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Heat flux assumptions contribute to overestimation
of wildfire smoke injection into the free
troposphere
Laura H. Thapa 1✉, Xinxin Ye1, Johnathan W. Hair2, Marta A. Fenn2,3, Taylor Shingler2, Shobha Kondragunta4,

Charles Ichoku5, RoseAnne Dominguez6, Luke Ellison 3,7, Amber J. Soja2,8, Emily Gargulinski8,

Ravan Ahmadov9,10, Eric James9,10, Georg A. Grell10, Saulo R. Freitas 11, Gabriel Pereira 12 &

Pablo E. Saide1,13✉

Injections of wildfire smoke plumes into the free troposphere impact air quality, yet model

forecasts of injections are poor. Here, we use aircraft observations obtained during the 2019

western US wildfires (FIREX-AQ) to evaluate a commonly used smoke plume rise para-

meterization in two atmospheric chemistry-transport models (WRF-Chem and HRRR-

Smoke). Observations show that smoke injections into the free troposphere occur in 35% of

plumes, whereas the models forecast 59–95% indicating false injections in the simulations.

False injections were associated with both models overestimating fire heat flux and terrain

height, and with WRF-Chem underestimating planetary boundary layer height. We estimate

that the radiant fraction of heat flux is 0.5 to 25 times larger in models than in observations,

depending on fuel type. Model performance was substantially improved by using observed

heat flux and boundary layer heights, confirming that models need accurate heat fluxes and

boundary layer heights to correctly forecast plume injections.
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W ildfire smoke impacts Earth’s radiative budget1, air
quality2, visibility3, and human health4 by increasing
the atmospheric load of pollutants. Harsher wildfires

and longer fire seasons have been observed and appear to be
correlated with anthropogenic climate change5,6. Further degra-
dation of air quality and visibility due to smoke are projected in
future climate regimes7.

Plume rise refers to the vertical transport of hot smoke gasses
and particles through the atmosphere. This process may result in
plume injections, where smoke reaches the free troposphere, or in
plume non-injections, where smoke remains confined within the
planetary boundary layer (PBL). Previous studies have shown that
injected plumes tend to occupy layers of ambient stability and
that plume injections are associated with high fire radiative power
(FRP), and favorable fire weather8–10. Observations from the
Multi-angle Imaging Spectroradiometer (MISR) indicate that
injection into the free troposphere occurs in 4–12% of North
American smoke plume tops8,9,11,12, and the Cloud-Aerosol Lidar
with Orthogonal Polarization data indicate that injection of the
total smoke column into the free troposphere occurs in 78% of
North American smoke plumes10. However, the MISR percentage
may be biased low due to satellite overpasses occurring in the
morning (~10:30 AM LT for MISR), when plumes have not fully
developed11. Injected plumes can be advected downwind with
little dilution13 and thus tend to have more regional impacts. On
the other hand, non-injected plumes tend to have more local
impacts due to more efficient downward mixing by ambient PBL
turbulence.

The Freitas plume rise parameterization is a 1-dimensional
cloud-resolving model. It is typically embedded in a
3-dimensional host model that specifies the ambient
environment14. This model represents fires as surface buoyancy
fluxes that depend on instantaneous fire size, convective heat flux,
and fuel type. This model tends to outperform models that assign
emissions to a single level or a fixed vertical distribution15–17.
However, the model depends on estimates of fire size and heat
flux, overpredicts free tropospheric injection frequency, and tends
to underestimate the range of observed plume heights18,19. Pro-
posed causes of the Freitas model’s shortcomings include
uncertainties in lateral entrainment and in input parameters.
Entrainment is dependent on fire size, so versions of the Freitas
model allowing variable fire sizes can improve the modeled range

of plume heights15,18. In addition, explicitly adding entrainment
to a later version of the model improved performance20,21.
Uncertainty in the input parameters, notably fire size and FRP,
may be caused by the plume masking FRP retrievals, incorrect fire
shape or size, or variability of burning with vegetation type18,22.

Here, we use aircraft and model data from the NASA-NOAA
Fire Influence on Regional to Global Environments and Air
Quality (FIREX-AQ) field campaign to evaluate the Freitas model
in developed plumes. We show that the Freitas model, imple-
mented in the Weather Research and Forecasting Coupled with
Chemistry (WRF-Chem) model and the High Resolution Rapid
Refresh Smoke (HRRR-Smoke) model, overpredicts injection in
comparison with airborne lidar measurements. Injection occurs
in 35% of observed plumes and in 80% and 95% of WRF-Chem
and HRRR-Smoke plumes, respectively. When the observed
boundary layer height is used to evaluate injection in the both
models, injection occurs in 59% of the WRF-Chem plumes and
72% of the HRRR-Smoke plumes. Comparing the fire radiant
energy flux (FRE flux, “Methods”) observed by the Moderate
Resolution Imaging Spectroradiometer (MODIS)-Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) airborne simulator (MASTER) instrument with those
assumed by WRF-Chem and HRRR-Smoke shows that the
models overestimate FRE fluxes by up to a factor of 25
(0.55 kWm−2 in the observations and 0.29–13.86 kWm−2 in the
models). When WRF-Chem total heat fluxes were reduced so
radiant fractions matched observed FRE fluxes, the occurrence of
false positives became less common, and further improvement
was achieved when the WRF-Chem sensitivity simulations were
evaluated using the observed PBL as the injection boundary. This
effect was strongest for forest fires, which are assumed by the
Freitas model to have the highest heat fluxes14.

Results
Model performance on smoke injection. Table 1 shows the
injection behavior of modeled and observed smoke plume profiles
using the observed planetary boundary layer height (PBLH) to
classify the observations and the modeled PBLH to classify the
models (see “Methods”, Supplementary Figs. 1–51, Supplemen-
tary Tables 1–3). Injections occur in 35% of observed cases, 80%
of WRF-Chem cases, and 95% of HRRR-Smoke cases. WRF-

Table 1 Confusion matrices for comparing observed and modeled injection behavior counts.

HRRR-Smoke against HRRR-Smoke PBL Non-injection forecasted Injection forecasted Total
Non-injection observed TN= 2 FP= 24 26
Injection observed FN= 0 TP= 17 17
Total 2 41 43

HRRR-Smoke against DIAL-HSRL PBL Non-injection forecasted Injection forecasted Total
Non-injection observed TN= 9 FP= 17 26
Injection observed FN= 3 TP= 14 17
Total 12 31 43

WRF-Chem against WRF-Chem PBL Non-injection forecasted Injection forecasted Total
Non-injection observed TN= 9 FP= 24 33
Injection observed FN= 1 TP= 17 18
Total 10 41 51

WRF-Chem against DIAL-HSRL PBL Non-injection forecasted Injection forecasted Total
Non-injection observed TN= 20 FP= 13 33
Injection observed FN= 2 TP= 16 18
Total 21 30 51

Counts of injection behavior are shown for HRRR-Smoke using the HRRR-Smoke PBL height to evaluate injection, HRRR-Smoke using the DIAL-HSRL PBL height to evaluate injection, WRF-Chem using
the WRF-Chem PBL height to evaluate injection, and WRF-Chem when the DIAL-HSRL PBL height is used to evaluate injection. Columns are labeled with forecasted plume behavior and rows are labeled
with observed plume behavior. TN stands for true negative, where non-injection was forecasted and observed. Similarly, TP stands for true positive. FN stands for false negative, where injection was not
forecast but did occur. FP stands for false positive, where injection was forecast but did not occur. HRRR-Smoke has fewer total cases than WRF-Chem due to certain fires missing in the model (see
“Methods”, Sampling Method).
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Chem and HRRR-Smoke have accuracies of 0.51 and 0.44,
respectively. Both models tend to capture observed injections
well, with WRF-Chem and HRRR-Smoke having true positive
rates of 0.94 and 1.0, respectively. However, WRF-Chem and
HRRR-Smoke also exhibit false positive rates of 0.73 and 0.92,
respectively. For WRF-Chem, in cases where the plumes are
within the uncertainty range of the modeled PBLH (i.e., cases
which exhibit different injection behavior when the modeled and
observed PBLHs are used to evaluate injection, see next section),
are excluded from the analysis, then accuracy is 0.67, the true
positive rate is 1.0, and the false positive rate is 0.61. This only
slightly improves on the error achived by WRF-Chem when all
cases are used. These statistics indicate that overprediction of
injection leads to the high true positive rate, low accuracy error
type present in both models, consistent with previous work which
quantified uncertainty in the Freitas model15,18.

Assessing modeled planetary boundary layer height. Under-
estimation of the PBLH is a known problem with the WRF-Chem

model23,24 that may cause plumes placed at the correct height to
be misidentified as injections into the free troposphere. Figure 1a
and e shows the bias on the modeled PBLH for the WRF-Chem
and HRRR-Smoke models, respectively (Supplementary Data 1).
For the false positive cases, WRF-Chem tends to underpredict the
PBLH by 500–1000 m, and HRRR-Smoke tends to underpredict
the PBLH by <500 m. Both models show large spread and even
contain cases where the models overpredict PBLH and false
injection still occurs. In addition, the WRF-Chem model correctly
captures non-injections for generally the most underpredicted
PBLHs.

We ran a standalone version of the Freitas plume rise scheme
based on simulated meteorology for cases where WRF-Chem
underpredicted the PBLH and HRRR-Smoke accurately captured
it as determined by overlap in the interquartile ranges of the
observed and modeled PBLH distributions (Table 2, Supplemen-
tary Fig. 52). It was found that plume height and plume injection
behavior have little sensitivity to variations in PBLH present in
the meteorology used to drive the model (Supplementary Fig. 53,
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Fig. 1 Box and whisker plots of model parameters and observations grouped by WRF-Chem and HRRR-Smoke injection behavior. a, e Comparison of
modeled transect median PBLH with observed transect median PBLH, b, f average FRE flux, c, g savanna and grassland fraction, and d, h terrain height. Red
horizontal line denotes medians, blue boxes denote the interquartile ranges, and whiskers denote the 1.5x interquartile range. TP, FP, and FN are defined as
in Table 1 caption. a–d Refer to the WRF-Chem model and e–h refer to the HRRR-Smoke model.
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note pecent error on plume heights do not exceed 8.8%). This
allows us to re-classify injection behavior for WRF-Chem using
the observed PBLH (Table 1) since plume top height would likely
be similar if WRF-Chem was reproducing the observed PBLH
correctly. There are 12 cases that get reassigned to the true
negative category, two that get reassigned to false positive, and
one that gets reassigned to false negative. For this evaluation,
injection occurs in 59% of cases, resulting in an accuracy of 0.70,
a true positive rate of 0.89, and a false positive rate of 0.39,
indicating better model performance. Therefore, we conclude that
for WRF-Chem, uncertainties in the boundary layer likely do
contribute to the overprediction of injection. When the observed
PBLH was used to evaluate the injection behavior of HRRR-
Smoke, the injection rate was 59%, the accuracy was 0.53, the true
positive rate was 0.82, and the false positive rate was 0.65. For
HRRR-Smoke, which runs an newer PBL scheme (Table 2),
uncertainties in the boundary layer are likely smaller and play less
of a role in generating false injections.

Associating model performance with additional fire char-
acteristics. Figure 1 shows distributions of three additional
variables (Supplementary Data 1) that can help explain the
injection behavior of the WRF-Chem and HRRR-Smoke models:
average of the model’s assumed FRE fluxes (see “Methods”, 1b,
1f), model fuel type (1c, 1g), and terrain height (1d, 1h). Since
FRE flux is assumed to depend on fuel type in the model,
assumed FRE flux and fuel type are strongly correlated which
each other. Other variables showing strong correlations with each

other include free tropospheric and boundary layer stability, and
terrain complexity and heat flux in the HRR-Smoke model
(Supplementary Figs. 54–55). The rest of the variables are at most
moderately correlated with each other (r2 < 0.46). Box plots were
generated using bootstrapping to avoid sampling bias towards
any single fire (“Methods”).

Figure 1b and f imply that modeled FRE fluxes are likely a
strong contributing factor to the overprediction of injection by
both models. WRF-Chem captures non-injections correctly when
a lower FRE flux is prescribed and either overpredicts or captures
injections for larger FRE fluxes. In fact, the difference in FRE flux
between correct non-injection and false injection cases (which in
the observations are showing the same non-injection behavior) is
statistically significant (p-value= 0.042). While HRRR-Smoke did
not contain enough correct non-injection cases for a meaningful
comparison, HRRR-Smoke assumes similar FRE fluxes for all fuel
types, and these values are comparable with what WRF-Chem
assumes for cases where false injection is forecasted. Therefore,
we may infer that these high heat fluxes contribute to HRRR-
Smoke overpredicting injections as well.

Capturing non-injections correctly tends to occur in WRF-
Chem for larger fractions of savanna and grasslands (Fig. 1c),
which is consistent as WRF-Chem prescribes lower heat fluxes for
savanna and grassland than for forests (“Methods”). Similarly,
there is no clear relationship for HRRR-Smoke regarding fuel
type as FRE fluxes assumed for all fuels are similar and within the
range of that WRF-Chem assumes for forest. This indicates that
the fuel-dependent heat fluxes assumed by the models (“Meth-
ods”) specifically those corresponding to forest fuels in WRF-

Table 2 Summary of model details.

Model WRF-Chem v3.6.1 HRRR-Smoke 1D Freitas

Resolution 4 km horizontal, 53 vertical levels 3 km horizontal, 40 vertical levels 70 vertical levels, 100m
spacing

Initializaiton/Spin-Up 00UTC initialization, 12 h spin up, 76 h
analysis, 84 h forecast, model
meteorology passed to Freitas
model34

00, 06, 12, 18 UTC initializations, 48 h forecasts,
model meteorology passed to Freitas model34

Uses model profles of T, P,
geopotential, RH, wind,
potential temperature,
specific humidity.

FRE Flux Assumptions 2.69–13.86 kWm−2 for forest,
0.4–3.10 kWm−2 for woody savanna/
cerrado, and 0.57 kWm−2 for
grassland/pasture/ cropland.

3.4 kWm−2 for grassland to 4.8 kWm−2 for forest for
14 vegetation categories as defined by the IGBP28,43,44

Choose the Freitas
maximum heat flux for the
dominant fuel category

Fire Size Assumptions 0.25 km2 per burning grid cell and per
fuel category14,45

Converts MODIS/VIIRS FRP into area using fuel-
varying heat fluxes

0.25 km2 per burning grid
cell and per fuel
category14,45

Flaming Fraction of
Emissions Assumption

50% flaming, undergo plume rise 75% flaming, undergo plume rise N/A

Key Parameterizations Rapid Radiative Transfer
Model for GCMs45, Noah Land
Surface Model46, aerosol-aware
microphysics47, Grell-Freitas
cumulus34, Mellor–Yamada-Janjić
PBL48, MEE= 3.549, MOSAIC
Aerosols50

Aerosol-aware microphysics47,51

Mellor–Yamada–Nakanishi–Niino PBL scheme52
N/A

Data Assimilation Near-real-time inversion of MAIAC
AOD V653,54 based on 6 largest fires
in the region19

None N/A

Emissions Source QFED v2.4, 0.1 degrees resolution,
regridded38

Top-down from MODIS/VIIRS FRP39 N/A

Variables Extracted PM2.5 curtains, model PBL and theta-
derived mixed layer heights19, land
use fractions, Richardson number and
Brunt-Vaisala frequency via centered-
difference at twice and half the PBLH.

PM2.5 curtains, model PBL height, Richardson number
and Brunt-Vaisala frequency calculated via centered-
difference at twice and half the PBLH.

Maximum plume
top height

The first column lists model details for WRF-Chem, the second feature lists model details for HRRR-Smoke, and the third column lists model features for the 1D Freitas plume rise model.
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Chem and all fuels in HRRR-Smoke, could be high and lead to an
overprediction of injection. Other variables such as time of day,
static stability, and terrain complexity were investigated on their
role on modeled injection behavior but none resulted in being a
clear explanatory variable (Supplementary Figs. 54–55).

Figure 1d and h shows that false injections occur at higher
terrain elevation than correct inejctions and that this difference is
statistically significant across both models (p-values= 0.031 and
0.015). In addition, Fig. 1d shows that false injections occur at
higher elevations than correct non-injections. Likely, this means
that the plume rise scheme’s input heat fluxes or meteorology are
more uncertain in areas of higher (Fig. 1d, h) and more complex
(Supplementary Figs. 54b, 55b) terrain. The Fretias model is also

limited in that it is 1-dimensional and thus cannot simulate
interactions between neighboring model columns.

Assessing heat flux assumptions. Figure 2a provides an obser-
vational constraint on the FRE flux. Scatter points show observa-
tions of total FRP versus flaming fire area from the MASTER
instrument for each transect and shapes denote the campaign fuel
category for each MASTER overpass (“Methods”, Supplementary
Data 1). Colored regions denote the FRE flux assumptions made by
the models. Active fire area is computed for flaming and saturated
pixels only, assuming that these fire phases primarily contribute to
plume injection14. FRP is computed for all categories, as this is
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Fig. 2 Comparison of observed FRE flux and assumed FRE fluxes for WRF-Chem and HRRR-Smoke. a Scatter plot of total FRP and flaming and saturated
fire area from MASTER for each fire overpass (colored diamonds, stars, triangles). Black line is a linear fit to the MASTER points of the form y=mx.
Colored bars represent the ranges of FRE flux based on models’ assumptions for convective heat flux and uncertainty in converting between convective and
radiant heat flux (see “Methods”). FRE flux increases toward the upper left. Shapes represent the campaign fuel category. Colors of diamonds, stars, and
triangles, represent the fractional contribution of flaming combustion (including saturated pixels) to total FRP. Other panels show box and whisker plots of
b observed FRP and c observed fraction of FRP due to flaming combustion, grouped by observed injection behavior. Box and whisker elements are as in
Fig. 1 caption.
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what satellites observe. Plots showing fire size and FRP for different
combustion phases show similar qualitative results (Supplementary
Fig. 56). MASTER, WRF-Chem, and HRRR-Smoke all track heat
fluxes slightly differently, so for ease of comparison all have been
converted into FRE flux (see “Methods”).

Figure 2a shows that the best fit for the observed FRE flux
(0.55 kWm−2) is within the range of the WRF-Chem savanna
(0.40–3.09 kWm−2) and grassland (0.29–0.57 kWm−2) FRE
fluxes and is not within the range the WRF-Chem forest FRE
flux (2.69–13.86 kWm−2) or any assumed HRRR-Smoke FRE
fluxes (3.44–4.76 kWm−2). Put another way, WRF-Chem and
HRRR-Smoke assume FRE fluxes equal to 0.5–25 and 6–9 times
the average observed FRE flux, respectively. This is consistent
with the general lack of overlap between the scatter points and the
yellow and orange colored bars in Fig. 2a. Thus, this provides
observational evidence for the hypothesis that the assumed heat
fluxes that get used in the Freitas model, specially for forest fuels,
are likely too large. Since these heat fluxes are directly used to
calculate initial plume buoyancy, this leads to simulated plumes
which are more easily lofted into the free troposphere.

A caveat of this finding is that a fraction of the flaming pixels
retrieved by MASTER are flagged as saturated, and thus FRP
could be underpredicted, affecting our conclusions. Comparing
MASTER to satellite observations (which are less prone to
saturation due to larger pixel footprint) shows that MASTER
tends to provide FRP estimates in between both MODIS
(slope= 1.65) and the Visible Infrared Imaging Radiometer Suite
(VIIRS, slope= 0.79) (Supplementary Fig. 57). If we assume that
VIIRS retrievals are closer to reality, we can use the slope of the
scatter plot to correct MASTER retrievals, yielding an average
observed FRE flux of 0.7 kWm−2 which does not change our
findings. Therefore, we do not expect saturation of MASTER to
influence our final result to a large degree.

To investigate drivers of variability of FRE flux, FRE flux was
calculated for MASTER points grouped by the dominant
campaign fuel category (see “Methods”) and by the flaming
fraction of FRP. This resulted in FRE flux of 0.55 kWm−2 for
forest fires, 0.51 kWm−2 for savanna fires, 0.59 kWm−2 for
grassland fires, 0.56 kWm−2 for >85% flaming fraction, and
0.36 kWm−2 for <85% flaming fraction. FRE flux is generally
constant across fuel type and appears to vary more with fire
combustion phase. In other words, given the right spread and fuel
consumption conditions, forest and grass fires may burn with the
same intensity, which is consistent with previous studies25. Thus,
heat fluxes used to drive the Fretias model should be small,
relatively constant across fuel types, and perhaps more closely
associated with fire weather.

Figure 2a supports the idea that model heat flux assumptions
assign too much buoyant energy per unit area, which is likely the
primary contributor to injection overprediction. The overpredic-
tion occurs even when a small fire size is assumed in WRF-Chem
(0.25 km2 per grid cell), further supporting the idea that the
models assume too much fire energy per unit area. In addition,
WRF-Chem tends to correctly identify non-injection events in
grass and savanna-dominated fires (Fig. 1b), as these fires have
the lowest modeled heat flux. FRE flux used in HRRR-Smoke for
all fuel types are generally in the range of FRE fluxes for forest
specified in ref. 14, consistent with HRRR-Smoke showing a high
rate of false injection regardless of fuel type (Table 1). HRRR-
Smoke’s internal calculation of total heat flux from FRE flux (see
“Methods”), likely keeps plume top heights from being
unphysically high. Thus, heat fluxes used to drive the Fretias
model should be updated to be consistent with the smaller
observed FRE fluxes. The linear relationship between FRP and
burned area (black solid line) is consistent across several orders of

magnitude which can be used to update the HRRR-Smoke
scheme where burned area is a function of FRP.

Figure 2b shows observed injection behavior as a function of
observed FRP showing a near-significant trend (p-value= 0.063)
of injections happening at higher FRP. Thus, even though the
heat fluxes need to be updated in HRRR-Smoke, there is value in
driving plume injection with observed FRP, as is already
implemented in HRRR-Smoke (see “Methods”) and other
systems (e.g., ref. 26). MASTER FRP is highly correlated to
burned area (R2= 0.96), and thus approaches using observed
burned area to drive plume rise would also be appropriate. On the
other had, Fig. 2c shows that observed injection behavior has little
association with flaming fraction of MASTER pixels. However,
flaming fraction does play an indirect role, as higher flaming
fractions are associated with higher FRE fluxes, and thus heat flux
could be implemented as a function of flaming fraction if this is
available from observations.

Sensitivity analysis. The final step in this analysis was to re-run
the WRF-Chem model for selected cases with an adjusted heat
flux based on the observed average FRE flux of 0.55 kWm−2 (total
heat flux of 3.4–5.3 kWm−2). The sensitivity test was run on the
WRF-Chem false injections, and a total of 24 of the 51 cases were
re-evaluated. These cases are shown as a fourth panel in the
relevant transects in Supplementary Figs. 1–51. WRF-Chem
model setup for the sensitivity simulations is as shown in Table 2,
and HRRR-Smoke is not included in the sensitivity analysis as it
was being run in only as a real-time forecast product for the
FIREX-AQ period.

Of the 24 cases which were re-run with updated heat fluxes, 18
remained false injections and 6 were re-classified correctly as
non-injections. This yields an improved false positive rate of 0.75,
given that the initial false positive rate of this subset was 1. If
injection behavior is evaluated using the observed PBLH as the
injection boundary, then 7 cases remain false positive and 17
cases become correctly re-classified as non-injections for a false
positive rate of the subset equal to 0.29. The sensitivity analysis
shows that both an accurate boundary layer and an accurate heat
flux are needed to correctly model injection behavior.

On average across these 24 cases, in-plume median mixed layer
height (a proxy for smoke top height19) decreased by 455 m with
the inclusion of more realistic heat fluxes. Grouped by model fuel
category, this corresponds to a 687 m decrease for extratropical
forest fires (14 cases), a 141 m decrease for savanna fires (7 cases),
a 20 m decrease for grass fires (3 cases). Of the six cases that were
re-classified as non-injections with respect to the WRF-Chem
PBLH, 5 had extratropical forest as their dominant model fuel
category and 1 was a savanna fire. All but one saw a reduction in
the median in-plume smoke top height (average decrease of
506 m across the 6 cases). Of the 18 cases which remained
injections, 9 were extratropical forest-dominated, 6 were savanna-
dominated, and 3 were grassland-dominated.

Using heat fluxes and boundary layers that are in line with
observed values reduces the occurrence of false positives and
reduces mean smoke top height for the WRF-Chem model. This
effect is consistent with other studies which have shown that
modeled plume top heights decrease in proportion to decreasing
heat flux values18, with the fact that the Freitas model assumes the
highest heat flux values for forest fires14, and with studies that
have looked at the underprediction of the PBLH by WRF-
Chem23,24. While we note that classifying injection behavior with
respect to the observed boundary layer does improve model
performance, further improvements on WRF-Chem PBLH are
expected by using more recent versions of the model (the one
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used here dates to 2014) which are more consistent with the
HRRR-Smoke model’s reduced biases in PBLH.

Discussion
We compared smoke injection behavior in the WRF-Chem and
HRRR-Smoke models against airborne lidar observations and
found that both models tend to overpredict injection behavior.
Unrealistically high heat fluxes used to drive buoyancy of
plumes is identified as a likely contributor to the high rate of
false injections in both models, and underprediction of PBLH
is identified as a second contributor to the high rate of false
injections in the WRF-Chem model. Observations of FRP and
fire area from the MASTER instrument provide an observa-
tional constraint on heat flux, which we used to determine that
the assumed FRE fluxes in WRF-Chem (HRRR-Smoke) are
generally higher than observed by a factor of 0.5–25 (6–9). The
observations mainly fell within the ranges of FRE flux assumed
in WRF-Chem for grassland and savanna fires (average FRE
flux= 0.55 kWm−2), consistent with WRF-Chem correctly
predicting non-injections for high fractions of grassland and
with HRRR-Smoke predicting a high rate of false positives.
FRE flux was shown to vary weakly with fuel type and more
strongly with fraction of FRP due to flaming combustion.
Adjusting the heat fluxes used in WRF-Chem based on field
data partially improves the overprediction behavior that
dominated the error in this model, and further improvement is
achieved when the model injection behavior is evaluated using
the observed PBLH as the injection boundary. Sensitivity tests
for HRRR-Smoke were not performed, but we hypothesize that
reducing heat fluxes will improve injection representation,
although this effect may be somewhat damped by HRRR-
Smoke’s internal calculation of total heat flux.

The FIREX-AQ dataset we used is limited in that it targets only
Western United States wildfires during the relatively normal 2019
fire season. In addition, due to the nature of observing wildfire
smoke with an aircraft, more intense and lofted plumes were
preferred by the flight planners. In spite of these limitations, the
western FIREX-AQ dataset contains a range of fire sizes, injection
behaviors, and fuel types (Fig. 2a). In addition, these results are
consistent with studies which used satellites to evaluate plume
rise15,18.

Our results also show that heat fluxes may not be dependent on
fuel in the way the Freitas model assumes. The Freitas plume rise
parameterization was originally developed for tropical forest
fires14,18, so it is possible that these constants are tuned to this
region and thus not wholly applicable to Western US wildfires.

Past studies have identified shortcomings with the Freitas
model, including underpredicting the injection height range and
misidentifying injections18. The data available from FIREX-AQ
have allowed us to pinpoint the assumed heat fluxes and
boundary layer uncertainty contributors to the known issues with
the performance of the Freitas model. We expect our results will
improve smoke modeling across a variety of disciplines, including
air quality and visibility forecasting, wildfire-climate interactions,
and health impact studies.

Methods
Campaign data. The FIREX-AQ field campaign targeted smoke plumes using the
DC-8 airborne laboratory. This dataset contains high-resolution measurements of
plume backscatter, FRP, fire area, and fuels burned for each fire. In addition, WRF-
Chem and HRRR-Smoke simulations implement slightly different versions of the
Freitas parameterization. WRF-Chem was run in near-real time to support flight
planning efforts and HRRR-Smoke is a NOAA operational system.

An airborne Differential Absorption Lidar-High Spectral Resolution Lidar
(DIAL-HSRL27) provided aerosol backscatter coefficient at 532 nm (vertical
resolution= 30 m, horizontal resolution= 10 s) to evaluate the plume injection
height. FRP, area burned, and fire phase measurements (flaming, smoldering, or

saturated) were taken using the MASTER multispectral imager28. For each fire, the
campaign fuel category was determined as the dominant fuel category according to
the Fuels Characteristic Classification System (FCCS), a high-resolution dataset
built using remote sensing and in-situ measurements of land cover and fuel
loading. In this study, FCCS fuel categories were mapped to the fuel categories
assumed by the MODIS-International Geosphere Biosphere Programme
(IGBP)29,30. A comparison of modeled and campaign fuels (Supplementary
Fig. 58), shows that the model uses the correct fuel type in 47% of the cases. Since
the fuel type directly influences the assumed heat flux, errors in model fuel can lead
to the heatflux being over or under estimated with respect to heat flux that would
be assumed had the campaign fuel been used to determine the heat flux. A majority
of the errors (present in 39% of the cases) work to reduce the heat flux, and in spite
of this heat flux estimates are still too high.

MASTER algorithm and pixel saturation. In this study, FRP retrievals and
combustion phase classes from the MASTER instrument are used to evaluate the
models’ assumptions of fire heat flux. Fire detection from MASTER is based on the
contextual algorithm concept originally developed for the MODIS instruments
aboard the Terra and Aqua satellites31. Regarding the retrieval of FRP, previous
studies indicate that 98% of the variance in fire radiative energy is explained by
variations in the emitted mid-infrared (MIR) spectral radiance at ~4 μm32. Thus,
retrieval of FRP from MASTER observations is based on the MIR radiance
approach33 using the MASTER 3.91 μm spectral band (hereafter 4 µm). To classify
MASTER-detected fire pixels by combustion phase (i.e., flaming and smoldering),
efforts to derive and apply constant thresholds were unsuccessful, as the range of
values representing these phases varied widely from scene to scene, partly because
of differences in the fire regimes and variations of pixel fractions with different fire
phases, and partly because of complex instrument radiometric calibration
dynamics beyond the scope of this discussion34. Thus, an approach similar to the
contextual fire detection algorithm31 is used to accomplish this classification, with
thresholds empirically derived from each scene of the MASTER imagery. Flaming
pixels were determined as fire pixels for which the 4 µm brightness temperature is
higher than 3 standard deviations above the background mean 4 µm brightness
temperature and for which the difference between the 4 and 11 µm brightness
temperatures exceeds 100 K. Smoldering pixels were determined as fire pixels for
which the 4 µm brightness temperature is higher than 2 standard deviations above
the background mean 4 µm brightness temperature and for which the 11 µm
brightness temperature is higher than 1 standard deviation above the mean
background 11 µm brightness temperature. Since some of the more intense fire
pixels were found to be saturated due to the limited dynamic range of the MASTER
4 µm fire channel relative to the high temperatures that can be attained by pixels
which are fully covered by flames (up to 1500 K), saturated pixels were determined
using the 4 µm radiance values. Given the scene with 20% valid background pixels,
these pixels with 4 µm radiance values >99.5% of max value are flagged as satu-
rated. These maximum values may vary from scene to scene and even scan line to
scan line, but in a given scan line, they are generally equal (within 0.005%). When
saturation occurs, clusters of pixels around saturated pixels tend to have the same
4 µm radiance value. These pixels are also flagged as saturated, which is a limitation
of this method.

Preliminary analysis (Supplementary Fig. 57) showed that MASTER FRP is
comparable to FRP from MODIS, VIIRS, and the Geostationary Operational
Environmental Satellite-Advanced Baseline Imager (GOES-ABI). MASTER tends
to underpredict VIIRS FRP measurements (bias=−66.11 MW), and overpredict
MODIS (bias= 379.6 MW). In the MODIS plot, the strong association (R2= 0.97)
is driven in large part by the outlier, but removing the outlier still results in
MASTER overpredicting MODIS (R2= 0.72, bias= 190,215.3 MW, slope= 1.39).
See Supplementary Fig. 55 for the full comparison. Note that not all cases where we
have plumes have associated MASTER data.

Modeling systems. In this study, we compared the Freitas plume rise para-
meterization in WRF-Chem and HRRR-Smoke, the details of each are listed in
Table 2. The relevant differences for this research are in the way each model deals
with heat flux and fire size. WRF-Chem assumes a constant fire size of 0.25 km2 per
model grid cell and fuel-dependent total heat fluxes that range from 4.4 kWm−2 for
grass fires to 80 kWm−2 for forest fires. HRRR-Smoke, on the other hand, assumes
fuel-dependent FRE fluxes which range from 3.44−4.76 kWm−2 for all fuel types
and uses these constants along with measurements of FRP to estimate fire size.
Since HRRR-Smoke assumes FRE fluxes, it does an internal conversion to total heat
flux using a factor of 1.635,36. In both models, convective energy is computed using
prescribed or calculated total heat flux based on the fuel category and assuming
that convective energy is 55% of the total heat flux36. Both models assume that only
flaming emissions undergo plume rise and assume a fixed fraction of emissions are
flaming. The plume rise module is run every 30 min of model time.

The Quick Fire Emissions Dataset (QFED) emissions used in WRF-Chem were
regridded to the model resolution by assigning emissions to the closest grid cell.
The QFED daily emissions were regridded to hourly resolution by assigning a
percentage of the daily emissions to each hour, with the peak of the diurnal cycle
occurring at 16:00 LT and containing 17% of the daily emissions. In addition, this
diurnal cycle assumes that a majority of the emissions are released during daytime
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hours (around 10:00–19:00 LT) and less than 1% of the daily emissions are released
per hour during nighttime hours37.

Sampling method. Supplementary Figs. 1–51 show the 51 transects that were
selected for analysis in this work. Observations were taken during transects wherein
the aircraft flew over the fire source and upwind or downwind along the longest
axis of the plume. Modeled columns of particulate matter less than 2.5 microns in
diameter (PM2.5) concentration were extracted along the flight path, considering
fires that were slightly shifted in space and time in WRF-Chem relative to obser-
vations (Supplementary Figs. 59–60). All cross sections are shown in Supple-
mentary Figs. 1–51 and Supplementary Tables 1–2 indicate injection behavior of all
samples. Terminal nodes of the classification (Fig. 3g) are used to determine which
PBL to evaluate injection against and to compare with the DIAL-HSRL PBLH.

In a few cases, the aircraft observed fires which are not present in the HRRR-
Smoke model. This is due to data gaps in the satellite fire detections, which means
that the FRP was not ingested into the model and thus fire emissions and plume
height are never derived for those fires. This issue impacted the Shady fire
(observed July 24, 2019) and the Tucker Fire (observed July 29, 2019). These
missing detections are likely due to clouds in the area, which could lead to missed
satellite FRP retrievals (Tucker), or persistent clouds dampening fire behavior and
leading to missed detections even after the clouds cleared (Shady). These missing
HRRR-Smoke cases are present in the WRF-Chem dataset, because the QFED
emissions inventory has the capability to estimate emissions for cloud-covered
regions38. Because these cases have WRF-Chem curtain plots available, they are
present in our analysis, but for the HRRR-Smoke samples, the injection behavior
has been labeled as not a number (nan, Supplementary Tables 1–2).

In about half of the WRF-Chem cases, modeled fires appear shifted with respect
to observations. When sampling the model in the location of the flight, this appears
as missing portions of the plume (Supplementary Fig. 59a) and only capturing the
plume edge (Supplementary Fig. 59d). This apparent shift is a result of the
resolution differences between the WRF-Chem model (4 km) and the QFED
emissions inventory (0.1-degree, ~12 km). As each QFED sample is regridded to a
single WRF-Chem grid cell, a shift in fire location can result. HRRR-Smoke is not
subject to this issue because it is run at 3 km resolution and ingests 375 m VIIRS
FRP to calculate and spatially allocate fire emissions, area, and plume rise39.

Rather than exclude these cases and lose half our sample size in the analysis, we
implemented spatial shifts in the sampling algorithm to assure the model was
sampled over the densest part of the plume. The shift distance is defined as the
distance between the flight’s closest approach to the modeled fire location and the
modeled fire location itself, which is defined the center of mass of the emissions in
a 9 × 9 set of grid boxes around the observed fire location (FIREX-AQ data
repository). The shift distance is then used to translate the flight track in space, and
the model is sampled at thses new locations. This assumes that the shifts are small
enough that model meteorology and plume rise drivers do not change over the
relatively small spatial range of the shifts (shifts are often a fraction of a degree).
This substantially increased the number of comparisons between the model and the
observations. However, it is acknowledged that shifting may result in higher error
when the fuel type changes over the distance shifted, as this impacts the plume rise
calculation14. Supplementary Fig. 59c, d (red line) shows how shifting allows us to
sample the model in the location where plume rise occurs and how this impacts
model performance.

In two cases, poor model-observation agreement was found for a different
reason. In Supplementary Fig. 60b, the fire plume is not evident in the WRF-Chem
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Fig. 3 Selected transects with their corresponding injection behavior identified, and decision tree for classifying injections. Vertical profiles of a DIAL-
HSRL backscatter, b HRRR-Smoke PM2.5, and c WRF-Chem PM2.5 for the Shady Fire on 2019-07-26 01:25-01:35 UTC. Vertical profiles of d DIAL-HSRL
backscatter, e HRRR-Smoke PM2.5, and f WRF-Chem PM2.5 for the North Hills Fire on 2019-07-29 22:40-22:55 UTC. g The decision tree that is used to
classify each case. In the terminal nodes (red and green boxes) representative cases for each path ending at that terminal node are given in parentheses.
Open circles in (a) and (d) denote out of plume boundary layer height, and filled circles denote plume top heights. Light gray solid lines and short dashed
gray lines in (b, c) and (e, f) denote the modeled PBLH and mixed layer heights derived from vertical PM2.5 gradients, respectively. For WRF-Chem, the
mixed layer height at 4PM LT, the time when the mixed layer is thickest, is shown the long dashed dark gray line. 5 min of flight time corresponds to
50–70 km.
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vertical profile of PM2.5, and Supplementary Fig. 60a shows that this is due to
QFED emissions not being present in the model at the sampled time. As noted
above, QFED daily emissions are assigned hourly values based on UTC time and
each day (at 01 UTC) a new set of emissions is imported to QFED which tends to
be around 5–6 pm local time for the FIREX-AQ domain. This leads to
discontinuities in the emissions diurnal cycle which typically coincided with the
DC-8 observing the fire plume. Therefore, a time shift was also implemented for
the two cases where this occurred. In these cases, the model was sampled at a
timestep one hour later than the time the DC-8 overpassed the plume. Similar to
the spatial shift, the time shift assumes no change in meteorology (i.e., wind
direction) from one timestep to the next. Although in reality meteorology can
change drastically over the course of an hour, the timing of the overpasses (within
20 or 30 min of the next hour) we are able to neglect some of this variability.
Supplementary Fig. 60c–d shows how sampling the WRF-Chem model one hour
later brings us to a time where model emissions are present, and plume rise
behavior can be evaluated.

Classifying injection by visual inspection. We define injection as a stratified layer
of smoke above the PBL or residual layer above the fire whose stratified shape is
maintained for at least five minutes (50–70 km based on aircraft groundspeed) of
downwind transport. This definition is motivated by the differences between
injected and non-injected smoke13 and the tendency of injected smoke to aggregate
in free tropospheric stable layers8. With this definition, injections are independent
of the presence of PBL smoke. Examples of injection are shown in Fig. 3a–c, e, and
examples of non-injection are shown in Fig. 3d, f.

In the DIAL-HSRL curtains (Fig. 3a, d), backscatter values of 1–56Mm−1 sr−1

(yellow-dark red, black filled circles) represent smoke, and values of 0.18–0.56Mm−1

sr−1 (dark green-light green, black open circles) represent the out-of-plume PBL.
Since the presence of fire influences the mixed layer height observed by the DIAL-
HSRL, upwind and downwind locations where the PBLH remained relatively stable
were chosen as the out of plume region (black open circles in 3a–3f). In both models
(Fig. 3b–c, e–f), PM2.5 values of 5.6–1000 µgm−3 (light blue-dark red) are assumed to
be smoke. Determining the modeled out-of-plume PBL height is more complex due
to the fact that WRF-Chem simulates background aerosols and HRRR-Smoke does
not. Therefore, across all model cases, we use the out-of-plume modeled PBL height
or the potential temperature-derived mixed layer height at 4PM local time (light gray
solid or dark gray dashed lines in Fig. 3b–c, e–f in the location of black open circles) to
classify injection. This methodology evaluates modeled injection with respect to the
observed and modeled PBL and observed injection with respect to the observed PBL.
This is different from previous studies that use modeled PBL heights only as the
standard to judge injection11. Comparing ambient backscatter with PM2.5 based on
dry extinction is sufficient for our purposes because smoky regions and non-smoky
regions are visually distinct from each other and have a satisfactory degree of spatial
coincidence in both the backscatter and the PM2.5 curtains.

Figure 3g shows the decision tree-style process that was applied to all cases to
determine whether or not injection occurred. The first split in the tree (node A)
asks what fraction of the topmost layer of smoke is above the out-of-plume PBLH.
Node A identifies cases where smoke remains well-mixed throughout the local PBL
(Fig. 3d) and is especially useful for evaluating the models (i.e., Fig. 3f) as the
Freitas model injects flaming emissions at the height where the simulated plume
stops rising but for a range of heat fluxes14, allowing the possibility for plumes to be
injected into multiple vertical levels that could be below the PBLH.

For cases where a majority of the lofted plume resides in the free troposphere,
node B1 indicates that downwind behavior will play a role in whether or not
plumes will be classified as injections. If plumes maintain their stratified shape (i.e.,
in all panels of Fig. 3a), then they are considered injections. This comes with the
caveat (node F1) that smoke in the residual layer, although it may appear stratified
in shape, is not considered to be an injection in this work. These cases occur when
fires were observed after dark, so the daytime convective PBL had been replaced
with a less turbulent residual layer, leading to the stratified structure that likely will
have more localized air quality impacts the day after if similar PBLH is reached.
Cases where the plume mixes with the PBL within 5 min flight time are then
considered to be non-injections (nodes C2, E2). If mixing occurs after 5 min of
flight time, the case is considered an injection (node E1).

Bootstrapping. Some fires were observed multiple times in a single day, which can
bias the data towards those fires. To mitigate such a bias, a bootstrapping approach
was used that generates box and whisker plots by subsampling the dataset such that
only one aircraft overpass per fire was selected per day. Final boxplots (Fig. 1 and
Supplementary Figs. 50–52) were generated using the average statistics of all box
plots from 2000 such iterations. The false non-injection category did not contain
enough cases to include meaningful statistics for either model. HRRR-Smoke did
not have enough true non-injection cases to generate statistics, but the true and
false injection distributions are similar to the corresponding WRF-Chem dis-
tributions (i.e., Fig. 1).

FRE flux computation. FRE flux was chosen as the standard quantity with which
to compare heat fluxes across the models and observations, and it is derived from
the measurements as follows. First, the FRP is summed over all the MASTER pixels

present in a single scene, yielding the total FRP. Next, the sizes of the MASTER
pixels are derived from the altitude of the aircraft above the terrain using a linear
relationship (MASTER flight planning). FRE flux is then the slope of the linear fit
FRP=m·AREA, which in the main text is calculated on the entire dataset as well as
subsets. This analysis can be done using smoldering pixels, flaming and saturated
pixels, or all pixels.

HRRR-Smoke reports heat fluxes as area-to-FRP ratios, so we take their inverse
to translate them into FRE fluxes. WRF-Chem uses the default convective heat
fluxes assumed by the Freitas model, which are assumed to be 0.55 of the total heat
fluxes14,36. The resulting convective heat flux is turned into a FRE flux using
measured radiant and convective fractions40. These radiant and convective
fractions were measured at ~3.9 µm, which is similar to wavelengths used by
MASTER to measure FRP. The conversion factor is as follows: radiant fraction/
convective fraction= 0.12/0.51= 0.2440. Radiant and convective fraction
measurements contain considerable uncertainty, and two instruments were used to
measure the radiant fraction40. In order to produce the WRF-Chem ranges in
Fig. 2, error propagation calculations were performed and the range including the
errors from both radiant fraction measurements are plotted. We can also use error
propagation to get a range of the radiant fraction/convective fraction ratio, which
yields 0.239 ± 0.076 and 0.234 ± 0.07 when the different instruments are used to
estimate the radiant fraction40. The inverse of these calculations can be done to
obtain total heat fluxes from measured FRE fluxes. This produces analogous results
to the ones described above (“Results”, Assessing heat flux assumptions).

Data availability
Flight observational data from FIREX-AQ, along with the DIAL-HSRL data and
campaign fuels data are archived by NASA/LARC/SD/ASDC41 (https://www-air.larc.
nasa.gov/missions/firex-aq/). MASTER Fire Radiative Power data products may be found
here (https://asapdata.arc.nasa.gov/share/Ichoku_RFP/). WRF-Chem and HRRR-Smoke
curtain plot data may be found here42 (https://doi.org/10.5281/zenodo.7033257).

Code availability
Custom code for this manuscript was written to generate all figures presented and to
calculate FRE fluxes. Code was written in MATLAB R2017a and R2019b. Code available
at the following https://doi.org/10.5281/zenodo.7033257.
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