. Wheat, a crop essen-
tial for people’s daily caloric and protein needs, was produced at
the rate of 683 million tonnes annually and 147 million tonnes
was traded globally, accounting for 22% of the crop trade (in
caloric content) in 200913–15. However, a heavy reliance on
imports from other countries or the global market may expose a
country to the yield and market variations outside of the coun-
try’s jurisdiction and consequently introduce additional risk to
the country’s food supply. For example, the 2010 heatwave in
Russia triggered export restrictions for wheat, led to a wheat
shortage and price spike in the Middle East, where over 1/3 of the
wheat supply is from Russia, and potentially contributed to the
destabilization of the region9,16. A simultaneous drop in yields of
major exporters may disrupt the global trade network and food
supply, and a synchronous yield fluctuation between trade part-
ner countries may further exacerbate the problem. Therefore, the
controversial role of international trade in addressing the food
security challenge is associated with patterns of extreme weather
events and yield fluctuations; however, such associations remain
poorly understood and require an in-depth investigation17.

The occurrence and volume of the trade between countries
have been often investigated as results of comparative advantages
in producing food commodities (e.g., more efficient use of water
and land resources), as well as many socioeconomic factors such
as geographical proximity of countries, population, agricultural
productivity, language, contiguity, level of economic develop-
ment, and trade agreements18–22. Several recent studies have
evaluated the impacts of climate factors19, but most focus on the
average state of the climate, such as annual rainfall, annual eva-
potranspiration, and annual temperature19,23,24. Many studies
have examined the impacts of natural disasters25,26, most of
which are quantified based on deaths and losses due to rare events
like flood or drought27 and are not specific to the impacts of
extreme weather events on crop production28,29. Only a few
studies investigated the impacts of extreme weather stress and
synchronous crop yield fluctuations30–33, but their focus was on
the impacts on food price fluctuations or trade volumes for
individual countries, and not on the changes in the bilateral trade
network.

In addition, the investigation of drivers for trade links has been
limited to statistical approaches that were not designed to handle
complex network data or derive data-driven relationships. Prior
research of the potential drivers used regression models that
impose multiple restrictive assumptions on the shapes of rela-
tionships (e.g., linear, log-linear, or log-log) and data
distribution24,34–38. These regression approaches focus on mod-
eling the attributes of network vertices without considering the
structure of the network. In contrast, network analysis empha-
sizes both the vertices and structure of the network; thereby, it is
capable of handling complex relationships39,40. Only recently, the
statistical exponential random graph models (ERGMs) have been
used to investigate the relationships between international trade

links (or volume) and their potential drivers22,41,42. The ERGM
has proven to be superior in capturing zero-inflated trade
volumes and complex trade patterns (e.g., third-party relations
and clustering), compared to traditional approaches22. However,
these recent studies still impose parametric assumptions and are
not flexible enough for modeling highly nonlinear relationships.
Despite the success of machine learning approaches such as
random forest (RF) in handling large volumes of complex data
and deriving nonlinear relationships from the data, such data-
driven approaches have been rarely utilized in trade analysis43.

To address these knowledge gaps, we proposed network-based
covariates for studying the international trade network of wheat
during the period from 2005 to 2014 using modern statistical and
machine learning models. In addition to commonly used geo-
political (e.g., contiguity) and economic (e.g., regional trade
agreements) factors, two network-based covariates were devel-
oped to characterize the extreme weather stress and yield syn-
chrony, namely the difference in extreme weather stress (DEWS)
and short-term synchrony (STS) of crop yield anomalies between
countries. The DEWS network, derived using principal compo-
nents of weather stress indices (see Methods), quantifies by how
much the weather stress in an exporting country is stronger than
the stress in an importing country. The STS network is repre-
sented by the correlation of fluctuations in crop yield, where the
fluctuations are defined as deviations from the current average
yield. The STS allows us to quantify how strongly the deviations
of yields in one country correspond to similar deviations in other
countries. A positive STS indicates synchronous fluctuations,
while a negative STS indicates asynchronous fluctuations. Using
the two network-based covariates, we hypothesize that 1) Higher
weather stress difference (i.e., higher DEWS) leads to higher
import volumes and likelihood of trade partnerships, and 2)
Countries with synchronized yield anomalies (i.e., positive STS)
are less likely to trade or have lower trade volumes.

To accommodate the complexity and network structure of the
data, we applied ERGM and RF to model trade linkages and
volume between countries (see Methods section for details). The
ERGM was selected as the most suitable statistical method, and
RF, being one of the best-performing machine learning techni-
ques, was selected as a nonparametric alternative for bench-
marking the results. We compared the performance of ERGM
and RF in cross-validation for different types of networks, which
highlighted the strengths and weaknesses of these alternative
methods.

The analysis reveals that the current wheat trade network tends
to have partnerships between countries with more synchronized
yield fluctuation, exposing countries to synchronized yield failure.
In addition, our models show that countries with larger differ-
ences in extreme weather stress tend to have higher import
volumes and more trade partnerships. Therefore, this study
suggests the need to consider extreme weather stress and yield
synchrony in the design of trade networks to improve the stability
and fairness of the global food system.

Results
Extreme weather stress for wheat production. Cold and heat
stresses were identified as the major contributors to the variability
of extreme weather indices developed for a country’s wheat
production. A total of 17 indices were used to quantify weather
stresses (including heat stress, cold stress, flood, and drought)
during the growing period for wheat in 115 countries for the years
2005–2014 (see Methods and Supplementary Note 3). The first
two principal components of the 17 indices, dominated by cold
and heat stress, represent 65% and 22.7% variance of the weather
index matrix, respectively (Supplementary Fig. 2).
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The dominant principal components of the extreme weather
indices are not significantly correlated with production levels
across countries, while the heat stress indices are correlated with
the import dependency (Fig. 1; detailed results in Supplementary
Table 3 and Supplementary Figs. 13–29). It suggests that the scale
of wheat production in a country was not necessarily affected by
the extreme weather stress in the wheat-producing region, but a
country’s dependency on wheat imports was associated with
higher heat stress. Furthermore, out of 115 major wheat-
producing countries in our study, 56 countries have an import
dependency ratio (IDR) greater than 50% (mostly in developing
countries), while only 27 countries are net exporters. Since
around half of the countries are highly import-dependent for
wheat, trade plays an important role in ensuring a stable wheat
supply. The pairwise relationships between weather stress and
other major characteristics of trade (such as the number of
linkages and trade volume) are similar: the countries facing
higher heat stress (or lower cold stress) are likely to have fewer
trade partners for exports; and countries with higher cold stress
tend to have more import trade partners (Supplementary
Figs. 8–11 and Supplementary Table 3).

Relationships between trade networks and extreme weather
stress. Using the principal components of extreme weather
indices as part of the covariates, we modeled the bilateral trade
networks (one weighted by trade volume and one without the
weights) of wheat with ERGM and RF model separately. The two
models observe similar general relationships between trade net-
works and their potential drivers, but the performances of the two
models vary. To evaluate the performance of each model, we
conducted cross-validation. The results show that ERGM, with an
error rate of 5.17%, was more accurate than RF in predicting
trade presence/absence (i.e., the trade network without weight by
trade volume), while RF was more accurate in predicting trade
volume (Tables 1 and 2; see the distribution of cross-validated
errors in Supplementary Figs. 5–6). Hence, throughout the rest of
the paper, we report the modeling results for trade linkages and
trade volumes based on ERGM and RF, respectively.

Modeling results from both ERGM and RF show that country
pairs with larger differences in the levels of extreme weather
stresses are more likely to be trade partners. The ERGM shows
that more severe heat stress in the importing country compared
to an exporting country (i.e., DEWSheat < 0) corresponds to a
higher likelihood of trade link formation. Vice versa, trade

partnerships are less likely if the exporting country is experien-
cing larger heat stress than the importer does (i.e., DEWSheat > 0;
Table 1, and Supplementary Fig. 12b). These model results align
with the observed relationship between import dependency and
heat stress (Fig. 1b).

The differences of both heat and cold stress between countries
have significant relationships with trade volume. The RF shows
overall higher trade volumes correspond to higher heat stress in
importing countries (i.e., when DEWSheat < 0, compared with
DEWSheat > 0, similar to the ERGM results); however, the
relationship is not exactly linear, and the trade volumes increase
marginally for DEWSheat around zero (Fig. 2b). Higher trade
volume is predicted when differences in cold stress between
partners exist (i.e., DEWScold ≠ 0; Fig. 2a); however, in contrast to
the heat stress, two upper deciles of DEWScold are associated with
higher trade volumes. In particular, the biggest spike in Fig. 2a is
driven by Germany, i.e., a large exporter that may experience
more severe cold stress than its trade partners do (DEWScold > 0).
The cases of DEWScold > 3000 are dominated by Japan, Mongolia,
and South Korea in the exporter role; hence, the corresponding
average trade volumes decline from the peak values (Fig. 2a). The
RF rankings of variables by their predictive importance are
consistent between the weighted and unweighted trade networks.
The economic and difference in production covariates are ranked
as the top predictors followed by the STS and DEWS. Among the
other factors, common official language and contiguity are ranked
eighth and ninth, while regional trade agreements (RTA) is
ranked tenth (Supplementary Figs. 32 and 33). Permutation-
based assessment of statistical significance of the importance
values identified all the variables in the RFs as statistically
significant, which means the RF models have one additional
variable (DEWScold) compared with the ERGMs for the
unweighted directed trade network.

The role of yield synchrony. In addition to extreme weather
stress, the STS of crop yield anomalies also demonstrates a sig-
nificant relationship with the wheat trade networks regarding the
presence/absence of trade links and trade volumes. More speci-
fically, the ERGM for the unweighted network shows that STS is
positively associated with the likelihood of trade partnerships
(Table 1). In the weighted trade network, RF detects a nonlinear
relationship characterized by the overall accelerating increase of
trade volume with the increase in STS (main body of the dis-
tribution; Fig. 2c). However, the first decile of STS, comprising
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Fig. 1 Relationship between import dependency ratio and weather stress. Relationships between the 2005–2014 import dependency ratio (IDR; Eq. 1)
and derived principal components (PCs) representing the weather stress: (a) cold stress, (b) heat stress. Positive IDR means higher import dependency,
while a negative IDR means that a country is a net exporter. Each black point represents a country, the size of the point corresponds to the average wheat
production during 2005–2014. The black lines represent the estimated linear relationships between weather stress and IDR (p-value = 0.460 for cold
stress and 0.005 for heat stress), gray shaded areas correspond to 95% confidence intervals.
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the most asynchronous pairs of countries, is also characterized by
a spike in trade volume (Fig. 2c). This illustrates that countries
with perfect asynchrony (STS ≈ –1) and synchrony (STS ≈ 1) of
yield fluctuations tend to trade more.

The role of other factors. All our ERGM and RF models also
include the following covariates that have been considered as
important for the formation of trade linkages: population-
weighted distance, contiguity, common official language, gross
domestic product (GDP), GDP per capita, General Agreement on

Tariffs and Trade (GATT) /World Trade Organization (WTO)
memberships, RTA, and difference in production between
countries. The modeling results further confirmed the important
role of these factors. The ERGM results show that trade part-
nerships are more likely to occur between countries that are closer
to each other, contiguous, or have a common official language
(Table 1), which aligns well with the existing findings in the
literature. The RF results show, similarly to ERGM, higher trade
volumes for countries that are contiguous and have a common
official language (Fig. 2e, f), and an overall negative relationship
between trade volume and distance (Fig. 2d). However, RF was

Table 1 Summaries of the models for 2005–2014 unweighted directed (trade presence) international wheat trade network.

Model Covariate Coefficient p-value Error

ERGM DEWSheat −2.45 × 10−5 (4.39 × 10−6) <10−4 5.17%
STS 0.13 (4.40 × 10−2) 0.0036
Production 7.02 × 10−10 (4.91 × 10−11) <10−4

GDP 1.91 × 10−13 (1.28 × 10−14) <10−4

GDP per capita 6.36 × 10−6 (6.45 × 10−7) <10−4

GATT/WTO −0.455 (3.52 × 10−2) <10−4

RTA 0.97 (0.102) <10−4

Distance −2.82 × 10−5 (2.16 × 10−6) <10−4

Contiguity 2.30 (0.167) <10−4

Common official language 0.27 (6.13 × 10−2) <10−4

RF DEWSheat, DEWScold Supplementary Fig. 4 0.01, 0.01 21.15%
STS 0.02
Production 0.01
GDP 0.01
GDP per capita 0.01
GATT/WTO 0.01
RTA 0.01
Distance 0.01
Contiguity 0.01
Common official language 0.01

ERGM exponential random graph model, RF random forest, DEWS difference in extreme weather stress, STS short-term synchrony, GDP gross domestic product, GATT The General Agreement on Tariffs
and Trade, WTO World Trade Organization, and RTA Regional Trade Agreements. Standard errors of the coefficients are shown in parentheses. Errors are the average cross-validated misclassification
errors for trade presence.

Table 2 Summaries of the models for 2005–2014 weighted directed (trade volume) international wheat trade network.

Model Covariate Coefficient p-value Error

ERGM DEWScold 4.82 × 10−6 (7.55 × 10−7) <10−4 1.48
DEWSheat −4.59 × 10−6 (2.51 × 10−7) <10−4

STS 2.14 × 10−2 (3.97 × 10−9) <10−4

Production 2.23 × 10−10 (9.54 × 10−12) <10−4

log10(GDP) −1.43 × 10−2 (2.06 × 10−9) <10−4

GDP per capita 1.41 × 10−6 (2.68 × 10−8) <10−4

GATT/WTO −9.79 × 10−2 (1.18 × 10−8) <10−4

RTA 0.186 (1.30 × 10−8) <10−4

Distance −5.95 × 10−6 (9.22 × 10−8) <10−4

Contiguity 0.49 (2.19 × 10−8) <10−4

Common official language 3.56 × 10−2 (2.48 × 10−8) <10−4

RF DEWSheat, DEWScold Figure 2 0.01, 0.01 0.77
STS 0.03
Production 0.01
log10(GDP) 0.01
GDP per capita 0.01
GATT/WTO 0.01
RTA 0.01
Distance 0.01
Contiguity 0.01
Common official language 0.01

ERGM exponential random graph model, RF random forest, DEWS difference in extreme weather stress, STS short-term synchrony, GDP gross domestic product, GATT The General Agreement on Tariffs
and Trade, WTO World Trade Organization, and RTA Regional Trade Agreements. Standard errors of the coefficients are shown in parentheses. Errors are the average cross-validated mixed errors for
trade volume.
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also able to model nonlinearity in the latter relationship,
characterized by substantial spikes in trade volume around the
deciles 3–4 and 9–10 of the population-weighted distance
(Fig. 2d).

The inclusion/exclusion of these covariates in the ERGM and
RF models does not affect the above results regarding the
relationships between trade networks and extreme weather
stresses, as well as yield synchrony, further confirming the
robustness of the modeling results. For example, countries closer
to each other tend to have more synchronized yield; however, the
ERGM results show a significant positive association of trade
partnerships with STS regardless of whether the distance variable
is included or excluded (Supplementary Table 4). This test
suggests that the positive relationship between trade networks
and STS is not only due to the positive relationship between STS
and distance but could be an outcome of other factors that are not
included in the models (e.g., cultivars, and technology and
management practices in agriculture).

The difference in production level between exporting and
importing countries shows a significant positive association with
the international wheat trade network (Fig. 2g and Supplemen-
tary Fig. 12a). The amount of production plays a critical role in a
country’s decision to engage in international trade. The modeling
results from both ERGM and RF show that the likelihood of trade
partnership is higher when country pairs have larger differences

in their production levels. The ERGM results show a higher
likelihood of trade partnership when production is higher in
exporting country (i.e., difference in production > 0) compared to
when it is higher in importing country (i.e., difference in
production < 0).

In RF, a non-linear relationship between difference in
production and trade volume is observed (Fig. 2g). A substantial
increase in trade volume is predicted when the production is
higher in exporting country (i.e., difference in production > 0
compared with difference in production > 0), such a pattern is
similar to ERGM results. The cases with difference in production
> 109 (i.e., 1 million tonnes; upper decile) mostly include the
Russian Federation, the USA, and India as the major exporters.
Specifically, the highest marginal increase in trade volume
(Fig. 2g) is driven by the Russian Federation, the USA, France,
and Canada highlighting their major contribution to the
international wheat trade.

In addition to the above covariates, we tested several other
economic factors, including GDP, GDP per capita, GATT/WTO
membership, and RTA. These variables are frequently used to
account for multilateral resistance, total expenditure, and market
size in international trade44,45. The ERGM results show that trade
partnerships are more likely to occur for countries with higher
GDP/GDP per capita and involvement in regional trade
agreements, while the possibility of trade partnership reduces
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Fig. 2 Random forest partial dependence plots for trade volume in 2005–2014. The x-axes represent the considered covariates: (a) difference in extreme
cold stress (DEWScold), (b) difference in extreme heat stress (DEWSheat), (c) short-term synchrony (STS), (d) distance, (e) contiguity, (f) common official
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y-axis represents the marginal effect of the covariate on wheat trade volume. The blue bars show marginal effects caused by categorical covariates, while
black lines show marginal effects of continuous covariates.
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when countries are in GATT/WTO membership. In the RF, the
GATT/WTO shows a similar marginal increase in volume of
trade for both member and non-member countries, indicating
that the imports and exports are occurring between countries
irrespective of their trade membership. However, including these
factors in the models does not change the relationship between
the trade network and the two main covariates (i.e., DEWS
and STS).

Discussion
While few trade partnerships have been established with direct
consideration of extreme weather stress and yield synchrony
among countries, significant relationships between these factors
and the wheat trade network have been revealed by our investi-
gation into the historical records for the period of 2005–2014.
The revealed relationships have strong implications for the resi-
lience of wheat trade networks and food supply for countries
around the world.

The significant positive associations between trade linkages and
synchronous yield fluctuations indicate that in the current wheat
trade network, trade partnerships tend to be established between
countries with more synchronized yields. Therefore, the current
wheat trade network is potentially vulnerable to synchronous
yield failure. A recent study projected that synchronous failure in
wheat yield can lead to about a 33% reduction in wheat
production46, which is equivalent to half of the projected wheat
consumption by 205047. Hence, the synchronous yield failure can
lead to dramatic disruptions to wheat supply for a country and
the world, and consequently threaten food security in countries,
especially those low- and middle-income countries that are
dependent on imports1,11.

Higher likelihood of trade partnerships and higher import
volume are found to be associated with higher differences in
extreme weather stress when importing countries have higher
stress than their exporting partners. This finding indicates the
role of international trade in alleviating the long-term production
stress caused by frequent extreme weather. Under the possible
higher weather stress due to future climate change, the wheat
trade network is expected to change, and increases in import
linkages are likely to occur, particularly in tropical countries that
are already import-dependent. Consequently, whether these
countries can establish more trade linkages on time to combat the
climate-change-induced stress in domestic production and sta-
bilize their wheat supply is critical for food security in these
countries.

Our analysis demonstrates the need to factor in the con-
sideration of extreme weather stress and yield synchrony when
designing trade agreements and establishing trade partnerships.
Countries have been choosing their trade partner mainly based
on economic benefits (e.g., promising duty- and quota-free access
to the international market) or geopolitical relations, while few
consider the extreme weather stress and yield variation in their
potential partner countries. While the partnership is economically
beneficial for the countries involved, it may lead some countries
to become highly dependent on wheat supply from a few coun-
tries or regions, and potentially expose these countries to a higher
risk of food insecurity when trade partners are facing synchro-
nous yield losses. For instance, Ukraine’s substantial (~77%)
wheat production losses in 2007 compared to 2006 forced its
trade partners to buy wheat from other countries (e.g., Australia,
France, the USA, Russia, Kazakhstan) and relax import barriers to
meet their domestic food demand48. Such rapid alterations in
trade partners within a year overwhelm not only the major
exporters through reduced stock-to-use ratio and doubled export

volume in a short period, but also importers who have been
relying on the supply from Ukraine or the global market,
potentially contributing to spikes in wheat prices16,48. Importers
from least-developed nations are particularly vulnerable to such
rapid changes in the global market, as they usually have less
political and economic capacity to establish new partnerships or
to adapt to higher market prices. Therefore, the economic benefits
and abundant food supply, brought by the trade partnerships, can
potentially be compromised by the occurrence of extreme
weather stress and synchronized yield failure. To mitigate these
potential negative outcomes, countries, as well as multilateral
trade agreements, need to carefully consider their portfolio of
trade partners by 1) identifying whether their trade partners have
synchronized yield patterns; 2) determining the level of extreme
weather stress in each partner and the impact of climate change.
To ensure a more stable crop supply, a country or a trade
agreement should favor trade partners with asynchronized yield
patterns and less extreme weather stress, in addition to economic
benefits. In addition, the examination of yield synchrony and
extreme weather stress in existing partnerships will inform the
design of mitigation measures such as crop reserves to minimize
the disruption of synchronized yield failure.

We tested two models, ERGM and RF, for investigating the
trade linkages and trade volume. The goal of testing the two
models is to assess the linear (via ERGM) and nonlinear (via RF)
relationships between trade networks and drivers. While the two
modeling approaches provide similar results on the general
relationships between the trade networks and a range of covari-
ates, we find that ERGM performed better when investigating the
unweighted network, and RF performed better for the network
with trade volume (Tables 1 and 2). The reason for the better
cross-validation performance of ERGM in an unweighted net-
work but not in a weighted network is the relative simplicity and
thus robustness of the model when capturing the presence/
absence information and, at the same time, lack of flexibility
when modeling the actual trade volumes. In contrast, RF auto-
matically captures the nonlinearity of the relationships but tends
to overfit the data; hence, the results can be less robust, such as in
the case of the unweighted network.

RF performed better than ERGM on the weighted network in
the cross-validation study, which implies that the nonlinear
relationships the RF was able to capture were important in pre-
dicting trade volume. However, the difference in errors between
models is substantial. Although RF has lower errors, it still needs
improvements in providing robust predictions of trade volume
(see Table 2 and Supplementary Figs. 5 and 6). The correlation of
observed and predicted percentage contributions of each country
in global export volume is 0.91 (Supplementary Fig. 34). How-
ever, the correlation between observed and predicted trade
volumes is not as strong (Supplementary Fig. 35). The perfor-
mance can potentially be improved by considering in the mod-
eling process other commonly used drivers, the impact of physical
limits of crop production on trade volumes, and adjustments for
imbalanced (zero-inflated, in case of numeric response such as
trade volume) distributions. Substantial progress has been made
in RF classification to deal with imbalanced datasets49–52, but
developments for RF regression with zero-inflated data are still
ongoing53. Even with the current limitations and uncertainties in
ERGM and RF, the models can establish a reliable general rela-
tionship between trade networks (with and without the weight of
trade volume) and extreme weather stress and yield synchrony.
Further research is needed to improve the modeling and pre-
diction of trade volume in the context of climate change by
incorporating the production and demand levels of both the
importing and exporting countries.
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Conclusions
Our analysis suggests that the two factors, the level of extreme
weather stress and synchrony of crop yield fluctuations, sub-
stantially affect the international wheat trade network. Country
pairs with larger differences in heat stress are more likely to have
trade connections and higher trade volumes. Meanwhile, in the
current wheat trade network, trade partnerships are more likely to
be established between countries with synchronized yield fluc-
tuations. This represents a systemic risk in the current global
wheat market since synchronized yield failure can disrupt wheat
supply and intensify food insecurity for both partnering coun-
tries. Other fundamental drivers in the analysis (i.e., production
level, and economic and geopolitical factors) show significant
relationships with trade link and volume, further confirming their
importance in the international trade network. Our results
demonstrate the need to consider extreme weather stress and
yield synchrony in the trade policy framework to improve the
stability and fairness of the global food system.

Methods
Weather, wheat yield, and trade data. Major datasets used in this study include
daily weather records54, annual wheat yield55, annual wheat production55, and
bilateral trade volume15 for the period of 2005–2014. To assess crop-specific
weather conditions for countries around the world, global maps of crop calendar56

and harvested area57 were used. The other datasets used in this study include the
distance between countries58, and their official languages59, contiguity58, gross
domestic product (GDP)60, GDP per capita60, General Agreement on Tariffs and
Trade (GATT)/World Trade Organization (WTO) memberships, and regional
trade agreements (RTA)61,62 (Supplementary Table 1). The reason to include these
additional datasets is to incorporate factors that are considered important for trade
connections. Countries with at least seven years of yield data in the analyzed period
were selected for this study (115 countries, see Supplementary Note 1). All data
used in this study are publicly available from the corresponding sources.

Import dependency ratio. Import dependency ratio (IDR) for each country was
calculated as the ratio of net imports (i.e., imports—exports) and total production of
the crop (kg) and net imports (kg):

IDR ¼ net imports
productionþ net imports

: ð1Þ

Network-based covariates for extreme weather stress. To assess the extreme
weather stress in wheat-producing countries and the relationship among countries,
we developed the Difference in Extreme Weather Stress (DEWS) covariate, fol-
lowing four steps outlined below. DEWS was used to address the hypothesis that
trade is more likely between a country with low weather stress (country capable of
producing high yields due to good weather) and a country with high weather stress
(country willing to buy because of yield losses due to bad weather), i.e., in the cases
with large DEWS. If both trade partners experience good or bad weather for
growing the crop, DEWS is low.

First, we comprehensively characterized local agricultural weather conditions.
We calculated 17 agricultural weather indices63 (Supplementary Table 2) for each
spatial grid cell during the growing season of wheat with crop calendar in each year
from 2005 to 2014 (Supplementary Algorithm 1 and Supplementary Note 2). The
weather indices represent extreme weather stress as they quantify the temperature
and precipitation conditions that are outside the optimal growing conditions (i.e.,
comfort zone) of wheat63. Second, we aggregated the weather indices for relevant
areas. The gridded maps of weather indices from the first step were aggregated for
each country with the spatial grid weights proportional to the harvested area for
wheat (e.g., weather index in grid cells without wheat production was disregarded)
(Supplementary Algorithm 1, Supplementary Note 2, and Supplementary Fig. 36).
This resulted in 17 weather indices for 115 countries for 10 years. Third, we
reduced the dimensionality of the weather data to provide a combined assessment
of the weather conditions and to avoid potential problems of multicollinearity and
overfitting in later modeling. In the principal component analysis (PCA) of the
extreme weather indices (see Supplementary Note 4), the first two principal
components (PCs) account for 87.7% of the variation, and they represent cold and
heat extreme weather stress conditions, respectively, in a country’s wheat-
producing region (Supplementary Fig. 2). Fourth, we defined DEWS for cold stress
(DEWScold) (or heat stress; DEWSheat) as the difference in the cold stress PC (or
heat stress PC) in two countries, where DEWS < 0 means higher stress in importing
country, and DEWS > 0 means higher stress in exporting country.

Network-based covariate for yield synchrony. To assess associations of syn-
chrony of crop yield fluctuations with trade, we developed the covariate short-term

synchrony (STS). STS was defined as the correlation of yield fluctuations between
countries. The yield fluctuations for each country were obtained by removing
trends from the yield time series, where the trend was estimated using a locally
weighted regression approach (see Supplementary Note 5 and Supplementary
Fig. 3).

Trade networks. Based on the bilateral wheat trade flows during 2005–2014, two
types of trade networks were developed and examined in this study, namely
unweighted directed and weighted directed networks. Both networks consist of
nodes and edges, where nodes represent countries and edges represent trade
connections between countries. The edges are directed, representing the direction
of trade flows from one node to another. The unweighted directed network does
not assign a weight to the edges, while the weighted directed network assigns a
weight for each edge based on the trade volume (measured in kg). Between 2005
and 2014, the international trade network included 115 nodes (i.e., countries) and
5726 directed edges, resulting in an average in/out-degree of 50 (Supplementary
Figs. 7, 30, and 31).

Exponential random graph model. The exponential random graph model
(ERGM) was chosen as the most suitable and powerful statistical approach for
network modeling. ERGM is an exponential probability model used to predict
edges (or weights on edges) between nodes in a network Y64:

Pr
θ;Y

ðY ¼ yÞ ¼ expfθ>gðy;XÞg
κðθ; yÞ ; y 2 Y; ð2Þ

where θ 2 R represents model coefficients, g(y,X) are statistics corresponding to y
and covariates X, κ(θ,y) is the normalizing factor, and Y is the set of all possible
networks for the given number of nodes.

In this study, the network Y represents network realization of the observed
network y, covariates X include the DEWS, STS, distance between countries,
contiguity, common official language, GDP, GDP per capita, RTA, GATT/WTO
membership, and difference in production. The ERGM is tested for both the trade
networks (i.e., weighted directed and unweighted directed). See Supplementary
Note 6 for details on the model specification in R software. In addition to the
above-defined ERGM, several different combinations of ERGM are tested (see
Supplementary Note 15 and Note 18).

The sign and magnitude of the ERGM coefficients for each covariate (Tables 1
and 2) demonstrate the likelihood of link formation in the trade network22. A
significant (p-value < 0.05) positive coefficient shows that higher values of the
covariate are associated with a higher likelihood of the link formation, while a
negative coefficient corresponds to a lower likelihood. Statistical significance of the
coefficients is assessed using t-test at 0.05 significance level.

Random forest model. The random forest (RF) model65 was used as an alternative
nonparametric method for modeling the two trade networks. RF is one of the best-
performing machine learning techniques, hence serves as a valuable benchmark for
validating the results. Compared with other popular machine learning models, such
as neural networks, RF has fewer tuning parameters. Some of the important tuning
parameters in RF are the number of variables to examine at each split and the
minimal size of terminal nodes, both of which have sensible defaults66. In contrast,
neural networks rely on many more hyperparameters, many of which do not have
default values and have to be set by the user (for example, number of layers and
number of units in each layer, dropout rates, size and number of filters in con-
volutional layers)67. We chose RF due to its competitive performance, ease of
specification, and rising popularity in agricultural studies68–70.

Unlike ERGM, random forest is a machine learning tool that investigates
relationships between covariates and can model nonlinear and combined effects of
several covariates automatically. RF is a set of regression trees, where each tree is
trained on a bootstrap sample of the original data, and only a random subset of
covariates is assessed at each tree split (see details of RF implementation in
Supplementary Note 7). The relationships captured by RF are investigated through
partial dependence plots that show marginal changes in the response variable due
to the changes in the covariate, while all other covariates are kept at their observed
levels. In addition to the partial dependence plots, we assessed the importance of
the covariates based on the mean decrease in the predictive accuracy of a regression
tree when values of one of the covariates are randomly permuted66. We further
ranked the covariates based on their importance and assessed their statistical
significance (at 0.05 level) using the Altmann permutation algorithm with 100
permutations71.

Model assessment. Validation and benchmarking are essential steps for evalu-
ating a model’s performance and how it compares to competitive alternatives. We
evaluated the model performance through cross-validation. In the cross-validation,
five years of data from the observed period were randomly selected for training the
models, and the remaining five years were used to obtain predictions and calculate
the errors of the model predictions (see details in Supplementary Note 8).
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Two types of errors were calculated in the cross-validation. For the models of
the unweighted network, we used misclassification error (MCE):

MCE ¼ 1� n�1ðTP þ TNÞ; ð3Þ
where n is the sample size, TN and TP are the counts of true positive and true
negative classifications.

For the models of the weighted network, we calculated mixed error (ME):

ME ¼ n�1∑n
i¼1

jOTi � PTij
1þ jOTij

; ð4Þ

where OTi is the observed trade volume, and PTi is the predicted trade volume for
i-th trade connection. The cross-validation was carried out 100 times and the two
types of errors were calculated each time.

Data availability
The weather, harvested area, and crop calendar maps are obtained from
ECMWF (https://www.ecmwf.int/), Earthstat (http://www.earthstat.org/), and Center for
Sustainability and the Global Environment (https://sage.nelson.wisc.edu/data-and-
models/datasets/crop-calendar-dataset/), respectively. The wheat yield and production
data are from Zhang et al. (2015) (https://www.nature.com/articles/nature15743). The
bilateral trade, per capita GDP and GDP data are accessed through the World
Bank (https://data.worldbank.org/). The datasets of General Agreement on Tariffs and
Trade (GATT), World Trade Organization (WTO), Regional Trade Agreements (RTA),
contiguity, common official language, and distance are from the Centre d’Etudes
Prospectives et d’Informations Internationales (CEPII) (http://www.cepii.fr/). The data
used for generating the figures are available in Zenodo (https://doi.org/10.5281/zenodo.
7130929).

Code availability
The R-scripts generated during the study are available on Zenodo (https://doi.org/10.
5281/zenodo.7130929).
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