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Improved seasonal prediction of harmful algal
blooms in Lake Erie using large-scale climate
indices
Mukul Tewari 1✉, Chandra M. Kishtawal2, Vincent W. Moriarty 1, Pallav Ray 3, Tarkeshwar Singh 4,

Lei Zhang 5,7, Lloyd Treinish 1 & Kushagra Tewari 6

Harmful Algal Blooms lead to multi-billion-dollar losses in the United States due to shellfish

closures, fish mortalities, and reluctance to consume seafood. Therefore, an improved early

seasonal prediction of harmful algal blooms severity is important. Conventional methods for

harmful algal blooms prediction using nutrient loading as the primary driver have been found to

be less accurate during extreme bloom years. Here we show that a machine learning approach

using observed nutrient loading, and large-scale climate indices can improve the harmful algal

blooms prediction in Lake Erie. Moreover, the seasonal prediction of harmful algal blooms can

be completed by early June, before the expected peak in harmful algal bloom activity from

July to October. This improved early seasonal prediction can provide timely information to

policymakers for adopting proper planning and mitigation strategies such as restrictions in

harvesting and help in monitoring toxins in shellfish to keep contaminated products off the

market.
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Phytoplankton blooms with the potential to harm aquatic
ecosystems and human health are referred to as Harmful
Algal Blooms (HABs). Most HAB phenomena are caused

by blooms of microscopic algae or phytoplankton (including
certain cyanobacteria), although the term also applies to blooms
of macroalgae (seaweeds)1. HABs are of worldwide concern due
to their potential to harm the environment and human health2. It
also has tremendous economic impacts with over $4.6B per
annum in estimated damages within the United States alone3.

The Laurentian Great Lakes of North America contain
approximately 95% of the surface freshwater supply in the United
States4. The Great Lakes are also the world’s largest and most
biologically diverse freshwater resource5. Lake Erie is the fourth-
largest by area (surface area = 25874 km2), the shallowest (mean
depth = 19 m), and the smallest by water volume (484 km3). It is
also the most southern among the Great Lakes with its watershed
containing both urbanized environments that include large
manufacturing facilities, and rural environments that include
extensive areas of agriculture. Hence, Lake Erie (Fig. 1a) is
severely impacted by excessive nutrient loading, especially from
its western basins6. Over the past decades, western Lake Erie has
witnessed increasingly intense algal blooms including cyano-
bacterial blooms7–9. From analyses of long-term trends in
nutrient loading and meteorological conditions (including severe
springtime precipitation events coupled with long-term trends in
agricultural land use and practices), it was determined that the
2011 extreme HAB (Fig. 1a) in western Lake Erie was largely
driven by trends in these factors10. The bloom extended over
16 km from the shores, and in the central basin, it was observed at
a depth of 60 m. The bloom density also caused damage to the
navigation because it disrupted boat motors.

A seasonal severity index (SI) for HABs in Lake Erie has been
made available by the National Oceanic and Atmospheric
Administration (NOAA) since the 2002 season9, and contains
estimates for the maximum bloom biomass seen for the peak
30 days of a bloom. Stumpf et al.9 found that a blended model
incorporating springtime discharge and measured total phos-
phorus (TP) appeared sufficient to predict the bloom magnitude
in western Lake Erie. However, the linear and non-linear regres-
sion models based on TP and water discharge alone could not
successfully explain some extreme HAB events (e.g., the extreme
HAB event in 2011). It is therefore hypothesized that some other
unknown biological, chemical, hydrodynamical, and meteor-
ological factors may be responsible for this unexplained variance.

Previous studies have analyzed the relationships between algal
growth rates and toxin production in response to temperature
and inorganic nutrients11–14. However, the relationship between
HABs and large-scale atmospheric conditions has rarely been
addressed. Nonetheless, the identification and understanding of
atmospheric conditions favoring HABs could be essential to
predict these events. Baez et al.15 showed that HAB events in
southwest Europe are linked to atmospheric teleconnections,
which in turn are correlated with hydrographical conditions
favoring HABs. Phlips et al.16 examined the roles that hurricanes
and El Niño play in contributing to HAB events in two sub-
tropical Florida estuaries. They found that an increase in rainfall
associated with hurricanes and El Niño resulted in increased
nutrient loads, ultimately driving HABs within the Indian River
Lagoon and St. Lucie Estuary. Previous studies have also
explored the relationship between interannual and multi-decadal
variability of atmospheric circulation and the occurrences of
HABs (e.g., refs. 17–21). Zhou et al.22 analyzed bloom extent in
Lake Erie and developed a model for explaining interannual
variability of Lake Erie hypoxia. Their model, based on four
variables (April to June tributary discharge, May to July soluble
reactive phosphorus (SRP) loading, July wind stress, and June
northwesterly wind duration) can explain 82% of the interannual
variability of hypoxia. They discussed the need for meteor-
ological factors in the development of nutrient management
strategies by showing that a discharge-only model explained only
39% of the variability (i.e., if the meteorological factors were not
included in the model).

It is widely accepted that the occurrence of HABs in freshwater
bodies results from complex non-linear interactions between
chemical, biological, hydrological, and meteorological processes
that take place at different spatial and temporal scales. Data-
driven machine learning techniques may help understand these
complex non-linear interactions and develop predictive modeling
that may capture these non-linear interactions in a way that
would not be possible using statistical or dynamical models. A
recent review paper23 discussed the advances made in the
machine learning methods for predicting HABs and shellfish
biotoxin contamination, with a particular focus on autoregressive
models, support vector machines, random forest, probabilistic
graphical models, and artificial neural networks (ANNs). Like-
wise, most measures of local conditions used by ecologists fail to
capture complex associations between weather and ecological
processes24. As a result, large-scale, seasonal indices of climate

Fig. 1 Satellite image of algal bloom over Lake Erie and seasonal prediction of HABs severity index. a Optical three-band visible image from the Envisat
satellite (MERIS_FP) at 300m resolution showing one of the largest algae blooms from October 2011 extended from Toledo to beyond Cleveland and along
the Ontario shore (courtesy of European Space Agency). Data from three visible bands were used each with a bandwidth of 10 nm (442.5, 460, and
665 nm band centers). b HABs severity index (SI) from observation (black bar), prediction using GA-chem model that is based on nutrient loading only
(blue bar), prediction using GA-clim model that is based on climate indices only (green bar) and GA-chem-clim that is based on nutrient loading and
climate indices (red bar).
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spanning several months can outperform local climatic factors
indicating the importance of climatic influences on population
ecology25.

In this study, we develop a machine learning-based predictive
model of the Lake Erie SI. Building on previous approaches (e.g.,
ref. 26) that ingest observed nutrient information only, we modify
this approach by including a set of physically-based, easily-
available, large-scale climate indices as potential predictors for the
seasonal prediction of HABs. We believe that the present study is
the first to use a machine learning-based approach that uses cli-
mate indices in combination with nutrient loading to predict the
seasonal SI of HABs.

Results
Our predictive model makes use of the peak three 10-day periods
of bloom biomass in Lake Erie to estimate the SI9 and is available
from https://www.weather.gov/cle/LakeErieHAB. The SI is a non-
dimensional positive number for each season (Supplementary
Fig. S1, blue line). During the observed period of 2002–2020, the
highest SI (10.5) was observed in 2015, and the lowest SI (0.3) was
in 2002 and 2005.

For the seasonal prediction of HABs in Lake Erie, we use
Genetic Algorithm (GA, see details in “Materials and methods”)
models. We used a jackknife procedure to assess the uncertainty
of the predictors, as well as the predictions. For this, we used 18
years of data for training the model and one leftout year for cross-
validation. This process was done repeatedly. Thus, at the end of
the jackknife method, we have 19 models and 19 cross-
validations. In the GA-chem model that is based on nutrient
loading only (Supplementary Table S1), a total of eight para-
meters (total phosphorus (TP), SRP, total Kjeldahl nitrogen
(TKN), total nitrogen ((nitrite + nitrate), TN), chlorides (CL),
total suspended solids (TSS), silica dioxide (SiO2, referred here as
SD), and sulfate (SO4, referred here as SL)) from March to May
were used as the model input. Out of these eight parameters,
accumulated TP [March–May] was selected by 12 models fol-
lowed by accumulated SRP [March–May] (selected by 8 models),

accumulated TSS [March–May] (selected by 6 models), accu-
mulated SD [March–May] (selected by 3 models), accumulated
SL [March–May] (selected by 2 models), and accumulated CL
[March–May] (selected by 1 model). There is little to no data
available before March because of low discharge due to freezing
conditions.

The GA-chem-clim model that is based on chemical loading
and climate indices (Table 1), selected TP in combination with
three monthly climate indices, the Pacific-North American (PNA,
Wallace and Gutzler27) pattern, El Niño-Southern Oscillation
(ENSO) (Southern Oscillation index or SOI, Ropelewski and
Jones28), and Pacific Decadal Oscillation (PDO, Mantua et al.29)
from the input set of climate indices consisted of Arctic Oscil-
lation Index (AO), PNA, Quasi-biennial Oscillation (QBO),
Atlantic Multidecadal Oscillation (AMO), ENSO SOI Index, Niño
index (Niño3.4), North Atlantic Oscillation (NAO), and PDO.
Out of these potential predictors, ENSO (SOI) index from April,
PNA from December, PDO from November, and chemical
loadings of TP from March–May turned out to be the most useful
predictors.

For the GA-clim model (Supplementary Table S2), which is
based on the climate indices only, the prediction is made using
the three climate indices ENSO (SOI), PNA, and PDO. Qin
et al.30 in their study of extreme climate anomalies enhancing the
cyanobacterial blooms in Lake Taihu, China found that a recor-
ded algal bloom in 2017 was connected with the 2016–2017 El
Niño, AMO and PDO. They found the persistent warmth during
2016–2017 was related to the warm phases of AMO and PDO.
McKibben et al.31 showed evidence of climatic regulation of
domoic acid in shellfish over the past 20 years in the Northern
California Current regime. They found that the timing of elevated
domoic acid is strongly related to warm phases of the PDO and
the Oceanic Niño Index, an indicator of El Niño events.

Seasonal prediction of HABs severity index using nutrient
loading. Predictive modeling for seasonal severity of HABs
(HABs SI) using the GA-chem model (Supplementary Table S1)

Table 1 Performance (root mean square error (RMSE) and coefficient of determination (R2)) of GA-chem-clim (using nutrient
loading and climate indices) developed using Genetic Algorithm under the jackknife procedure.

Year HABs SI function RMSE R2

2002 (((6.93)*TP)−((PNA(Dec)−PDO(Nov))−(2.29))) 1.43 0.60
2003 ((((10.11)+PDO(Nov))*TP)−(PNA(Dec)+(−0.42))) 1.14 0.77
2004 ((TP*(7.32))−(PNA(Dec)−(PDO(Nov)+(1.97)))) 1.52 0.60
2005 ((TP*((12.27)−(PNA(Dec)*PNA(Dec))))−PNA(Dec)) 0.96 0.72
2006 (((PDO(Nov)−PNA(Dec))+(SOI(Apr)+TP))+(4.29)) 1.54 0.59
2007 ((SOI(Apr)−((−4.75)−(PDO(Nov)*(1.61))))−PNA(Dec)) 1.63 0.60
2008 ((2.07)+(PDO(Nov)−(PNA(Dec)+((−6.85)*TP)))) 1.47 0.61
2009 ((SOI(Apr)+PDO(Nov))+((4.65)−(PNA(Dec)*(1.69)))) 1.48 0.62
2010 ((PDO(Nov)−(PNA(Dec)−PDO(Nov)))+((4.73)+SOI(Apr))) 1.77 0.60
2011 ((SOI(Apr)+(PDO(Nov)*(1.63)))−(PNA(Dec)+(−4.59))) 1.57 0.56
2012 (((8.01)*TP)−(PNA(Dec)−(PDO(Nov)+(1.59)))) 1.45 0.61
2013 (PDO(Nov)+(PDO(Nov)+((4.55)−(PNA(Dec)−SOI(Apr))))) 1.52 0.63
2014 ((((7.52)*TP)−PNA(Dec))+(PDO(Nov)−(−1.80))) 1.52 0.59
2015 (((PDO(Nov)−TP)+(12.68))*TP) 1.37 0.55
2016 ((PDO(Nov)−((−4.78)−PDO(Nov)))+(SOI(Apr)−PNA(Dec))) 1.75 0.60
2017 (((TP*(7.75))+((1.78)−PNA(Dec)))+PDO(Nov)) 1.55 0.57
2018 ((TP*((10.55)+PDO(Nov)))+((−1.30)*PNA(Dec))) 1.20 0.76
2019 ((TP*((11.62)+PDO(Nov)))−(PNA(Dec)+SL)) 1.19 0.73
2020 ((TP*((10.13)+PDO(Nov)))+((0.36)−PNA(Dec))) 1.10 0.76

The potential predictors selected by GA-chem-clim are: El Niño–Southern Oscillation (Southern Oscillation Index): ENSO (SOI) (April current year), Pacific Decadal Oscillation: PDO (November previous
year) and Pacific-North American teleconnection pattern: PNA (December previous year) and TP (March–May). The scaling of chemical loading data is as follows: CL: 2 × 105, TN: 4 × 104, SD: 8 × 104,
SL:3 × 105, SRP:7 × 102, TKN:1.2 × 104, TP:2.5 × 103, and TSS:1 × 106. All the chemical loading data is in metric ton.
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was developed using the observations of integrated chemical
loading (March to May for 2002–2020) for Lake Erie with the aim
that the seasonal forecast would be made available in early June.

Using the jackknife method, TP was found to be the dominant
predictor by the GA-chem models. The interannual variability of
TP selected by the maximum number of GA-chem models as a
potential predictor is shown in Supplementary Fig. S1. A
systematic relationship between the HABs SI and TP is evidenced
by a high correlation between them (0.59), which is consistent
with other studies9. Based on the predictors selected by the GA-
chem model, the monthly variation in the most dominant
predictors TP and SRP was examined (Supplementary Fig. S2).
We found that the correlation between TP loading and HABs SI
was 0.31 in March, 0.43 in April, and 0.37 in May. The
correlation between HABs SI and SRP was 0.41 in March, 0.35 in
April, and 0.34 in May (Supplementary Table S3). Apart from
these two dominant predictors, we found SD and TSS as the two
other potential predictors. In our GA-chem experiments, finding
SD as a potential predictor was a novel finding (to the best of our
knowledge) given that while past studies have found a connection
between SD and algal blooms32,33, these were primarily diatom
blooms. Previous work on diatom blooms in Lake Erie (e.g.,
ref. 34) found that rapid sedimentation of diatoms may contribute
to hypoxic zones near the lake bottom. Similar hypoxic zones
have been associated with increased internal loading of
phosphorus in Lake Erie35–37. Given the importance of SD as a
predictor by the GA-chem model, it is possible that increase in
SD may lead to an indirect increase in cyanobacteria biomass via
internal loading of phosphorus resulting from increased diatom
sedimentation rates. TSS is the most visible indicator of water
quality and can come from soil erosion, runoff, discharges,
disturbed bottom sediments and algae. As such, finding TSS in
some of the predictive models is not a surprise. There are two
other predictors, SL and CL, which are not discussed here since
they are selected by only two models (SL) and one model (CL) in
the jackknife method.

Based on the two potential predictors (TP and SRP) and four
other predictors (TSS, SL, CL, and SD) selected by some GA-
chem predictive models, HABs SI simulation (Fig. 1b) was
successful for the extreme year of 2011 (with an overprediction
in HABs SI by 1.12). For another extreme year 2015, the GA-
chem model missed the prediction of HABs SI by 7.8 units. It
was found (https://www.washingtonpost.com/news/capital-
weather-gang/wp/2015/11/12/this-years-disgusting-green-algal-
bloom-in-lake-erie-was-the-most-severe-on-record/) that Mau-
mee River watershed received about eight inches more rain than
normal in June 2015. It was also the fourth wettest June in
Toledo, Ohio, and one of the top 20 wettest months since records
began in 1880. As a result, our GA-chem model that lacked
nutrient loading data from June, may have performed poorly.
Therefore, to test the impact of nutrient loading from June,
a GA-chemplus model was developed, which is similar to GA-
chem but makes use of chemical loading data from March to
June (instead of March to May as in GA-chem). Using the GA-
chemplus, the prediction of HABs SI was improved considerably
in 2015 compared to GA-chem (Observed value: 10.5, Predicted
value using GA-chemplus: 10.28, predicted values using GA-
chem: 2.70). For the entire time period (2002–2020), the root
mean squared error (RMSE) of predicted HABs SI using GA-
chem is 2.67 and the correlation with the HABs SI is 0.53
(Table 2). However, for years with HABs SI > 7, the performance
of GA-chem deteriorates as evidenced by higher RMSE (4.02).
The standard deviation of the observed HABs SI is 3.17,
compared to the standard deviation for the GA-chem model
(2.74). To further improve the prediction of SI, we look at
predictors other than nutrients and discharge data.

Seasonal prediction using nutrient plus climate indices. Large-
scale circulation patterns are known to have an important asso-
ciation with the hydrometeorological conditions for the Great
Lakes, and hence, may be considered as potential predictors for
HABs. ENSO is the dominant climate mode on the planet38, and
its associated teleconnection pattern, i.e., the PNA
teleconnection27,39, provides the greatest potential for seasonal
prediction of hydrometeorology over the Great Lakes40–42.
Similar to GA-chem, a set of predictive models, using the jack-
knife method, was developed using climate indices only (GA-
clim, Supplementary Table S2). We found that PDO, PNA and
ENSO (SOI) were the most important predictors of all the climate
indices included in this analysis. The performance of GA-clim for
all events is comparable to GA-chem (RMSE of GA-chem: 2.67,
GA-clim: 2.52) and R2 for each predictive model is in the range
0.29–0.69 for GA-chem and 0.49–0.63 for GA-clim (Supple-
mentary Tables S1, S2).

Notaro et al.41 examined the relationship between large-scale
circulation and the regional climate of Northeast United States for
early winter using regional climate simulations and observations.
They found that during positive PNA, there is greater subsidence
over land, lower atmospheric moisture content and higher
stability, resulting in reduced total simulated cloud cover,
precipitation and snowfall. Also, during positive PNA, lower
surface air temperature over land resulted in higher simulated
cloud cover over the Great Lakes and the Atlantic Ocean due to
increased thermal contrast. The time-series of ENSO (SOI) and
PNA (Supplementary Fig. S3) indicate that they were mostly in-
phase in some years, but were out-of-phase in other years. Thus,
no linear relationship of these indices with the severity of HABs
over Lake Erie could be established. This finding emphasizes the
importance of including climate indices in machine learning
models to capture such non-linearity.

The improvement in prediction in GA-chem-clim compared to
GA-chem is evident in Fig. 1b. The RMSE in GA-chem-clim is
reduced to 2.26 from 2.67 as found in GA-chem (Table 2). At the
same time, the correlation between observed and simulated SI
increased from 0.53 in GA-chem to 0.67 in GA-chem-clim.
Moreover, the observed standard deviation of SI was captured
well by the GA-chem-clim compared to GA-chem (Table 2)
indicating that GA-chem-clim can represent the observed
variation in HABs better than GA-chem. Considering years with
HABs SI > 7, GA-chem-clim also performs better than GA-chem
(Table 2), and is particularly evident in 2017 (Fig. 1b; Obs:8, GA-
chem:5.65, GA-chem-clim:8.29). This improvement is notable
because one of the major problems mentioned in Stumpf et al.9

model was the prediction in years with high HABs SI.
We further investigated large-scale atmospheric conditions to

understand the role of climate variability (PNA and ENSO) and
their connection to HABs. For this purpose, we analyzed the

Table 2 Performance of GA-chem (based on chemical
loading data for March–May), GA-clim (based on climate
indices data for November (previous year)–May (current
year)), and GA-chem-clim (based on chemical loading data
for March–May, and climate indices data for
November–May) against observed HABs severity index
during 2002–2020.

Experiment RMSE Correlation Standard deviation of bias

All events All events All events

GA-chem 2.67 0.53 2.74
GA-clim 2.52 0.58 2.59
GA-chem-clim 2.26 0.67 2.32
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large-scale circulations based on data obtained from the European
Center for Medium-Range Weather Forecasts (ECMWF) Reana-
lysis 5 (ERA5, Hersbach et al.43) for years with low SI (<2; 2002,
2005, 2006, and 2007) and high SI (>7; 2011, 2013, 2015, 2017,
and 2019). The reasoning behind this categorization is to focus on
the role of nutrient loading and atmospheric circulations for these
extreme low and high HABs SI years.

The composites of large-scale circulation patterns from the
winter months show distinct differences that lead to years with
low (SI < 2) and high (SI > 7) severity of blooms. Here we analyze
the geopotential height—the height of a pressure surface (e.g.,
500 hPa) above the mean sea level—which is closely related to
wind anomalies due to the geostrophic balance and is often used
to identify atmospheric teleconnection patterns. We find higher
geopotential heights at 500 hPa over the northern U.S. (Fig. 2)
during low severity years, which result in less cold air outbreaks
in the winter months and, thus, higher temperature. Meanwhile,
the high-pressure anomaly center also tends to shift the jet stream
southward, which leads to less snowfall over the Great Lake areas.
The higher geopotential height anomalies over the U.S. can be
traced back to the tropical Pacific as the positive PNA wave train,
with low-pressure anomalies found over the Aleutian Islands
region and high-pressure anomalies over the subtropical North
Pacific. A positive PNA is typically observed during El Niño,
agreeing with our findings of a prominent positive sea surface

temperature (SST) anomaly in the central tropical Pacific (Fig. 3).
In addition, the positive phase of PDO can also induce positive
PNA teleconnection pattern44,45. Conversely, lower geopotential
heights are found during winter months prior to high severity
blooms, which allowed greater intrusions of Arctic air mass
during winters of preceding years with a high HAB severity index.
Over the Pacific Ocean, high pressure anomalies weaken the
Aleutian Low while low pressure anomalies are found over and to
the west of Hawaiian Islands, accompanied by prominent
negative SST anomalies in the central equatorial Pacific. These
large-scale climate conditions are associated with the negative
PNA and La Niña, which lead to cooler temperature and greater
snowfall over the U.S. (Fig. 4) in the winter resulting in more
runoff in the summer, and potentially stronger bloom seasons.

Prediction of multiple years using nutrient loading and climate
indices. In the previous sections, we used maximum available
data length for training and a left out year for prediction. To
further test the capability of the GA models (GA-chem, GA-clim
and GA-chem-clim) and the current approach, we reduced the
data length for training i.e., 79%, (15 years) of the data used for
training and 21% (4 years) of data for prediction and performed
4 set of experiments. In designing these experiments, at least one
extrema is part of the prediction phase (see Table 3). Monthly

Fig. 2 Geopotential height and winds during years with mild and severe bloom activity. a Anomalies of geopotential height (shaded, m) and winds
(vector, m s −1) for December, January and February for years with HABs SI < 2 at 200 hPa. b Same as (a) but for HABs SI > 7. c Same as (a) but for 500
hPa. d Same as (c) but for HABs SI > 7. e Same as (a) but for 850 hPa. f Same as (e) but for HABs SI > 7. Anomalies were calculated after subtracting the
climatology based on 2002–2020.
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Fig. 3 Oceanic and atmospheric conditions during years with mild and severe bloom activity. a Anomalies of SST (˚C) for December, January, and
February for years with HABs SI < 2. b Anomalies of 500-hPa geopotential height (shaded, m) and 200-hPa wind (vector, m s−1) for December, January,
and February for years with HABs SI < 2. c Same as (a) but for HABs SI > 7. d Same as (b) but for HABs SI > 7. SSTs were obtained from HadISST (Rayner
et al.54), and geopotential height and winds were obtained from the ERA5 reanalysis. Anomalies were calculated after subtracting the climatology based on
2002–2020.

Fig. 4 Accumulated snow depth and near-surface temperature during years with mild and severe bloom activity. a Anomalies of accumulated snow
depth (m) for years with HABs SI < 2. b Same as (a) but HABs SI > 7. c Anomalies of accumulated snow depth (m) for HABs SI > 7 minus HABs SI < 2.
d Same as (a) but for 2 m temperature (K). e Same as (b) but for 2 m temperature (K). f Same as (c) but for 2 m temperature (K). These anomalies for
December, January, and February were calculated after subtracting the climatology based on 2002–2020.

Table 3 Root mean squared error (RMSE) and mean bias between observations and HABs severity index for GA-chem and
GA-chem-clim models for experiments 1 to 4.

Experiments Years (predicted) RMSE GA-chem/GA-clim/GA-chem-clim Mean Bias GA-chem/GA-clim/GA-chem-clim

Experiment-1 2004, 2006, 2012, 2016 1.12/2.27/0.35 1.10/1.56/−0.20
Experiment-2 2004, 2007, 2008, 2012 2.25/2.54/1.15 1.60/2.20/−0.19
Experiment-3 2013, 2016, 2018, 2020 2.28/1.93/1.70 −0.28/1.70/−0.39
Experiment-4 2015, 2016, 2018, 2020 2.92/3.44/1.66 −1.48/0.63/−0.67
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accumulations of chemical loading data and monthly climate
indices are used for GA-chem and GA-chem-clim models. In all
four experiments (Fig. 5), GA-chem overpredicts the low extrema
years and underpredicts the high extrema years. GA-chem-clim
model improves the prediction compared to GA-chem model as
shown in Table 3 by reduction of RMSE for GA-chem-clim
models. In Table 4, we show the HABs SI functions for Experi-
ments 1–4. Apart from PNA for December month, we found TP
for April and May, TSS for March, and CL for the months of
March and April as predictors for HABs SI. The priority of

monthly chloride loading given by the GA-chem and GA-chem-
clim models in experiments 1–4 has important implications for
phytoplankton dynamics in Lake Erie. There is strong evidence
that large inputs of road de-icing salt (via spring runoff) can
disrupt lake phytoplankton dynamics46. Some species of fresh-
water cyanobacteria, including Microcystis aeruginosa, have
demonstrated high tolerances to elevated salinity, and increased
chloride concentrations have been associated with cyanobacterial
blooms47. The importance of chloride loading in March–May as a
predictor may also serve as an indirect factor, as road salt

Fig. 5 Prediction of HABs severity index using different input parameters. a HABs severity index (SI) for Experiment-1 from observation (black bar),
prediction using GA-chem model that is based on nutrient loading only (blue bar), prediction using GA-clim model that is based on climate indices only
(green bar) and GA-chem-clim that is based on nutrient loading and climate indices (red bar). b Same as (a) but for Experiment-2. c Same as (a) but for
Experiment-3. d Same as (a) but for Experiment-4. The years on x-axis show the predicted years for each of these four experiments.

Table 4 HABs SI functions for GA-chem, GA-clim and GA-chem-clim for the 4 experiments.

Experiments HABs SI function (GA-chem) HABs SI function (GA-clim) HABs SI function (GA-chem-clim)

Experiment-1 (CL[Mar]+(((TP[May]−(1.61))
*(TS[May]−CL[Mar]))*(0.23)))

5.60-1.95*PDO[Nov]*SOI[May]
−PNA[Nov]*NAO[Dec]

(((CL[Mar]−CL[Apr])−(PNA[Dec]−(TP[Apr]
+TP[May])))−TS[May])

Experiment-2 (TS[May]+((0.31)*((CL[Mar]
−TS[May])*((4.68)−TS[May]))))

((4.54-PNA[Dec])+(PDO[Dec]
+(SOI[Dec]−(NAO[Mar]*SOI[May]))))

(((TP[Apr]−TS[Mar]*((0.16)*TP[May])
+(CL[Mar]−PNA[Dec])

Experiment-3 (CL[Mar]+(((0.23)*(CL[Mar]
−TP[May]))*(CL[May]−TP[May])))

5.14+PDO[Nov]−PNA[Dec]−SOI(May)
*(NAO[Mar]−SOI[Nov])

(CL[Mar]−(PNA[Dec]+((TS[May]
−PNA[Dec])*((TP[Apr]−TS[Mar])
*(−0.19))))

Experiment-4 (TP[May]−((−0.58)*(TP[Apr]
+((CL[Mar]−CL[May])−TS[May]))))

(PDO[Nov]−(PNA[Dec]
−(4.80+(SOI[Apr]−(NAO[May]
*NAO[Mar])))))

((CL[Mar]−PNA[Dec])+(((0.12)*(TP[Apr]
−TS[Mar]))*TP[May]))

The provided equations are sample equations for the prediction of 2006 (experiment-1), 2008 (experiment-2), 2013 (experiment-3), and 2014 (experiment-4).

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-022-00510-w ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2022) 3:195 | https://doi.org/10.1038/s43247-022-00510-w |www.nature.com/commsenv 7

www.nature.com/commsenv
www.nature.com/commsenv


application rates may function as a proxy measure for the severity
of a previous season’s winter (as shown by the GA models in
selecting PNA for the month of December).

Although there is an overall improvement in GA-chem-clim
model compared to GA-chem (Figs. 1b, 5 and Tables 2, 3), there
may be other environmental predictors which can add value to
both these models. To test this hypothesis, we incorporated local
data (2m-temperature and 10m wind speed) at five locations
surrounding the Lake Erie (Toledo (83.4764°W, 41.5631°N),
Cleveland (81.8528°W, 41.4050°N), Buffalo (78.7358°W,
42.9408°N), Delhi (80.5453°W, 42.8635°N), and Niagara District
(79.1717°W, 43.1917°N)) in the GA models. The inclusion of wind
speed (early April to mid-May) and temperature (early March to
late April) in the GA models showed that they can play important
roles in the prediction of HABs SI. Since the results are still
preliminary and only used local data over 5 stations and two
variables (temperature and wind speed), and need more experi-
ments and further investigation, we do not report results from
these experiments here. Also, in this study, due to the small size of
the dataset (2002–2020), the number of predictors is limited to
avoid overfitting48. We hope to design further experiments in
future to select the predictors from chemical, climate and local
parameters in order to improve the prediction of HABs SI.

Concluding remarks. The Lake Erie seasonal severity index was
successfully predicted using a GA model with predictors selected
from two types of data, chemical data and climate indices. Despite
limited availability (19 years) of the bloom severity data, our GA-
chem-clim model provides a more accurate prediction than GA-
chem as seen by lower RMSE and higher correlation in GA-
chem-clim than GA-chem model (Tables 2, 3 and Figs. 1b, 5).
Out of the five years with HABs SI > 7, the prediction for 2013
was the worst with a negative bias of ~3.5 units by both GA-chem
and GA-chem-clim. The comparison of performance by GA-
chem, GA-clim, and GA-chem-clim (Supplementary Table S4)
show residual standard error for GA-chem-clim is lower than
GA-chem and GA-clim. The Pearson product-moment correla-
tion and p-value further confirms the superior performance of
GA-chem-clim model. We further demonstrated that the GA-
chem-clim model improves (as shown in Table 3) the perfor-
mance of GA-chem model by predicting a set of four different
years comprising of low and high HABs SI.

To understand the potential role of climate indices for improved
HABs prediction, we further analyzed the large-scale atmospheric
circulations using reanalysis data. It was found that for the mild
HABs years (SI < 2), the large-scale meteorological features are
distinctly different from those for the severe HABs years (SI > 7).
This suggests that large-scale circulation may affect the seasonal
evolution of HABs in Lake Erie. Moreover, the seasonal prediction
of HABs can be completed by early June (using GA-chem, GA-
clim, and GA-chem-clim), before the expected peak in HAB activity
during July to October. This improved early seasonal prediction can
provide timely information to policymakers for adopting proper
planning and mitigation strategies such as restrictions in harvesting
and help in monitoring toxins in shellfish to keep contaminated
products off the market. The incorporation of climate indices in the
GA-models provides the flexibility of early prediction with a greater
lead time and also shows improvement over GA-model which only
uses chemical loading.

Overall, the present approach shows promise for early-season
prediction of HABs SI in Lake Erie, and it would be interesting to
apply the same approach to other water bodies. At present, this
GA-model is deterministic. It would be worthwhile to design a
probability-based system that can provide the likely range of

HABs severity and their probability of occurrence. Work will be
undertaken in the future to include the stochastic framework
within our methodology to include these aspects.

Materials and methods
Machine learning techniques like the Genetic Algorithm (GA; refs. 49–52) are search
heuristics based on the laws of natural selection, where a large number of
randomly-generated mathematical functions are initially assumed to explain the
relationship between predictor and predictand variables. New forms of functional
relations evolve during an iterative process that involves reproduction and muta-
tion among the most fitting individual functions. After a large number of iterations
(typically in thousands), the best individual function emerges.

Predictive modeling for seasonal HABs using the GA was developed using
observations of integrated chemical loading (March to May) into Lake Erie as well
as the monthly large-scale climate indices seven months prior to June (i.e., from
November of the previous year to May of the current year). The small number (19,
one event per year for the period 2002–2020) of observations, and the corre-
sponding predictor observations compelled us to constrain the GA process to select
only a few (4 to 5) predictors to avoid the so called “curse of dimensionality” and
the risk of overfitting48. GA procedures were initiated with 2000 size-constrained
random functions, which were allowed to reproduce among one another, and
mutate at certain random intervals, to produce more and more fit individual
functions in an iterative process. The measure of the fitness of a model is defined as
how best its predictions match the observations of HABs SI. With each iteration,
the GA procedure evolves and refines its functions. The mean of seasonal HABs SI
in our limited data set was 4.72 with a standard deviation of 3.17 units. In our
model development procedure, we considered only those models, which achieved
an accuracy of 2.0 units or less in the GA procedure. The value represents the
maximum RMSE from Table 1, Supplementary Tables S1, S2. The GA iterative
process continued until the fitness of the best-evolved function reached saturation
below the predefined threshold, which took about 4000–6000 iterations.

The paucity of observations of HAB events (only 19 seasons) does not permit the
probability distribution of HAB to be represented. Further, a single predictive
model may not be sufficient to explain the relationship between predictors and
predictands. In order to analyze the bias and the variance of the GA-based pre-
diction, we employed the jackknife method53. Using this method, we developed 19
predictive models, using 18 data points for training, leaving one data point (one
season) for prediction. Hence, the mean of the jackknife variance for the 19 models
was considered the variance of the GA model. With the availability of more
observations in the future, this procedure may be repeated to obtain improved
predictive models.

Supplementary Tables S1, S2 show the performance, and the predictors selected
by each of the 19 models developed by GA-chem and GA-clim, respectively. The
mean jackknife standard error of the models was found to be 1.76, which is much
smaller compared to the natural variability of the seasonal index record (3.17). The
mean strength (equivalent to r2 in regression modeling) of the models was found to
be 0.37. Within the 19 different data sets, the GA procedure picked different
predictors. Integrated March-to-May TP, SRP, TSS, CL and SL loading were the
most common predictors selected by GA-chem.

In the GA-clim models that used only climate indices data, the major predictors
selected were April ENSO (SOI) index, December PNA, and November PDO. The
mean strength of the models was found to be 0.57, and the standard error of
prediction was 1.61 units.

As mentioned earlier, the combination of climatic indices with chemical loading
led to enhancement of model strength (0.63), and reduction in standard error
(1.43). This analysis indicates that a suitable combination of ENSO, PNA and other
climate indices, and bio-chemical loading may be responsible for the observed
variability of HABs over Lake Erie.

Data availability
We have used the nutrient loading data, which was obtained from https://ncwqr.org/
monitoring/. ERA5 data were downloaded from the Copernicus Data System (https://cds.
climate.copernicus.eu/cdsapp#!/home). Climate indices datasets were downloaded from
Climate Prediction Center, NOAA (https://www.cpc.ncep.noaa.gov/) and Physical
Sciences Laboratory, NOAA (https://psl.noaa.gov/).

Code availability
All the analyses and figures are made using FORTRAN and NCL (https://doi.org/10.
5065/D6WD3XH5), and the codes are available from the corresponding author on
reasonable request.
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