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Ecoenzymatic stoichiometry reveals widespread
soil phosphorus limitation to microbial metabolism
across Chinese forests
Yongxing Cui1,2,3, Haijian Bing4, Daryl L. Moorhead5, Manuel Delgado-Baquerizo 6,7, Luping Ye8, Jialuo Yu1,2,

Shangpeng Zhang1,2, Xia Wang1,2, Shushi Peng 3, Xue Guo9, Biao Zhu10, Ji Chen11, Wenfeng Tan1,

Yunqiang Wang12,13, Xingchang Zhang1 & Linchuan Fang 1,13✉

Forest soils contain a large amount of organic carbon and contribute to terrestrial carbon

sequestration. However, we still have a poor understanding of what nutrients limit soil

microbial metabolism that drives soil carbon release across the range of boreal to tropical

forests. Here we used ecoenzymatic stoichiometry methods to investigate the patterns of

microbial nutrient limitations within soil profiles (organic, eluvial and parent material hor-

izons) across 181 forest sites throughout China. Results show that, in 80% of these forests,

soil microbes were limited by phosphorus availability. Microbial phosphorus limitation

increased with soil depth and from boreal to tropical forests as ecosystems become wetter,

warmer, more productive, and is affected by anthropogenic nitrogen deposition. We also

observed an unexpected shift in the latitudinal pattern of microbial phosphorus limitation

with the lowest phosphorus limitation in the warm temperate zone (41-42°N). Our study

highlights the importance of soil phosphorus limitation to restoring forests and predicting

their carbon sinks.
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Forests have been proposed as a natural-solution to enhance
carbon (C) sequestration in terrestrial ecosystems1,2 because
they cover ~4200 million hectares of the world’s land

surface3, and 50–90% of the total annual C flux of terrestrial
ecosystems occurs at the forest-atmosphere interface4. However,
primary productivity and other biological processes in forest
ecosystems are widely constrained by soil nutrient availabilities
especially by soil nitrogen (N) and phosphorus (P)5–8. Microbial
metabolism serves as the base of detrital food-webs, mediates soil
nutrient cycles and releases soil carbon (C) to atmosphere9.
Biogeochemical constraints on catabolic processes, relative to
primary production, determine the magnitude of soil respiration
and the retention of detrital organic C in soils9,10. Therefore,
nutrient limitation to microbial metabolism is a potential control
in soil C turnover and release in forest ecosystems9,11. It is
especially relevant to quantify the potential of forests to capture C
in their soils as restoration efforts are expected to plant millions
of trees over the next few decades.

Previous studies suggest that microbial metabolism is com-
monly limited by P in tropical forests12,13, while limited by N in
temperate forests14,15. However, recent studies suggest that soil
microbial metabolism can be limited by P in non-tropical
zones16,17, and by N in subtropical soils6. In general, forest N and
P availability vary with distance from the equator, plant pro-
ductivity, climate, and soil depth7,18,19. Accurately predicting the
role of soil nutrients in controlling microbial activity must
account for all these environmental factors simultaneously. For
example, C inputs and nutrient availability are generally lower in
subsoil than topsoil so that limiting factors for microbial meta-
bolism often vary with depth within a single profile17,19. There-
fore, exploring the patterns and drivers of microbial metabolic
limitation in soil profiles across large geographical scales could
help decipher the effects of both local and geographical controls.

The forested areas of China account for 5% of the world’s
forests and currently store over 4.75 Pg of C20. They are
experiencing rapid revegetation in recent decades and their soils
are considered significant C sinks with large C sequestration
potential21,22. Although several studies have estimated pervasive
soil P limitation to aboveground plant production in this
region7,8, comprehensive estimates of belowground microbial
nutrient limitations are unavailable. Ecoenzymatic stoichiometry
based on the activities of extracellular enzymes (ecoenzymes), the
proximate agents of microbial metabolism, connects the meta-
bolic theory of ecology and ecological stoichiometry theory to
predict microbial nutrient assimilation and growth9, and thus is
an appropriate method to predict microbial metabolic limitation
at a community level in soils17,23–26.

Here, we used ecoenzymatic stoichiometry methods to inves-
tigate patterns of microbial metabolic limitations in contrasting
forests across a wide latitudinal gradient, (from tropical to cold
regions) and at different soil depths (organic (O), eluvial (A), and
parent material (C) layers) in China. Our results revealed wide-
spread soil P limitation to microbial metabolism across Chinese
forest ecosystems with the lowest limitation in warm-temperate
regions. Significant correlations between microbial and plant P
limitations over a wide geographic scale indicate synchronous P
constraints in both microbial metabolism and primary pro-
ductivity. These results imply that soil P availability is a long-term
and inherent constraint on the turnover of soil organic C and the
potential of ecosystem C sink in Chinese forests.

Results and discussion
Patterns of microbial metabolic limitation in soil profiles and
latitudes across Chinese forests. Soil samples from 181 sites of
Chinese forests showed microbial P limitation (microbial N/P

limitation value > 0) at most locations (Fig. 1a), from tropical to
boreal forests, with significant variability across soil horizons,
vegetation types and climate zones (P < 0.001; Fig. 1, Supple-
mentary Tables 4 and 5). Although 31% of all sampling sites from
warm-temperate to cold-temperate zones were N limited
(microbial N/P limitation value <0) (Supplementary Table 6), P
limitation was pervasive across these Chinese forests and had
much higher magnitude than N limitation. We thus focused on
microbial P rather than N limitations in subsequent discussions.

Within soil profiles, microbial P limitation significantly increased
with soil depth across climate zones and vegetation types, with the
O-layer having the lowest microbial P limitation (P < 0.001; Fig. 1a,
f, g), consistent with a recent study by Jing et al.17. In contrast,
relative C limitation was significantly higher in the surface soils than
in the subsoils for all vegetation types and climate zones (P < 0.001;
Fig. 1a, d, e). Because relative C limitation indicates the hydrolysis
potential of organic C rather than the metric of absolute microbial
C limitation25, this result suggests that microorganisms in surface
soils have stronger potential to drive organic C decomposition
than in subsoils. This profile pattern of relative C limitation can
be attributed mainly to higher organic C content in surface
than subsoil layers providing more organic C to support microbial
metabolism (Supplementary Fig. 4).

Geographically, piecewise linear regression analyses identified
significant latitudinal breakpoints at about latitude 27°N and
41°N for relative C limitation and N/P limitation, respectively
(P < 0.001; Fig. 2a, b), although these breakpoints have obvious
variations among soil layers (Fig. 2c). Relative C limitation
significantly increased from 19°N to 27°N and then decreased
from 27°N to 54°N, suggesting the highest potential for organic C
decomposition in the subtropical zone (latitude 24–30°N)
(Fig. 1a). An opposite latitude pattern in N/P limitation indicated
higher microbial P limitation in tropical and cold-temperature
zones, with the lowest microbial P limitation in the warm-
temperate zone (latitude 41–42°N) (Fig. 1b). These results
suggested that soil P limitation to microbial metabolism remains
unexpectedly high at relatively high latitudes in Chinese forests. It
provides novel evidence that P limitation to soil microorganisms
might be far more important than expected for boreal forests,
compared to forests in other regions of the world usually thought
to be limited by N27,28.

Drivers of microbial P limitation in Chinese forests. Increased
microbial P limitation with soil depth in our study seems to
contradict the prevailing idea of soil parent material being the
main source of P29,30. However, two mechanisms could generate
this vertical pattern of microbial P limitation in our study. First,
soil organic matter is a potential pool of available P9,31. Higher
organic matter decomposition reflected by higher relative C
limitation in the O-layer than in A- and C-layers (Fig. 1a, d, e)
suggests higher P release from organic matter in the O-layer
compared to A- and C-layers. Thus, organic matter decomposi-
tion could help alleviate microbial P limitation in the O-layer in a
P-deficient environment. Second, differential uptake of P by root
systems with depth could be another mechanism driving vertical
patterns of microbial P limitation. Vegetation index showed
positive and increasing effects on microbial P limitation from O-
to C-layers (Fig. 3d–j), suggesting an increased competition in
P-acquisition between plants and microbes with increasing roots
densities from O- to C-layers. A consistent pattern of P limita-
tion between plants and microbes across this large geographical
scale and soil layers (Fig. 4a–c) supports this argument and
suggests stronger nutrient competition of plants with microbes
in subsoils with abundant root systems than in topsoils32,33.
Our previous study on rhizospheres also found that plants and
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microbes show strong competition for P when microbes are P
constrained34. Therefore, P competition between roots and
microbes could contribute to shaping these vertical patterns of
microbial P limitation.

Overall, we found that the combined effects of climate,
vegetation and soil factors played the most important roles in
latitudinal patterns of microbial P limitation across soil profiles
(Fig. 3a–c). Random-forest models and partial least squares path
modeling further found that vegetation index driven by climate

conditions (including aridity index and mean annual precipita-
tion) has the largest positive effects on microbial P limitation
(Fig. 3d–g). These results suggested that primary productivity
has a central role in contributing to the geographic pattern of
microbial P limitation. Many processes relevant to plant
production can limit the availability of soil P in forests including
biomass accumulation and its effect on soil pH6,30. The most
direct process is that the fixation of P in biomass by plant growth
reduces the availability of soil P, which is supported by the
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Fig. 1 Spatial patterns of relative C limitation and N/P limitation of soil microbial metabolism in Chinese forests. a Geographical distribution of 181
Chinese forest study sites, the effects of both climate types and soil layers on relative C limitation and N/P limitation. b, c Identified relationships
between C-acquiring enzyme activities and N-acquiring or P-acquiring enzyme activities in Chinese forests (n= 1520) via standardized major axis
(type II) regression. The 1:1 dotted line is gray. *** represents significant relationships at P < 0.001. d, f The effects of soil layers within forest types on
relative C limitation and N/P limitation. e, g The overall effects of soil layers on relative C limitation and N/P limitation in Chinese forests. The effects
of climate, forest type and soil layers on microbial metabolic limitations were analyzed via linear mixed-effects models. *** represent significant effects
at P < 0.001. The asterisk above the bar and box charts represents the significance of the effects of soil layers within climate (a) and forest (d, f) types
on relative C limitation and N/P limitation. In the box charts: the top of box is 75th percentile, the center of box is median, the bottom of box is 25th

percentile, and the upper and lower ends of the vertical line are the maximum and minimum data values, respectively. Soil layers: O, organic horizon;
A, eluvial horizon; C, parent material horizon. Vegetation types: CF coniferous forest, CBF coniferous-broadleaf mixed forest, BF broadleaf forest.
C-acquiring enzymes: β−1,4-glucosidase (BG) and cellobiohydrolase (CBH)), N-acquiring enzymes: β−1,4-N-acetylglucosaminidase (NAG) and
L-leucine aminopeptidase (LAP), and P-acquiring enzyme: alkaline or acid phosphatase (AP). The full names of all 31 mountain forests sampled
(DX, XX, ME, etc.) are listed in Supplementary Data.
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consistent pattern we found between P limitation in plants and
soil microbial communities (Fig. 4a–c).

Highly productive ecosystems often develop on acidic soils,
which can further decrease P availability for plants and
microbes. This is especially important in warm, wet ecosystems
in the tropics12. However, high P limitation at high latitudes can
result from cold and dry conditions that suppress microbial
activities and decomposition19,35 (Fig. 2a), subsequently slowing
P release from organic matter9. In addition, P limitation should
be exacerbated by anthropogenic N deposition (Fig. 3 and
Supplementary Figs. 1–3), because it can create an imbalance in
soil N:P stoichiometry and increase soil acidification36. Indeed,
some low latitude forests around the world, especially in China,
are receiving high N deposition due to geographic distributions
of industry and human populations37–39, which implies an even
greater increase in microbial P limitation at lower latitudes in
the future.

Implications and uncertainties. Our recent incubation experi-
ments found that P addition significantly alleviated microbial P
limitation, and resulted in an 11.5–29.1% increase in C emissions
from organic C decomposition40. This suggested that constrain-
ing the decomposition of organic matter under P limitations can
potentially decrease soil C loss. In plant-microbe systems, how-
ever, soil P limitation constrains not only microbial metabolism
but also plant growth18,41. In contrast, soils with sufficient P
supply could maintain both high primary productivity and high
soil C emissions via microbial decomposition. This argument is
also supported in part by the counterbalance hypothesis of plant-
microbe interaction that purports a homeostatic mechanism
stabilizing microbial metabolism in relation to gross primary

production wherein the greatest release of C by soil micro-
organisms occurs in ecosystems having the highest levels of plant
production41. Therefore, soil P supply may be a key driver of C
turnover in forest ecosystems, i.e., low turnover rate under P
limitation and higher rate with sufficient P, whereas the potential
soil C sink depends on relative availabilities of soil P to plants
versus microbes.

The consistent effects of soil P limitation on both microbial
metabolism and primary productivity in our study provide cues
to explaining the “soil C saturation” hypothesis (i.e., soils have
a limited capacity to store C as organic inputs increase)42

(Fig. 4a–c). Recent studies found that tree plantings in organic
soils did not increase net C sequestration after 12 to 39 years43,
and CO2 enrichment did not increase C sequestration at the
ecosystem level in mature forests44. An inherent constraint
suggested by our study is that soil P availability simultaneously
limits both plant growth and microbial catabolism, thus
constraining both ecosystem C balance and soil C sink.
Consequently, forest ecosystems may not sequester as much C
from vegetation restoration or afforestation as expected due to
inherent P constraints.

Although our study reveals geographical and vertical profile
patterns of microbial metabolic limitations in the forest soils of
China, the present study has uncertainties. First, the ecoenzy-
matic stoichiometry method we used is based on the activities of
relatively few enzymes to represent microbial nutrient acquisition,
and is bound to include uncertainties as suggested by several
recent studies45,46. Second, we used plant nutrient limitation data
based on geographic coordinates that corresponded to the
microbial nutrient limitations derived in our study to explore
their spatial couplings, but we did not account for likely temporal

Fig. 2 The latitudinal patterns and breakpoint estimation for soil microbial metabolic limitations across Chinese forests. a, b The latitudinal breakpoints
for microbial metabolic limitations were estimated using piecewise regression analyses, and relationships of relative C limitation (a) or N/P limitation (b)
with latitude in Chinese forests were identified using generalized linear models. The shaded circles indicate breakpoint latitudes, while shaded areas are the
97.5% confidence intervals of the breakpoints. Solid black lines indicate model fits between relative C limitation or N/P limitation and latitude. c Estimated
latitudinal breakpoints for soil microbial metabolic limitations among different soil layers across Chinese forests.
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and spatial differences in both sets of data. The lack of precise
space-time pairing of sites limits our knowledge of how nutrient
limitation affects plant-microbial interaction on micro-scales
such as in the rhizosphere32. Third, global change and human
activity are increasing uncertainties in the coupling of soil
nutrient constraints to ecosystem C cycles43,47. For example,

different adaptabilities of plants and microbes to environmental
changes41,47 means that N deposition may affect plant growth
and microbial catabolism in different ways and magnitudes
through changes soil nutrient limitations. This may result in a
dynamic non-equilibrium state of the C cycle in microbial-plant
systems, resulting in a large C source or sink effect within any
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Fig. 3 Driving factors of soil microbial N/P limitation across Chinese forests. a–c Variation partitioning analysis showing the effects of environmental
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terrestrial ecosystem. Regardless of these uncertainties, our study
is of direct relevance to current prediction of forest C sinks, and
has significant implications for future study and policy decisions
in forest restoration.

Materials and methods
Study area and soil sampling. We sampled almost all accessible mountains
having Chinese forest ecosystems (Fig. 1a and Supplementary Data), which span a
wide geographic range (18.9°–53.5°N, 101.0°–129.7°E, 210-3830 m above sea level).
These forests are found in national parks or nature reserves with limited human
interference, and include broadleaf forests (BF), coniferous-broadleaf mixed forests
(CBF) and coniferous forests (CF). Climates include tropical, subtropical, warm-
temperate, temperate, and cold-temperate zones. The geographical coordinates of
each sample site were recorded using a global positioning system (GPS) device
(eTrex Venture, USA). Mean annual precipitation (MAP) and mean annual
temperature (MAT) ranged from −5.91 °C to 23.18 °C and 242 mm to 2667 mm,
respectively.

Field sampling was conducted from July 2012 to March 2013. At each selected
forest, one to fifteen sampling sites were located along an altitudinal transect based
on the range of community types available (Supplementary Data). At each site,
three 10 m × 10m plots located 50 m away from each other were established. Five
samples of each O, A and C-horizon were collected from each plot and pooled as
one composite sample. In total, 504 soil samples were collected from 181 sites
(some sites had only 1 or 2 soil horizons). After removing roots, litter, debris, and
stones, composite soil samples were divided into two subsamples. One subsample
was stored at 4 °C for later analysis of enzymatic activity. Because extracellular
enzymes (i.e., ecoenzymes) are the products of long-term rather than instantaneous
metabolism of microorganisms and they are relatively stable in soils9, their seasonal
variability could be much smaller than the differences between environmental
gradients. Thus, the enzymatic activities from our study would be representative of
the large-scale sampling across Chinese forests. The other subsample was passed
through a 2 mm sieve and air-dried for physicochemical analysis. Soil bulk density
(BD) was measured using a soil bulk sampler and a stainless-steel cutting ring
(5 cm in diameter by 5 cm long), adjacent to the soil sampling points in each plot.

Environmental factors. Our study included 14 environmental variables (climate,
vegetation, and soil), obtained either from field investigations or from satellites and
databases. MAT, MAP and both temperature and precipitation seasonality (TSEA and
PSEA) were obtained from the Worldclim database (https://www.worldclim.org; ~1 km
resolution). The aridity index of each site was estimated by the ratio of MAP to
potential evapotranspiration (PET) (aridity index=MAP/PET). The MAT, MAP and
aridity index values ranged from 5.91 °C to 23.18 °C, 242mm to 2667mm, and 0.24 to
2.42, respectively. We obtained bulk N deposition rates and acid rain data for each
region in China from 1980 to 2015 from Yu et al.39 and the National Earth System
Science Data Center (http://www.geodata.cn), respectively. Vegetation index (NDVI,
2001-2015) was obtained from the Advanced Very High Resolution Radiometer
(AVHRR) developed by the Global Inventory Modeling and Mapping Studies
(GIMMS) group (https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/) at a 1/12°
resolution.

Soil properties of samples (soil pH, soil organic C (SOC), total N and total P)
were measured for each horizon (O, A, C) using standardized protocols according
to methods described in a previous study34. Each sample was measured in
triplicate.

Measurements of microbial metabolic parameters. The activities of two extra-
cellular C-acquiring enzymes (β−1,4-glucosidase (BG) and β-D-cellobiosidase
(CBH)), two extracellular N-acquiring enzymes (β−1,4-N-acetylglucosaminidase
(NAG) and L-leucine aminopeptidase (LAP)), and one extracellular organic
P-acquiring enzyme (alkaline or acid phosphatase (AP)) (Supplementary Table 1)
were determined using the method of Saiya-Cork et al.48 and German et al.49.
Enzyme activities were expressed as nanomoles of substrate released per hour per
gram of dry soil (nmol g−1 h−1). The experimental procedures are described in our
previous study16.

Calculating microbial metabolic limitations. Microbial metabolic limitations
were quantified by calculating the vector lengths and angles of enzymatic activity
based on untransformed proportional activities (e.g. [BG+ CBH]/[BG+ CBH+
NAG+ LAP]). Vector length, representing relative C limitation of microbial
metabolism, was calculated as the square root of the sum of x2 and y2 (Eq. 1), where
x is the relative activity of C vs. P-acquiring enzymes, and y is the relative activity of
C vs. N-acquiring enzymes25. Vector angle, representing microbial N/P limitation,
was calculated as the arctangent of the line extending from the plot origin to point
(x, y). The relative C limitation to microbes increases with vector length whereas a
vector angle of 45° roughly represents the boundary between microbial P limitation
(> 45°) and N limitation (< 45°). This definition is based on the global ecoenzy-
matic stoichiometry law for C:N:P activities near 1:1:1 at a global scale, i.e., the
slopes of their regression relationships are close to 45°23,24. In the present study, the
slopes of the relationships between enzyme activities for C vs. P and C vs. N

acquisition were very close to 1.0 for all sites (Fig. 1b, c), indicating that the
ecoenzymatic stoichiometry method and the 45° boundary of N/P limitation using
in Chinese forests is reasonable. The relative strength of microbial P limitation
increases with vector angle and strength of microbial N limitation increases as the
angle decreases.

Relative C limitation ¼ Length ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 þ y2Þ
p ð1Þ

N=P limitation ¼ Angle ð�Þ ¼ atan2ðx; yÞ ´ 180=π� 45� ð2Þ
Considering potential competition of microbes with plants for soil N and P33,

we further linked our predictions of microbial metabolic limitation with the plant
nutrient limitations from Du et al.8 to evaluate the relationships of microbial N/P
limitation with plant N/P limitation. We extracted the ln-transformed NREdom/
PREdom (ln NREdom/PREdom) from the database of Du et al.8 on the same or
adjacent sites to our sampling sites. In total, values of ln NREdom/PREdom from 55
matched sites were obtained with a wide latitudinal range across Chinese Forests
(21.9°–51.6°N). Du et al.8 defines ln NREdom/PREdom > 0 indicating plant N
limitation and the value < 0 indicating plant P limitation. To facilitate
interpretations in the present study, we redefined the plant nutrient limitation as
follows: plant N/P limitation=−(ln NREdom/PREdom). Thus, in our study, the
value of plant N/P limitation > 0 indicates plant P limitation, while the value < 0
indicates plant N limitation. As a result, consistent with soil microbial P and N
limitations, the strength of plant P limitation increases with value of plant N/P
limitation and strength of plant N limitation increases as the value decreases.

Statistical analysis. We first tested the variable normality and homogeneity of
variances for microbial metabolic limitations, and found that neither relative C
limitation nor N/P limitation conformed to normal distributions or homogeneity
of variances under different vegetation types and climate zones (Supplementary
Tables 2 and 3). Thus, we adopted the linear mixed-effects models to identify the
effects of soil layer, forest type and climate type, as well as their interaction effects,
on microbial metabolic limitations. The model was constructed using the “nlme”
package in R with “soil layer”, “forest type” and “climate type” as the fixed factors
and “sampling site” as a random factor50. The standardized major axis (type II)
regression via the “lmodel2” package was used to identify relationships between
extracellular enzymatic activities51 (Supplementary Note 1).

For examining latitudinal patterns of microbial metabolic limitations, we first
identified the latitudinal breakpoints from a piecewise linear regression analysis.
The regression relationships of the relative C and N/P limitations with latitude
were fitted and tested with linear models using the “segmented” package52. The
confidence intervals of the breakpoints were calculated via 1000 bootstrap samples
using the “SiZer” package53. We then used general linear models to fit the
relationships of the relative C and N/P limitations with upper and lower latitudes
(before and after breakpoints), respectively. Generalized linear models also
examined relationships of microbial N/P limitation with plant N/P limitation.
Pearson correlations examined relationships of microbial metabolic limitations
with potential predictor variables.

Variation partitioning analysis was conducted using the “vegan” package54 to
identify the relative importance of climate, vegetation and soil properties to
variations in microbial N/P limitation in different soil layers. We further
determined the relative influence of each variable using the random-forest
algorithm using the “RandomForest” package55. In these random-forest models,
fourteen variables served as predictors for the microbial N/P limitation
(Supplementary Table 7). To estimate the importance of these variables, we used
percentage increases in the MSE (mean squared error) of variables, and higher MSE
values indicate more important variables. Significance of the models and cross-
validated R2 values were assessed with 1500 permutations of the response variable,
by using the “A3” package. Similarly, the significance of each predictor to the
response variables was assessed with the “rfPermute” package (Supplementary
Note 2).

Furthermore, to explore cascading relationships between microbial N/P
limitation and these key drivers, all significant variables (drivers) were divided into
seven categories (hydrothermal condition (aridity index and MAT), N deposition,
climate seasonality (PSEA and TSEA), vegetation, soil pH, SOC and TP). Partial
least squares path models were used to identify possible pathways whereby
variables control microbial N/P limitation in different soil layers. The VIF of all
variables in the model requires <10 for removing the internal factor collinearity of
the block (module). Meanwhile, loading in Outer Models requires >0.7 for
removing those independent variables with small contributions. The models were
constructed using the “plspm” package56. All statistical analyses were performed
using the R software (v.3.3.2)57.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data related to the prediction of soil microbial metabolic limitation in this study are
available at Figshare (https://doi.org/10.6084/m9.figshare.20327697.v1).
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